JPH04334441A - Manufacture of gradient functional fiber reinforced thermoplastic resin formed material - Google Patents

Manufacture of gradient functional fiber reinforced thermoplastic resin formed material

Info

Publication number
JPH04334441A
JPH04334441A JP19977191A JP19977191A JPH04334441A JP H04334441 A JPH04334441 A JP H04334441A JP 19977191 A JP19977191 A JP 19977191A JP 19977191 A JP19977191 A JP 19977191A JP H04334441 A JPH04334441 A JP H04334441A
Authority
JP
Japan
Prior art keywords
fibers
thermoplastic resin
fiber
layers
melting point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19977191A
Other languages
Japanese (ja)
Inventor
Toshiyuki Nishio
俊幸 西尾
Masaaki Yamaguchi
正昭 山口
Masatsugu Mochizuki
政嗣 望月
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Unitika Ltd
Original Assignee
Unitika Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Unitika Ltd filed Critical Unitika Ltd
Priority to JP19977191A priority Critical patent/JPH04334441A/en
Publication of JPH04334441A publication Critical patent/JPH04334441A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To prevent separation due to thermal stress or other fault from developing by a method wherein a plurality of woven fabrics, which contains two kinds of thermoplastic resin fibers different in melting point and diameter from each other and at least two kinds of reinforcing fibers, are laminated to one another in the specified mode and then compression- molded. CONSTITUTION:When fourteen sheets of woven cloths prepared by mixed fiber spinning are laminated, the first to fourth layers are produced by laminating plain woven cloths F1, each of which consists of warp made of long reinforcing fiber A in the density of (m) threads/inch and weft made of thermoplastic resin fiber C in the density of (n) threads/inch, and which are sifted at right angles in the laminating planes. Further, the eleventh to fourteenth layers are also produced by laminating plain woven cloths F2, each of which consists of warp made of long reinforcing fiber B in the density of (x) threads/inch and weft made of thermoplastic resin fiber D in the density of (y) threads/inch, and which are shifted at right angles in the laminating planes. The difference between the melting points of the respective fibers C and D are set to be about 50 deg.C. A fifth, an eighth and a nineth layers, the warp and weft of which are respectively at right angles to those of the proceeding layers, are made of the cloth F2, while a sixth, a seventh and a tenth layers are made of the cloth F1. These layers are laminated to one another under the condition being shifted at right angles in the laminating planes.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、内部環境と外部環境が
著しく異なる各種の容器やパイプの構造材として好適な
傾斜機能を有する繊維強化熱可塑性樹脂成形材の製造法
に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a fiber-reinforced thermoplastic resin molded material having a gradient function and suitable as a structural material for various containers and pipes whose internal and external environments are significantly different.

【0002】0002

【従来の技術】現在、強化用長繊維で強化した熱可塑性
樹脂成形材の製造方法には、エクストリュージョンラミ
ネート法、プルトリュージョン法やフィラメントワイン
ディング法等を適用する方法がある。また、強化用長繊
維に熱可塑性樹脂の粉末をサスペンジョン状態で付与し
て得られる繊維を組み上げるか、あるいは強化用長繊維
に熱可塑性樹脂の融液を含浸して得られる繊維を組み上
げ、その後熱可塑性樹脂を加熱溶融する方法が知られて
いる。しかしながら、一般的に、従来法であるエクスト
リュージョンラミネート法等により得られる強化用繊維
を補強材とする熱可塑性樹脂成形材は硬くて可とう性に
欠けるため、深絞り成形物のような複雑形状の成形には
適さないことが大きな問題点となっている。また、強化
用長繊維に熱可塑性樹脂の粉末をサスペンジョン状態で
付与した繊維を組み上げる方法、あるいは強化用長繊維
に熱可塑性樹脂の融液を含浸した繊維を組み上げる方法
では、得られた繊維およびそれにより形成された織布は
非常に硬くて取扱が同様に困難なものとなる。
BACKGROUND OF THE INVENTION At present, methods for producing thermoplastic resin molded materials reinforced with long reinforcing fibers include methods such as extrusion lamination, pultrusion, and filament winding. In addition, fibers obtained by applying thermoplastic resin powder to reinforcing long fibers in suspension are assembled, or fibers obtained by impregnating reinforcing long fibers with a thermoplastic resin melt are assembled, and then heated. A method of heating and melting a plastic resin is known. However, in general, thermoplastic resin molded materials that use reinforcing fibers as reinforcing materials obtained by conventional methods such as extrusion lamination are hard and lack flexibility, so they cannot be used for complex products such as deep drawn products. A major problem is that it is not suitable for shaping shapes. In addition, in the method of assembling fibers in which thermoplastic resin powder is applied to reinforcing long fibers in suspension, or in the method of assembling fibers in which reinforcing long fibers are impregnated with thermoplastic resin melt, the obtained fibers and their The resulting woven fabric is very stiff and similarly difficult to handle.

【0003】これら問題点を回避するために、特開平2
−14039号では経糸と緯糸の各々が、少なくとも1
種類の熱可塑性樹脂繊維および少なくとも1種類の補強
繊維糸からなる織物を重ね合わせ加熱圧縮成形すること
により熱可塑性樹脂成形材を得る方法が示されている。 しかし、この方法では厚み方向において組成的に均一な
ものしか得られていない。
[0003] In order to avoid these problems,
-14039, each of the warp and weft has at least one
A method is disclosed in which a thermoplastic resin molded material is obtained by superimposing and heating compression molding woven fabrics made of different types of thermoplastic resin fibers and at least one type of reinforcing fiber yarn. However, with this method, only a composition that is uniform in the thickness direction can be obtained.

【0004】さらに、複数の強化用繊維を組み合わせる
ことにより熱可塑性樹脂成形材を得る方法が特開平2−
13623号に示されている。しかしながら、この方法
では厚み方向において異なる材料を単に配置するため、
非連続的な変化による機械的な作用および熱的な応力に
より剥離が生じたり、熱膨張係数の差により、歪や反り
が生じる場合歪や反りが発生するなどの欠点がある。
Furthermore, a method for obtaining a thermoplastic resin molded material by combining a plurality of reinforcing fibers is disclosed in Japanese Patent Application Laid-Open No.
No. 13623. However, this method simply arranges different materials in the thickness direction;
Disadvantages include peeling due to mechanical action and thermal stress due to discontinuous changes, and distortion and warpage occurring due to differences in thermal expansion coefficients.

【0005】また、複数の素材を組み合わせることによ
り複数の機能を付与する方法としてラミネート成形法や
多層フィルム成形法が知られているが、これらの場合に
もその異種成分界面において組成が非連続的に変化する
ために、機械的な作用および熱的な応力により剥離ある
いはその他の欠陥が生じる恐れがあり、また、熱的に膨
張係数の異なる素材を組み合わせる場合、その熱膨張係
数の差により、歪や反りが生じる場合がある。
[0005]Also, laminate molding and multilayer film molding are known as methods for imparting multiple functions by combining multiple materials, but in these cases, the composition is discontinuous at the interface of different components. mechanical action and thermal stress can cause delamination or other defects. Also, when materials with different thermal expansion coefficients are combined, the difference in thermal expansion coefficients can cause distortion. Warping may occur.

