JPH04333578A - Film coated body and production thereof - Google Patents
Film coated body and production thereofInfo
- Publication number
- JPH04333578A JPH04333578A JP13598791A JP13598791A JPH04333578A JP H04333578 A JPH04333578 A JP H04333578A JP 13598791 A JP13598791 A JP 13598791A JP 13598791 A JP13598791 A JP 13598791A JP H04333578 A JPH04333578 A JP H04333578A
- Authority
- JP
- Japan
- Prior art keywords
- film
- carbon
- ions
- boron nitride
- substrate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000004519 manufacturing process Methods 0.000 title claims description 10
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims abstract description 65
- 229910052799 carbon Inorganic materials 0.000 claims abstract description 65
- 150000002500 ions Chemical class 0.000 claims abstract description 64
- 229910052582 BN Inorganic materials 0.000 claims abstract description 51
- PZNSFCLAULLKQX-UHFFFAOYSA-N Boron nitride Chemical compound N#B PZNSFCLAULLKQX-UHFFFAOYSA-N 0.000 claims abstract description 51
- 239000010432 diamond Substances 0.000 claims abstract description 39
- 229910003460 diamond Inorganic materials 0.000 claims abstract description 38
- 239000000758 substrate Substances 0.000 claims abstract description 37
- 239000013078 crystal Substances 0.000 claims abstract description 19
- 239000000126 substance Substances 0.000 claims abstract description 19
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 claims abstract description 13
- 239000001257 hydrogen Substances 0.000 claims abstract description 13
- 229910052739 hydrogen Inorganic materials 0.000 claims abstract description 13
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims abstract description 12
- 229910052796 boron Inorganic materials 0.000 claims abstract description 11
- 239000011261 inert gas Substances 0.000 claims abstract description 11
- 238000000576 coating method Methods 0.000 claims abstract description 10
- 229910052757 nitrogen Inorganic materials 0.000 claims abstract description 10
- WGPCGCOKHWGKJJ-UHFFFAOYSA-N sulfanylidenezinc Chemical group [Zn]=S WGPCGCOKHWGKJJ-UHFFFAOYSA-N 0.000 claims abstract description 10
- 239000011248 coating agent Substances 0.000 claims abstract description 9
- 238000000151 deposition Methods 0.000 claims abstract description 6
- 230000001678 irradiating effect Effects 0.000 claims abstract description 5
- -1 hydrogen ions Chemical class 0.000 claims description 25
- 229910052984 zinc sulfide Inorganic materials 0.000 claims description 9
- 239000007888 film coating Substances 0.000 claims description 8
- 238000009501 film coating Methods 0.000 claims description 8
- 239000012528 membrane Substances 0.000 claims description 5
- 150000001721 carbon Chemical class 0.000 claims description 2
- 230000008021 deposition Effects 0.000 claims 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 abstract 2
- 239000010408 film Substances 0.000 description 92
- 230000008020 evaporation Effects 0.000 description 19
- 238000001704 evaporation Methods 0.000 description 19
- 125000004429 atom Chemical group 0.000 description 13
- 239000010409 thin film Substances 0.000 description 9
- 125000004432 carbon atom Chemical group C* 0.000 description 8
- 230000015572 biosynthetic process Effects 0.000 description 7
- 230000000052 comparative effect Effects 0.000 description 7
- 238000000034 method Methods 0.000 description 7
- 230000001133 acceleration Effects 0.000 description 6
- 239000000463 material Substances 0.000 description 6
- 238000005229 chemical vapour deposition Methods 0.000 description 5
- 230000000694 effects Effects 0.000 description 5
- 239000002184 metal Substances 0.000 description 5
- 229910052751 metal Inorganic materials 0.000 description 5
- 238000006243 chemical reaction Methods 0.000 description 4
- 239000000470 constituent Substances 0.000 description 4
- 230000007547 defect Effects 0.000 description 4
- 230000005284 excitation Effects 0.000 description 4
- 239000007789 gas Substances 0.000 description 4
- 230000009471 action Effects 0.000 description 3
- 238000000137 annealing Methods 0.000 description 3
- 230000003647 oxidation Effects 0.000 description 3
- 238000007254 oxidation reaction Methods 0.000 description 3
- 238000003786 synthesis reaction Methods 0.000 description 3
- 239000004215 Carbon black (E152) Substances 0.000 description 2