【0006】また、複数の樹脂を組み合わせることによ
り複数の機能を付与する方法として、一般的にポリマー
ブレンド法やポリマーアロイ法が知られている。しかし
ながら、これらの方法においては、これら複数の素材を
単に均一に組み合わせて使用する方法が主として行われ
ている。
[0006] Polymer blending methods and polymer alloying methods are generally known as methods for imparting multiple functions by combining multiple resins. However, in these methods, a method is mainly carried out in which a plurality of materials are simply used in a uniform combination.

【0007】[0007]

【発明が解決しようとする課題】本発明は、一方の面と
他方の面とで著しく熱的・化学的・機械的環境が異なっ
ても、熱的な応力に強く、化学的に安定で、機械的な作
用に強く、かつコスト的にも安価で、しかの歪や反りが
発生することのない熱可塑性樹脂成形材(複合材料)を
得ることを技術的課題とするものである。
[Problems to be Solved by the Invention] The present invention is resistant to thermal stress and chemically stable even if the thermal, chemical, and mechanical environments are significantly different between one side and the other side. The technical objective is to obtain a thermoplastic resin molded material (composite material) that is resistant to mechanical action, is inexpensive, and does not suffer from distortion or warping.

【0008】本発明は、また深絞り成形物のような複雑
形状の成形物にも適用可能な傾斜機能を有する繊維強化
熱可塑性樹脂成形材の製造法を提供することを目的とす
るものである。
Another object of the present invention is to provide a method for producing a fiber-reinforced thermoplastic resin molded material having a gradient function, which can be applied to molded products with complex shapes such as deep-drawn products. .

【0009】本発明者らは、先に熱可塑性樹脂繊維と強
化用繊維とからなり、かつそのいずれか一方の繊維が2
種類の素材から成る編織布をその中間層において一方の
面から他方の面に向けて相対含有量が徐々に変化するよ
うに積層して熱可塑性樹脂繊維を加熱溶融せしめて圧縮
成形することにより、2種類の素材が厚み方向に(積層
方向)に徐々に変化する傾斜機能を有する熱可塑性樹脂
成形材の製造方法を提案した。しかし、この場合、複数
の熱可塑性樹脂を繊維形態から加熱圧縮にて傾斜を持た
せるように混合を行わせようとする場合、熱可塑性樹脂
の融点が異なると、低融点樹脂が早く溶け出し未溶融物
側に浸透し傾斜組成の形成を乱すばかりでなく、高融点
樹脂の融点まで加熱した際に既に溶融している低融点樹
脂の熱劣化が進み目的とする性能が得られなくなる場合
があることが判明した。
[0009] The present inventors first discovered a method consisting of thermoplastic resin fibers and reinforcing fibers, and in which one of the fibers was
By laminating textile fabrics made of different materials in the intermediate layer so that the relative content gradually changes from one side to the other, thermoplastic resin fibers are heated and melted, and compression molded. We proposed a method for manufacturing a thermoplastic resin molded material that has a gradient function in which two types of materials gradually change in the thickness direction (layering direction). However, in this case, when trying to mix multiple thermoplastic resins in fiber form so that they have a gradient by heat compression, if the melting points of the thermoplastic resins are different, the low melting point resin will melt quickly and will not work. Not only does it penetrate into the melt and disturb the formation of a gradient composition, but when the high melting point resin is heated to its melting point, the already melted low melting point resin may undergo thermal deterioration, making it impossible to achieve the desired performance. It has been found.

【0010】0010

【課題を解決するための手段】本発明者らは、上記技術
的課題を達成すべく鋭意研究を重ねた結果、2種類の熱
可塑性樹脂繊維と強化用繊維とから成る編織布を構成す
る際、より融点の高い熱可塑性樹脂から成る繊維の直径
がより融点の低い熱可塑性樹脂から成る繊維の直径より
小さいものを用い、それらを積層するに際してその中間
層に於て一方の側からもう一方の側に組成が徐々に変化
するよう積層すれば、所期の目的が達成される事を見い
だし本発明に至った。
[Means for Solving the Problems] As a result of intensive research to achieve the above technical problem, the present inventors have discovered that when constructing a knitted fabric made of two types of thermoplastic resin fibers and reinforcing fibers, , the diameter of the fibers made of a thermoplastic resin with a higher melting point is smaller than the diameter of the fibers made of a thermoplastic resin with a lower melting point, and when stacking them, in the middle layer, from one side to the other. The inventors have discovered that the desired objective can be achieved by stacking the layers so that the composition changes gradually on both sides, leading to the present invention.

【0011】すなわち、本発明は、より融点の高い熱可
塑性樹脂から成る繊維の直径がより融点の低い熱可塑性
樹脂から成る繊維の直径より小さい2種類の熱可塑性樹
脂繊維と少なくとも1種類の強化用繊維とからなり、し
かもその2種類の熱可塑性樹脂の相対的含有量が異なる
複数の編織布を上記2種類の熱可塑性樹脂の相対的含有
率が積層方向(厚み方向)に徐々に変化するように積層
し、熱可塑性樹脂繊維を溶融せしめて圧縮成形すること
を特徴とする傾斜機能を有する繊維強化熱可塑性樹脂成
形材の製造法である。
That is, the present invention provides two types of thermoplastic resin fibers, the fibers made of a thermoplastic resin with a higher melting point having a smaller diameter than the fibers made of a thermoplastic resin with a lower melting point, and at least one type of reinforcing fiber. A plurality of knitted and woven fabrics consisting of fibers and having different relative contents of the two types of thermoplastic resins are made so that the relative contents of the two types of thermoplastic resins gradually change in the lamination direction (thickness direction). This is a method for producing a fiber-reinforced thermoplastic resin molded material having a gradient function, which is characterized in that the thermoplastic resin fibers are laminated, the thermoplastic resin fibers are melted, and compression molded.

【0012】以下本発明を詳細に説明する。The present invention will be explained in detail below.

【0013】本発明において使用する熱可塑性樹脂繊維
は、熱可塑性樹脂を熱や溶媒等で溶解し繊維化したもの
をいい、例えばポリオレフィン類、ポリエステル類、ポ
リアミド類、ポリアリレート、ポリフェニレンサルファ
イド、ポリフェニレンエーテル、ポリエーテル・エーテ
ルケトン、ポリエーテルサルフォン、ポリエーテルイミ
ド、ポリイミド等のポリマー類またはコポリマー類など
公知の熱可塑性樹脂を挙げることができる。
[0013] The thermoplastic resin fiber used in the present invention refers to a fiber obtained by dissolving a thermoplastic resin with heat or a solvent, and includes, for example, polyolefins, polyesters, polyamides, polyarylates, polyphenylene sulfide, and polyphenylene ether. , polyether/etherketone, polyethersulfone, polyetherimide, polyimide, and other known thermoplastic resins such as polymers or copolymers.

【0014】ここで繊維の直径は、使用する2種類の熱
可塑性樹脂繊維のうち、より融点の高い熱可塑性樹脂か
ら成る繊維の直径がより融点の低い熱可塑性樹脂から成
る繊維の直径より小さいことが必要である。しかも、2
種類の熱可塑性樹脂繊維の融点差が大きい程、高融点樹
脂繊維の直径は小さく、かつ低融点樹脂繊維の直径は大
きい方が好ましい。また、使用する熱可塑性樹脂繊維に
おいて、高融点樹脂の溶融温度域での低融点樹脂の熱劣
化が大きい程、高融点樹脂繊維の直径は小さく、且つ低
融点樹脂繊維の直径は大きい方が好ましい。例えば、融
点差が50度未満の場合、低融点樹脂の直径は高融点樹
脂の直径の1から20倍が好ましく、また融点差が50
度以上の場合、低融点樹脂の直径は高融点樹脂の直径の
少なくとも3倍以上好ましくは5倍以上が用いられる。
[0014] Here, the diameter of the fibers is such that, of the two types of thermoplastic resin fibers used, the diameter of the fiber made of a thermoplastic resin with a higher melting point is smaller than the diameter of the fiber made of a thermoplastic resin with a lower melting point. is necessary. Moreover, 2
It is preferable that the larger the difference in melting point between different types of thermoplastic resin fibers, the smaller the diameter of the high melting point resin fibers and the larger the diameter of the low melting point resin fibers. In addition, in the thermoplastic resin fibers used, it is preferable that the larger the thermal deterioration of the low melting point resin in the melting temperature range of the high melting point resin, the smaller the diameter of the high melting point resin fiber, and the larger the diameter of the low melting point resin fiber. . For example, when the melting point difference is less than 50 degrees, the diameter of the low melting point resin is preferably 1 to 20 times the diameter of the high melting point resin;
In the case where the diameter of the low melting point resin is at least 3 times or more, preferably 5 times or more, the diameter of the high melting point resin is used.

【0015】また、本発明において使用する強化用繊維
は、前記熱可塑性樹脂繊維より融点が高くて、熱可塑性
樹脂の強化用に使用しうる繊維で、例えば、炭素繊維、
ガラス繊維、アラミド繊維、金属繊維、ポリベンゾオキ
サゾール繊維、アルミナ繊維、炭化ケイ素繊維等の長繊
維を挙げることができる。
Further, the reinforcing fibers used in the present invention are fibers that have a higher melting point than the thermoplastic resin fibers and can be used for reinforcing thermoplastic resins, such as carbon fibers,
Examples include long fibers such as glass fibers, aramid fibers, metal fibers, polybenzoxazole fibers, alumina fibers, and silicon carbide fibers.

【0016】次に、これらの繊維を用いて編織成するこ
とにより編織布を得る方法につき説明する。
Next, a method for obtaining a textile fabric by knitting and weaving these fibers will be explained.

【0017】編織成は、熱可塑性樹脂繊維と強化用繊維
を用いて行なわれるが、その方法としては、熱可塑性樹
脂繊維と強化用繊維を交織する方法、熱可塑性樹脂繊維
と強化用繊維を引き揃えまたは混繊した糸を編織成する
方法などにより行なうことができる。ここで、混繊を行
なう方法としては特に限定されるものではないが、例え
ば、エアーにより開繊を行ない混合する方法、液中で開
繊を行ない混合する方法、静電気により開繊を行ない混
合する方法等のように従来から知られている方法を使用
することができる。
[0017] Weaving is carried out using thermoplastic resin fibers and reinforcing fibers, and methods include a method of interweaving thermoplastic resin fibers and reinforcing fibers, a method of weaving thermoplastic resin fibers and reinforcing fibers, and a method of weaving thermoplastic resin fibers and reinforcing fibers. This can be done by knitting or weaving aligned or mixed yarns. Here, the method of mixing the fibers is not particularly limited, but for example, a method of spreading the fibers with air and mixing, a method of spreading the fibers in a liquid and mixing, a method of spreading the fibers with static electricity and mixing. Conventionally known methods can be used.

【0018】また、ここで得られる編織布は、平織り、
綾織り、朱子織りやその変化組織または経編みや緯編み
などの組織で編織成されたものであることが可能である
。糸使いなどを変化させることにより種々の組成や組織
を有した編織布を容易に得ることができる。
[0018] Furthermore, the knitted fabrics obtained here are plain weave,
It can be woven with a twill weave, a satin weave, a variation thereof, a warp knit, a weft knit, or the like. By changing the yarn usage, etc., textile fabrics with various compositions and textures can be easily obtained.

【0019】また、ここで用いられる熱可塑性樹脂繊維
は2種類であるが、強化用繊維は少なくとも1種類であ
って、2種類であってもよく、この場合には強化用繊維
も熱可塑性樹脂と同様に厚み方向に徐々に変化させるこ
とができる。このほかに第3成分として他の熱可塑性樹
脂繊維、強化用繊維、その他も併用することができる。 複数の素材を使用する場合には、交織、引き揃え、混繊
等を適当に組み合わせることにより複数の素材を有する
編織布を得ることが可能となる。
[0019]Although there are two types of thermoplastic resin fibers used here, there is at least one type of reinforcing fiber, and there may be two types.In this case, the reinforcing fibers are also thermoplastic resin fibers. Similarly, the thickness can be changed gradually in the thickness direction. In addition to this, other thermoplastic resin fibers, reinforcing fibers, and others may also be used as a third component. When using a plurality of materials, it is possible to obtain a knitted fabric having a plurality of materials by appropriately combining interweaving, alignment, blending, etc.

【0020】また、経織り密度や緯織り密度は任意に設
定することができるため、限りなく種々の織布を得るこ
とができる。
Furthermore, since the warp weave density and the weft weave density can be set arbitrarily, an infinite variety of woven fabrics can be obtained.

【0021】次に、このようにして得られた編織布を積
層する方法について、図を用いて本発明を詳細に説明す
る。
Next, the method of laminating the textile fabrics thus obtained will be explained in detail with reference to the drawings.

【0022】図1は、交織により得られた織布を14枚
積層する場合の積層方法についての一例を示す。この図
において、第1層から第4層までは、経糸が密度m本/
inchの強化用長繊維Aより成り、緯糸が密度n本/
inchの熱可塑性樹脂繊維C(熱可塑性樹脂繊維の直
径uμ)より成る平織り織布F1を積層面内でその方向
を90度ずつずらしながら積層した状態であり、一方第
11層から第14層までは、経糸が密度x本/inch
の強化用長繊維Bより成り、緯糸が密度y本/inch
の熱可塑性樹脂繊維D(熱可塑性樹脂繊維の直径vμ)
より成る平織り織布F2を同様に90度ずつずらしなが
ら積層した状態を指す。ここで熱可塑性樹脂繊維Cの融
点(TmC)と熱可塑性樹脂繊維Dの融点(TmD)差
はf度(TmC−TmD=f>50度)であり、v/u
=w≧3である。第5層から第10層は中間層であって
、本例においては第5層、第8層および第9層が織布F
2を、また第6層、第7層および第10層が織布F1と
いうように、各々の織布の積層配列を組み合わせ、これ
らを積層面内で90度ずつずらしながら積層することに
より構成されている。
FIG. 1 shows an example of a method of laminating 14 woven fabrics obtained by interweaving. In this figure, from the first layer to the fourth layer, the warp yarns have a density of m warps/
Consisting of inch reinforcing long fibers A, the weft density is n pieces/
The plain weave fabric F1 made of inch thermoplastic resin fibers C (thermoplastic resin fiber diameter uμ) is laminated with the direction shifted by 90 degrees within the laminated plane, while from the 11th layer to the 14th layer The density of warp threads is x threads/inch
It is made of reinforcing long fibers B, and the weft has a density of y pieces/inch.
Thermoplastic resin fiber D (diameter vμ of thermoplastic resin fiber)
It refers to the state in which plain weave fabrics F2 consisting of the following are laminated while being shifted by 90 degrees in the same manner. Here, the difference between the melting point (TmC) of thermoplastic resin fiber C and the melting point (TmD) of thermoplastic resin fiber D is f degrees (TmC-TmD=f>50 degrees), and v/u
=w≧3. The 5th layer to the 10th layer are intermediate layers, and in this example, the 5th layer, the 8th layer, and the 9th layer are woven fabric F.
2, and the 6th layer, 7th layer, and 10th layer are woven fabric F1, and are constructed by combining the laminated arrangement of each woven fabric and laminating them while shifting them by 90 degrees within the laminated plane. ing.

【0023】ここでいう傾斜とは、厚み方向にある素材
が一方から他方に向け徐々にその含有比率を変化させる
ことをいい、本発明では具体的には上に示したような中
間層を形成することにより達成される。
[0023] The gradient here refers to the gradual change in the content ratio of the material in the thickness direction from one side to the other, and specifically in the present invention, the intermediate layer as shown above is formed. This is achieved by

【0024】また、ここで中間層を形成する織布におい
てその織り密度を変化させることは更に有効であり、例
えば第1層、第4層、第6層、第7層、第10層の織布
F1において、この順でmの数およびnの数を徐々に減
らしていき、第5層、第8層,第9層、第11層、第1
4層の織布F2において、この順でxの数およびyの数
を徐々に増やしていくということも可能である。
[0024] Furthermore, it is more effective to vary the weave density of the woven fabric forming the intermediate layer. In the fabric F1, the number of m and the number of n are gradually reduced in this order, and the number of layers is 5th layer, 8th layer, 9th layer, 11th layer, and 1st layer.
In the four-layer woven fabric F2, it is also possible to gradually increase the number of x's and the number of y's in this order.

【0025】また、中間層を形成する織布において糸使
いを変化させることも有効である。例えば、第6層、第
7層および第10層の織布F1の代わりに、強化用長繊
維Aに対しその組成が50%を超えないよう強化用長繊
維Bを経糸に配列し、また熱可塑性樹脂繊維Cに対しそ
の組成が50%を超えないように熱可塑性樹脂繊維Dを
緯糸に配列した織布F1’を、一方第5層、第8層およ
び第9層の織布F2の代わりに、強化用長繊維Bに対し
その組成が50%を超えないように強化用長繊維Aを経
糸に配列し、また熱可塑性樹脂繊維Dに対しその組成が
50%を超えないように熱可塑性樹脂繊維Cを緯糸に配
列した織布F2’を積層する方法等が考えられる。
[0025] It is also effective to vary the thread usage in the woven fabric forming the intermediate layer. For example, instead of the woven fabric F1 of the 6th, 7th, and 10th layers, reinforcing long fibers B are arranged in the warp so that the composition does not exceed 50% of the reinforcing long fibers A, and the A woven fabric F1' in which thermoplastic resin fibers D are arranged in the weft so that the composition does not exceed 50% of the plastic resin fiber C is used instead of the woven fabric F2 of the fifth, eighth and ninth layers. The reinforcing long fibers A are arranged in the warp so that their composition does not exceed 50% of the reinforcing long fibers B, and the thermoplastic resin fibers are arranged so that their composition does not exceed 50% of the thermoplastic resin fibers D. Possible methods include laminating woven fabrics F2' in which resin fibers C are arranged in wefts.

【0026】ここで積層において各々の織布を、その積
層面内での強化用長繊維の方向に関して例えば45度、
60度または90度ずつずらして積層することは面内等
方性材料を得るためには有効である。
[0026] In the lamination, each woven fabric is rotated at an angle of, for example, 45 degrees with respect to the direction of the reinforcing long fibers within the lamination plane.
It is effective to stack the layers by shifting them by 60 degrees or 90 degrees to obtain an in-plane isotropic material.

【0027】図2は引き揃えにより得られた織布を14
枚積層する場合の積層方法の一例を示す。この図におい
て第1層から第4層までは経糸が密度p本/inchの
強化用長繊維Aおよび密度r本/inchの熱可塑性樹
脂繊維Cの引き揃えより成り、緯糸が密度q本/inc
hの強化用長繊維Aおよび密度s本/inchの熱可塑
性樹脂繊維Cを引き揃えることにより得られた平織り織
布F3を積層した状態であり、一方第11層から第14
層までは経糸が密度a本/inchの強化用長繊維Bお
よび密度c本/inchの熱可塑性樹脂繊維Dの引き揃
えより成り、緯糸が密度b本/inchの強化用長繊維
Bおよび密度d本/inchの熱可塑性樹脂繊維Dを引
き揃えることにより得られた平織り織布F4を積層した
状態を示す。本例において、中間層は第5層、第8層お
よび第9層が織布F4を、また第6層、第7層および第
10層が織布F3というように、各々の織布の積層配列
を組み合わせることにより構成されている。
FIG. 2 shows 14 woven fabrics obtained by drawing and aligning.
An example of a method of laminating sheets is shown below. In this figure, from the first layer to the fourth layer, the warp consists of reinforcing long fibers A with a density of p fibers/inch and the thermoplastic resin fibers C with a density of r fibers/inch, and the weft yarns have a density of q fibers/inch.
Plain weave fabric F3 obtained by aligning reinforcing long fibers A of h and thermoplastic resin fibers C of density s fibers/inch is in a laminated state, while the 11th to 14th layers
Up to the layers, the warp consists of reinforcing long fibers B with a density of a fibers/inch and the thermoplastic resin fibers D with a density of c fibers/inch, and the wefts consist of reinforcing long fibers B with a density of b fibers/inch and a density of d. This figure shows a state in which plain weave fabric F4 obtained by aligning thermoplastic resin fibers D of 1/inch is laminated. In this example, the intermediate layer is a laminate of woven fabrics such that the 5th, 8th and 9th layers are woven fabric F4, and the 6th, 7th and 10th layers are woven fabric F3. It is constructed by combining arrays.

【0028】ここで中間層を形成する織布においてその
織り密度を変化させることは更に有効である。
[0028] It is further effective to vary the weaving density of the woven fabric forming the intermediate layer.

【0029】また、中間層を形成する織布において引き
揃える糸使いを変化させることも有効であり、例えば、
第10層の織布F3の代わりに、経糸は強化用長繊維A
および熱可塑性樹脂繊維Cの引き揃えより成り、緯糸が
強化用長繊維Aおよび熱可塑性樹脂繊維Dを引き揃える
ことにより得られた織布F3’を用い、また第5層の織
布F4の代わりに、経糸は強化用繊維Bおよび熱可塑性
樹脂繊維Dの引き揃えより成り、緯糸が強化用長繊維B
および熱可塑性樹脂繊維Cを引き揃えることにより得ら
れた織布F4’を用いることも可能である。
[0029] It is also effective to change the thread used to align the woven fabric forming the intermediate layer. For example,
Instead of the woven fabric F3 of the 10th layer, the warp is the reinforcing long fiber A
and a woven fabric F3' obtained by aligning the reinforcing long fibers A and the thermoplastic resin fibers D, and in place of the woven fabric F4 of the fifth layer. In this case, the warp yarns are made of reinforcing fibers B and thermoplastic resin fibers D, and the weft yarns are made of reinforcing long fibers B.
It is also possible to use a woven fabric F4' obtained by aligning the thermoplastic resin fibers C.

【0030】ここで積層において各織布を、その積層面
内での強化用長繊維の方向に関して、例えば45度ずつ
ずらして面内積層することは等方性材料を得るためには
有効である。
[0030] In order to obtain an isotropic material, it is effective to laminate each woven fabric in the lamination plane so that the direction of the reinforcing long fibers is shifted by, for example, 45 degrees in the lamination plane. .

【0031】また、織布を得る方法において、強化用長
繊維および熱可塑性樹脂繊維より成る混繊糸や、強化用
長繊維同士より成る混繊糸、また熱可塑性樹脂繊維同士
より成る混繊糸を用いることも有効であり、このような
糸を交織あるいは引き揃えて使用することができる。
[0031] In addition, in the method for obtaining a woven fabric, a mixed yarn consisting of reinforcing long fibers and thermoplastic resin fibers, a mixed yarn consisting of reinforcing long fibers, or a mixed yarn consisting of thermoplastic resin fibers, It is also effective to use such yarns, and such yarns can be used by interweaving or aligning them.

【0032】また、強化用長繊維と熱可塑性樹脂との接
着性を改良するために、公知の方法であるカップリング
剤処理、酸化処理やプラズマ処理等を行なうことも可能
である。付与の方法としては特に限定されるものではな
いが、糸の状態、織布の状態等で行なうことができる。
Furthermore, in order to improve the adhesion between the reinforcing long fibers and the thermoplastic resin, it is also possible to carry out known methods such as coupling agent treatment, oxidation treatment, plasma treatment, etc. The method of application is not particularly limited, but it can be applied in the form of threads, woven fabrics, etc.

【0033】また、使用される熱可塑性樹脂繊維CとD
が一般的に言うところの非相溶である場合、樹脂同士の
界面の特性を改良するために、公知の方法である相溶化
剤処理を必要に応じて行なうことも可能である。付与の
方法としては特に限定されるものではないが、織布の状
態または熱可塑性樹脂繊維を得る際の練込み等で行なう
ことができる。
[0033] Also, the thermoplastic resin fibers C and D used
If the resins are generally incompatible, a known compatibilizing agent treatment can be carried out as necessary to improve the properties of the interface between the resins. The method of application is not particularly limited, but it can be applied in the form of a woven fabric or by kneading when obtaining thermoplastic resin fibers.

【0034】このようにして得られた積層体を加熱、加
圧成形する場合、従来より熱可塑性樹脂成形材の成形方
法として一般的に用いられている加熱プレス法、オート
クレ−ブ法およびダイヤフラム法を用いることができる
。加熱プレス法の場合、減圧を行いながら加熱プレスを
行なうことが好ましい。加熱は織布を構成する熱可塑性
樹脂の高融点温度域まで一気に昇温し、その後、所期の
加圧圧力を負荷した後樹脂の流動が完了するまで保持す
ることにより、繊維の直径がより小さく溶融速度が速い
高融点熱可塑性樹脂繊維の融点域まで温度を上げても、
繊維の直径がより大きい低い融点温度を有する熱可塑性
樹脂繊維全体が熱平衡に達するまでに時間を要すること
により、低い融点を有する熱可塑性樹脂の熱分解を極力
抑えながら、融点の高い熱可塑性樹脂を同時に成形加工
を行なうことが可能となる。
When the laminate thus obtained is heated and pressure molded, the hot press method, autoclave method and diaphragm method, which have been commonly used as molding methods for thermoplastic resin molding materials, can be used. can be used. In the case of the hot press method, it is preferable to perform the hot press while applying reduced pressure. Heating is done by raising the temperature all at once to the high melting point temperature range of the thermoplastic resin that makes up the woven fabric, then applying the desired pressure and holding it until the resin completes its flow, thereby increasing the diameter of the fibers. Even if the temperature is raised to the melting point range of small, high melting point thermoplastic resin fibers with a fast melting speed,
A thermoplastic resin with a larger diameter and a lower melting point temperature takes time for the entire fiber to reach thermal equilibrium, so it is possible to suppress the thermal decomposition of a thermoplastic resin with a low melting point as much as possible while producing a thermoplastic resin with a high melting point. It becomes possible to perform molding processing at the same time.

【0035】[0035]

【作用】本発明によれば、編織布の積層方法を変化させ
て、一方の面と他方の面においてその素材を相違させ、
さらにその中間層において素材の含有量を徐々に変化さ
せ、これらを加熱成形することにより、その厚み方向に
おける熱可塑性樹脂の含有量が徐々に変化したものとな
ると共に、2種類の熱可塑性樹脂繊維の溶融温度が異な
る場合でも低い融点を有する熱可塑性樹脂の熱劣化を極
力抑えながら、その厚み方向における熱可塑性樹脂の素
材が徐々に変化したものを容易にかつ効率的に成形加工
でき、熱可塑性樹脂同士の混合状態や強化用繊維と樹脂
の接着が良好となる。このようにして得られる本発明の
傾斜機能を有する熱可塑性樹脂成形材は、その熱可塑性
樹脂成形材の内部環境と外部環境が著しく異なる状況下
で使用された場合、例えば、何れかの側が高温にさらさ
れてもその熱可塑性樹脂成形材内部における熱応力の発
生を極力抑えることが可能となり、また層間剥離を防止
する接合効果に極めて優れた材料を得ることが可能とな
る。また、熱可塑性樹脂成形材の要求性能に応じた素材
の選択が可能となり、経済性にも優れる。非対称な構成
を有する場合も、歪や反りの無い熱可塑性樹脂成形材を
得ることができる。
[Operation] According to the present invention, the method of laminating textile fabrics is changed to make the materials different on one side and the other side,
Furthermore, by gradually changing the content of the material in the intermediate layer and heat forming them, the content of thermoplastic resin in the thickness direction gradually changes, and two types of thermoplastic resin fibers are formed. Even when the melting temperatures of thermoplastic resins differ, it is possible to easily and efficiently mold thermoplastic resins whose material changes gradually in the thickness direction, while minimizing thermal deterioration of thermoplastic resins with low melting points. The mixing state of the resins and the adhesion between the reinforcing fibers and the resin become better. When the thermoplastic resin molded material having the gradient function of the present invention obtained in this manner is used under conditions where the internal environment and the external environment of the thermoplastic resin molded material are significantly different, for example, when either side is exposed to high temperature. It becomes possible to suppress the generation of thermal stress inside the thermoplastic resin molded material as much as possible even when exposed to heat, and it also becomes possible to obtain a material that has an extremely excellent bonding effect that prevents delamination. In addition, it is possible to select a material according to the required performance of the thermoplastic resin molding material, and it is also excellent in economic efficiency. Even when it has an asymmetrical configuration, a thermoplastic resin molded material without distortion or warpage can be obtained.

【0036】[0036]

【実施例】次に、本発明を実施例によって具体的に説明
する。
[Examples] Next, the present invention will be explained in detail with reference to Examples.

【0037】実施例1および比較例1Example 1 and Comparative Example 1

【0038】強化用繊維にガラス繊維を、またマトリッ
クスにPPS(ポリフェニレンサルファイド)とN6(
ナイロン6)を用いた場合の実施例および比較例を示す
[0038] Glass fiber is used as the reinforcing fiber, and PPS (polyphenylene sulfide) and N6 (
Examples and comparative examples using nylon 6) are shown below.

【0039】まず実施例として420d/450fのP
PS繊維(直径9.8μ)と420d/30fのN6繊
維(直径42μ)を用いた場合を示す。PPS繊維とN
6繊維の融点差は50度以上であり、PPS繊維とN6
繊維の直径の比は1:4.3である。
First, as an example, 420d/450f P
The case is shown in which PS fibers (diameter 9.8μ) and 420d/30f N6 fibers (diameter 42μ) are used. PPS fiber and N
The difference in melting point of 6 fibers is more than 50 degrees, and the difference between PPS fiber and N6 fiber is more than 50 degrees.
The fiber diameter ratio is 1:4.3.

【0040】これに対し比較例としてはPPS繊維とN
6繊維の直径の比が1:1であるように420d/25
fのPPS繊維と420d/30fのN6繊維を用いた
場合を示す。
On the other hand, as a comparative example, PPS fiber and N
420d/25 so that the ratio of diameters of 6 fibers is 1:1
The case using PPS fiber of f and N6 fiber of 420d/30f is shown.

【0041】ここで、何れの場合においても積層する織
布の数は全部で12層であり、その構成は以下のようで
ある。すなわち、第1〜3層は経糸にガラス繊維(67
.5tex/800f,直径6μ)45本/inch、
緯糸にPPS繊維20本/inchより成る織布を用い
、第10〜12層は経糸にガラス繊維(67.5tex
/800f,直径6μ)45本/inch、緯糸にN6
繊維20本/inchより成る織布を用いた。ここで、
第4〜9層の中間層の構成は以下のようである。すなわ
ち、第4層,第7層および第8層は上に示した経糸ガラ
ス繊維で緯糸N6繊維より成る織布で構成される。 また、第5層,第6層および第9層は上に示した経糸ガ
ラス繊維で緯糸PPS繊維より成る織布で構成される。 これらの織布はその積層面内でガラス繊維の方向を45
度ずつずらせることにより積層した。なお、ここで用い
られた織布は、いずれも1重量%濃度のアミノシランカ
ップリング剤溶液で処理した。
[0041] In each case, the number of woven fabrics to be laminated is 12 in total, and the structure thereof is as follows. That is, the first to third layers have glass fibers (67
.. 5tex/800f, diameter 6μ) 45 pieces/inch,
A woven fabric consisting of 20 PPS fibers/inch is used for the weft, and glass fiber (67.5 tex) is used for the warp for the 10th to 12th layers.
/800f, diameter 6μ) 45 pieces/inch, N6 for weft
A woven fabric consisting of 20 fibers/inch was used. here,
The configurations of the fourth to ninth intermediate layers are as follows. That is, the fourth, seventh, and eighth layers are composed of the above-mentioned woven fabric having the warp glass fiber and the weft N6 fiber. Further, the fifth, sixth and ninth layers are composed of the above-mentioned woven fabrics having glass fibers as warps and PPS fibers as wefts. These woven fabrics have glass fibers aligned in the direction of 45 within the laminated plane.
Lamination was performed by shifting the layers by degrees. The woven fabrics used here were all treated with a 1% by weight aminosilane coupling agent solution.

【0042】次に、上記実施例1および比較例1に示さ
れる構成より成る積層体の成形性を比較するためにある
時間における成形の完了程度の比較を行った。加圧・加
熱プレス成形条件は、10torrの真空下にて、最初
に圧力10kg/cm2に加圧し12℃/min.で3
10℃まで昇温後、圧力を30kg/cm2に昇圧した
。この状態にて各々5,10,15,20分保持し、そ
の後温度を15℃/min.の降温速度にて50℃まで
下げ、その後雰囲気を大気圧に戻した。得られた成形体
の成形完了度についての視覚的に見た場合の結果を示す
Next, in order to compare the moldability of the laminates having the configurations shown in Example 1 and Comparative Example 1, the degree of completion of molding in a certain period of time was compared. Pressure/heat press molding conditions were as follows: under a vacuum of 10 torr, first pressurized to a pressure of 10 kg/cm2 and then heated at 12°C/min. So 3
After raising the temperature to 10° C., the pressure was increased to 30 kg/cm 2 . This state was held for 5, 10, 15, and 20 minutes, respectively, and then the temperature was increased to 15°C/min. The temperature was lowered to 50° C. at a rate of 20° C., and then the atmosphere was returned to atmospheric pressure. The results are shown visually regarding the degree of completion of molding of the obtained molded body.

【0043】[0043]

【表1】[Table 1]

【0044】以下に、JIS−K7055に示される曲
げ試験の結果を示す。
The results of the bending test specified in JIS-K7055 are shown below.

【0045】[0045]

【表2】[Table 2]

【0046】上記の結果より実施例1は310℃昇温後
10分において、低融点成分であるN6の熱劣化による
強力低下の影響もなく成形が完了した事を示すのに対し
、比較例1では成形が完了した15分から20分におい
て低融点成分の熱劣化による強力低下の影響が現れてい
ることがわかる。
The above results show that in Example 1, molding was completed 10 minutes after raising the temperature to 310°C without any influence of strength reduction due to thermal deterioration of N6, which is a low melting point component, whereas in Comparative Example 1 It can be seen that from 15 to 20 minutes after completion of molding, the influence of a decrease in strength due to thermal deterioration of the low melting point component appears.

【0047】本発明に示される方法でPPSを内側にし
て作った容器は、高温の有機溶剤を入れた場合にもひび
割れや変形を起こす事なく、溶剤や溶液に対して安定な
PPSの特長を持ち合わせるとともに、PPSを100
%用いたものと同等の強度を有する容器を作った場合よ
り安価に製作することが出来た。
[0047] Containers made with PPS on the inside using the method shown in the present invention do not crack or deform even when high-temperature organic solvents are placed in them, and exhibit the characteristics of PPS, which is stable against solvents and solutions. In addition to having 100 PPS
It was possible to manufacture a container with the same strength as that using 20% at a lower cost.

【0048】実施例2、比較例2Example 2, Comparative Example 2

【0049】強化用繊維にガラス繊維を、熱可塑性樹脂
繊維に特開昭61−16924号,61−55115号
,61−78832号,61−136519号記載の難
燃性を有する(LOI=60)ポリマー(以下、Zポリ
マー、Z繊維と呼ぶ。)およびPET(ポリエチレンテ
レフタレート)繊維を用いた場合の実施例を示す。
Glass fiber is used as the reinforcing fiber, and the thermoplastic resin fiber has the flame retardancy described in JP-A-61-16924, 61-55115, 61-78832, and 61-136519 (LOI=60). Examples will be shown in which polymers (hereinafter referred to as Z polymers and Z fibers) and PET (polyethylene terephthalate) fibers are used.

【0050】まず、実施例として600d/600fの
Z繊維(直径10μ)と450d/36fのPET繊維
(直径35μ)を用いた場合を示す。Z繊維とPET繊
維の融点差は50度以上であり、Z繊維とPET繊維の
直径の比は1:3.5である。
First, as an example, a case will be shown in which 600d/600f Z fibers (diameter 10μ) and 450d/36f PET fibers (diameter 35μ) are used. The melting point difference between Z fiber and PET fiber is 50 degrees or more, and the diameter ratio of Z fiber and PET fiber is 1:3.5.

【0051】これに対し比較例としてはZ繊維とPET
繊維の直径の比が1:1であるように600d/50f
のZ繊維と450d/36fのPET繊維を用いた場合
を示す。
On the other hand, as a comparative example, Z fiber and PET
600d/50f so that the fiber diameter ratio is 1:1
This shows the case using Z fiber of 450d/36f and PET fiber of 450d/36f.

【0052】ここで何れの場合においても積層する織布
の数は全部で12層であり、その構成は以下のようであ
る。すなわち、第1〜3層は経糸にガラス繊維(67.
5tex/800f,直径6μ)45本/inch、緯
糸にZ繊維20本/inchより成る織布を用い、第1
0〜12層は経糸にガラス繊維(67.5tex/80
0f,直径6μ)45本/inch、緯糸にPET繊維
25本/inchより成る織布を用いた。ここで第4〜
9層の中間層の構成は以下のようである。すなわち、第
4層,第7層および第8層は上に示した経糸がガラス繊
維で緯糸がPET繊維より成る織布で構成され、第5層
,第6層および第9層は上に示した経糸がガラス繊維で
緯糸がZ繊維より成る織布で構成される。これらの織布
はその積層面内でガラス繊維の方向を45度ずつずらせ
ることにより積層した。なお、ここで用いられた織布は
いずれも1wt.%濃度のアミノシランカップリング剤
溶液で処理した。
[0052] In each case, the number of layers of woven fabrics to be laminated is 12 in total, and the structure thereof is as follows. That is, the first to third layers have glass fibers (67.
The first
For layers 0 to 12, the warp is made of glass fiber (67.5tex/80
A woven fabric consisting of 25 PET fibers/inch and 25 PET fibers/inch as the weft was used. Here the 4th~
The configuration of the nine-layer intermediate layer is as follows. That is, the 4th, 7th and 8th layers are made of the woven fabric shown above whose warp is made of glass fiber and whose weft is made of PET fiber, and the 5th, 6th and 9th layers are made of the woven fabric shown above whose warp is made of glass fiber and whose weft is made of PET fiber. It is composed of a woven fabric whose warp yarns are glass fibers and whose weft yarns are Z fibers. These woven fabrics were laminated by shifting the direction of the glass fibers by 45 degrees within the lamination plane. Note that the woven fabrics used here were all 1wt. % aminosilane coupling agent solution.

【0053】次に、上記実施例2および比較例2に示さ
れる構成より成る積層体の成形性を比較するためにある
時間における成形の完了程度の比較を行った。加圧・加
熱プレス成形条件は、10torrの真空下にて、最初
に圧力10kg/cm2に加圧し、10℃/min.で
310℃まで昇温後、圧力を30kg/cm2に昇圧し
た。この状態にて各々5,10,15,20分保持し、
その後温度を15℃/min.の降温速度にて50℃ま
で下げ、その後、雰囲気を大気圧に戻した。得られた成
形体の成形完了度についての視覚的に見た場合の結果を
示す。
Next, in order to compare the moldability of the laminates having the configurations shown in Example 2 and Comparative Example 2, the degree of completion of molding over a certain period of time was compared. Pressure/heat press molding conditions were as follows: first pressurized at a pressure of 10 kg/cm2 under a vacuum of 10 torr, and heated at 10°C/min. After raising the temperature to 310° C., the pressure was increased to 30 kg/cm 2 . Hold this state for 5, 10, 15, and 20 minutes, respectively.
Thereafter, the temperature was increased to 15°C/min. The temperature was lowered to 50° C. at a rate of 20° C., and then the atmosphere was returned to atmospheric pressure. The results are shown visually regarding the degree of completion of molding of the obtained molded body.

【0054】[0054]

【表3】[Table 3]

【0055】以下に、JIS−K7055に示される曲
げ試験の結果を示す。
The results of the bending test specified in JIS-K7055 are shown below.

【0056】[0056]

【表4】[Table 4]

【0057】上記結果より実施例2は310℃昇温後1
0分において、低融点成分であるPETの熱劣化による
強力低下の影響もなく成形が完了した事を示すのに対し
、比較例2では成形が完了した15分から20分におい
て低融点成分の熱劣化による強力低下の影響が現れてい
ることがわかる。
From the above results, in Example 2, after raising the temperature to 310°C,
At 0 minutes, the molding was completed without any influence of decrease in strength due to thermal deterioration of PET, which is a low melting point component, whereas in Comparative Example 2, thermal deterioration of the low melting point component occurred at 15 to 20 minutes after molding was completed. It can be seen that the influence of the strength reduction due to

【0058】本発明に示される方法でZポリマー側に火
炎が接近するような部材を作った場合にも自己消火性で
あり、かつ難燃性であるZポリマーの特長を持ち合わせ
るとともに、Zポリマーを100%用いたものと同等の
強度を有する容器を作った場合よりも安価に作ることが
できた。
Even when a member is made in which flame approaches the Z polymer side using the method shown in the present invention, it has the characteristics of the Z polymer, which is self-extinguishing and flame retardant. It was possible to make a container at a lower cost than if it were made with the same strength as a container made of 100% aluminum.

【0059】[0059]

【発明の効果】本発明によれば、2種類の熱可塑性樹脂
繊維の溶融温度が異なる場合でも低い融点を有する熱可
塑性樹脂の熱劣化を極力抑えながら、その厚み方向にお
ける熱可塑性樹脂の素材が徐々に変化したものを容易に
かつ効率的に成形加工することができ、内部環境と外部
環境が著しく異なる状況下(例えば、温度)で使用され
た場合にもその熱応力の発生を極力抑えることが可能と
なり、また層間剥離を防止する接合効果に極めて優れた
材料を得ることが可能となり、また要求性能に応じた素
材の選択が可能となり、経済性にも優れ、また、非対称
な構成を有する場合も、歪や反りの無い傾斜機能を有す
る熱可塑性樹脂成形材を得ることができる。
Effects of the Invention According to the present invention, even when two types of thermoplastic resin fibers have different melting temperatures, thermal deterioration of the thermoplastic resin having a low melting point can be suppressed as much as possible, and the thermoplastic resin material in the thickness direction can be improved. It is possible to easily and efficiently mold objects that have gradually changed, and to minimize the generation of thermal stress even when the internal and external environments are used under conditions that are significantly different (e.g., temperature). It also makes it possible to obtain a material that has an extremely excellent bonding effect that prevents delamination, and it also makes it possible to select materials according to the required performance, which is highly economical, and has an asymmetric structure. In this case, it is possible to obtain a thermoplastic resin molded material having a gradient function without distortion or warpage.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】交織により得られた織布F1とF2を14枚積
層する場合の積層状態を示す展開図である。
FIG. 1 is a developed view showing a laminated state when 14 woven fabrics F1 and F2 obtained by interweaving are laminated.

【図2】引き揃えにより得られた織布F3とF4を14
枚積層する場合の積層状態を示す展開図である。
[Figure 2] Woven fabrics F3 and F4 obtained by drawing 14
FIG. 3 is a developed view showing a laminated state when laminating sheets.

【符号の説明】[Explanation of symbols]

F1  強化用長繊維A(経糸)と熱可塑性樹脂繊維C
(緯糸)との交織布 F2  強化用長繊維B(経糸)と熱可塑性樹脂繊維D
(緯糸)との交織布 F3  強化用長繊維A、熱可塑性樹脂繊維C(経糸)
と強化用長繊維A、熱可塑性樹脂繊維(緯糸)との引き
揃え布 F4  強化用長繊維B、熱可塑性樹脂繊維D(経糸)
と強化用長繊維B、熱可塑性樹脂繊維D(緯糸)との引
き揃え布
F1 Reinforcing long fiber A (warp) and thermoplastic resin fiber C
Mixed woven fabric F2 with (weft) Reinforcing long fiber B (warp) and thermoplastic resin fiber D
(Weft) Mixed woven fabric F3 Reinforcing long fiber A, thermoplastic resin fiber C (warp)
Cloth F4 made of reinforcing long fibers A and thermoplastic resin fibers (weft) Reinforcing long fibers B and thermoplastic resin fibers D (warp)
, reinforcement long fiber B, and thermoplastic resin fiber D (weft).

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】より融点の高い熱可塑性樹脂から成る繊維
の直径がより融点の低い熱可塑性樹脂から成る繊維の直
径より小さい2種類の熱可塑性樹脂繊維と少なくとも1
種類の強化用繊維とからなり、しかもその2種類の熱可
塑性樹脂繊維の相対的含有量が異なる複数の編織布を上
記2種類の熱可塑性樹脂の相対的含有率が積層方向(厚
み方向)に徐々に変化するように積層し、熱可塑性樹脂
繊維を溶融せしめて圧縮成形することを特徴とする傾斜
機能を有する繊維強化熱可塑性樹脂成形材の製造法。
1. Two types of thermoplastic resin fibers, the fibers made of a thermoplastic resin having a higher melting point having a smaller diameter than the fibers made of a thermoplastic resin having a lower melting point, and at least one
The relative contents of the two types of thermoplastic resins are stacked in the laminating direction (thickness direction), and the relative contents of the two types of thermoplastic resins are different. A method for producing a fiber-reinforced thermoplastic resin molded material having a graded function, which comprises stacking layers so as to gradually change the structure, melting thermoplastic resin fibers, and compression molding the materials.
JP19977191A 1991-05-10 1991-05-10 Manufacture of gradient functional fiber reinforced thermoplastic resin formed material Pending JPH04334441A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19977191A JPH04334441A (en) 1991-05-10 1991-05-10 Manufacture of gradient functional fiber reinforced thermoplastic resin formed material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19977191A JPH04334441A (en) 1991-05-10 1991-05-10 Manufacture of gradient functional fiber reinforced thermoplastic resin formed material

Publications (1)

Publication Number Publication Date
JPH04334441A true JPH04334441A (en) 1992-11-20

Family

ID=16413343

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19977191A Pending JPH04334441A (en) 1991-05-10 1991-05-10 Manufacture of gradient functional fiber reinforced thermoplastic resin formed material

Country Status (1)

Country Link
JP (1) JPH04334441A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012246442A (en) * 2011-05-30 2012-12-13 Fukui Prefecture Prepreg sheet material and method for producing the same
WO2014162873A1 (en) * 2013-04-02 2014-10-09 東レ株式会社 Sandwich laminate, sandwich structure and unified molded product using same and processes for producing both
US11969984B2 (en) 2013-04-02 2024-04-30 Toray Industries, Inc. Sandwich laminate, sandwich structure and unified molded product using same and processes for producing both

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012246442A (en) * 2011-05-30 2012-12-13 Fukui Prefecture Prepreg sheet material and method for producing the same
WO2014162873A1 (en) * 2013-04-02 2014-10-09 東レ株式会社 Sandwich laminate, sandwich structure and unified molded product using same and processes for producing both
JPWO2014162873A1 (en) * 2013-04-02 2017-02-16 東レ株式会社 Sandwich laminate, sandwich structure, integrated molded product using the same, and manufacturing method thereof
US11059261B2 (en) 2013-04-02 2021-07-13 Toray Industries, Inc. Sandwich laminate, sandwich structure and unified molded product using same and processes for producing both
US11969984B2 (en) 2013-04-02 2024-04-30 Toray Industries, Inc. Sandwich laminate, sandwich structure and unified molded product using same and processes for producing both

Similar Documents

Publication Publication Date Title
US5014755A (en) Textile structure with binding weave for multiple layers of non-interlaced fit filaments
RU2409468C2 (en) Strengthening fibrous structure for parts out of composite material and part containing this structure
KR101387890B1 (en) Fibrous reinforcement structure for producing a composite part
JP5497786B2 (en) Composite material
CN109517388B (en) High-temperature-resistant tough sealing material and preparation method thereof
HUE031749T2 (en) Multidirectionally reinforced shape woven preforms for composite structures
CA2836017A1 (en) Multilayered fabric, its use including processes for production of composites
JP6725654B2 (en) 3D woven fabric preform with channels
US20080081528A1 (en) High impact strength, fire resistant woven article
Ahmed et al. Comparison of mechanical behavior of biaxial, unidirectional and standard woven fabric reinforced composites
JP2017109473A (en) Thermoplastic resin composite and method for producing the same
US20070117486A1 (en) Fibreglass yarn-based woven cloth for reinforcing moulded parts
JPH0575575B2 (en)
IE52329B1 (en) A method for the production of woven laminates
KR20170129482A (en) Flexible second gas barrier with improved fatigue strength and method for manufacturing the same
KR102204244B1 (en) Fabric for fiber reinforced plastic and manufacturing method thereof using the same
JP7177100B2 (en) Woven 3D fiber reinforced structure and method of making same
JPH04334441A (en) Manufacture of gradient functional fiber reinforced thermoplastic resin formed material
JP7106918B2 (en) Unidirectional reinforcing fiber sheets and braids
JPS63270834A (en) Composite molding sheet and its production
JP2014163016A (en) Multi-axis stitched substrate for reinforcement, woven fabric for reinforcement and carbon fiber reinforcement composite material, and method for producing them
JPH05278156A (en) Fiber reinforced thermoplastic resin molding material having inclination function, and production thereof
JPH01111040A (en) Blended fabric and molded article thereof
Varshney et al. Innovations in textile composite designing and their applications
JP2932321B2 (en) Triaxial fabric