- 238000000026 X-ray photoelectron spectrum Methods 0.000 description 2
- 238000005520 cutting process Methods 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 229910002804 graphite Inorganic materials 0.000 description 2
- 239000010439 graphite Substances 0.000 description 2
- 229930195733 hydrocarbon Natural products 0.000 description 2
- 150000002430 hydrocarbons Chemical class 0.000 description 2
- 239000012535 impurity Substances 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- 229910052742 iron Inorganic materials 0.000 description 2
- 150000001247 metal acetylides Chemical class 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 229910052754 neon Inorganic materials 0.000 description 2
- 229910052759 nickel Inorganic materials 0.000 description 2
- 150000002894 organic compounds Chemical class 0.000 description 2
- 238000001420 photoelectron spectroscopy Methods 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- 238000007740 vapor deposition Methods 0.000 description 2
- 229910052726 zirconium Inorganic materials 0.000 description 2
- 229910001315 Tool steel Inorganic materials 0.000 description 1
- 238000005299 abrasion Methods 0.000 description 1
- 229910003481 amorphous carbon Inorganic materials 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000010894 electron beam technology Methods 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 230000005405 multipole Effects 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 238000005268 plasma chemical vapour deposition Methods 0.000 description 1
- 238000005498 polishing Methods 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000002194 synthesizing effect Effects 0.000 description 1
- 229910052715 tantalum Inorganic materials 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
Landscapes
- Physical Vapour Deposition (AREA)
- Chemical Vapour Deposition (AREA)
- Other Surface Treatments For Metallic Materials (AREA)
Abstract
Description
【0001】0001
【産業上の利用分野】この発明は、例えば耐摩耗性や摺
動性が要求される分野、高熱伝導性が要求される分野あ
るいは半導体物性が要求される分野等に用いられる膜被
覆物およびその製造方法に関する[Industrial Field of Application] The present invention relates to film coatings used in fields where wear resistance and sliding properties are required, fields where high thermal conductivity is required, fields where semiconductor properties are required, and the like. Regarding manufacturing method
【0002】0002
【従来の技術】ダイヤモンドは、物質中最高の高度を有
することにより、それによって被覆された基体は優れた
耐摩耗性を発揮する。そのため、例えば切削工具等のよ
うな耐摩耗性が要求される分野において、例えば超硬工
具等の表面をダイヤモンド構造の炭素膜で被覆すること
により、その耐摩耗性を向上させる試みがなされている
。また、ダイヤモンドは高熱伝導度を備えており、それ
を利用したシートシンク等への応用が期待されており、
更にダイヤモンドに特定の不純物をドープすればp型お
よびn型の半導体になるので、この分野での応用も期待
されている。BACKGROUND OF THE INVENTION Diamond has the highest degree of hardness among materials, so that substrates coated with it exhibit excellent wear resistance. Therefore, in fields where wear resistance is required, such as in cutting tools, attempts have been made to improve the wear resistance of carbide tools by coating their surfaces with diamond-structured carbon films. . In addition, diamond has high thermal conductivity, and it is expected that it will be applied to seat sinks, etc.
Furthermore, since diamond can be doped with specific impurities to become p-type and n-type semiconductors, it is also expected to be applied in this field.
【0003】ダイヤモンドを人工的に合成する際は通常
は高温・高圧を必要とし、そのためコストが高く、また
粒状で合成されるため応用できる形態に限界がある。そ
のため、上記のような広範囲な利用分野を持つダイヤモ
ンドの工業的な普及を図るために、これまで高温・高圧
下で合成されていたダイヤモンドを、低温下で薄膜とし
て合成される試みがなされている。このような合成方法
の従来のものは、炭化水素や有機化合物系のガスを用い
たプラズマCVD法、光CVD法等の化学的気相成長法
(CVD法)である。[0003] When diamond is synthesized artificially, high temperature and high pressure are usually required, resulting in high costs, and since it is synthesized in granular form, there are limits to the form in which it can be applied. Therefore, in order to industrially popularize diamond, which has a wide range of applications as described above, attempts are being made to synthesize diamond as a thin film at low temperatures, instead of the diamond that was previously synthesized under high temperature and pressure. . Conventional methods for such synthesis include chemical vapor deposition methods (CVD methods) such as plasma CVD methods and photoCVD methods using hydrocarbon or organic compound gases.
【0004】一方、ダイヤモンドに次ぐ高硬度・高熱伝
導度を有するものに立方晶系閃亜鉛鉱型の結晶構造を有
する窒化ホウ素(以下、c−BNと略す)がある。c−
BNは、ダイヤモンドにない化学的安定性を有しており
、ダイヤモンドが大気中で約600℃で石墨化してしま
うのに対して、c−BNは大気中では約1200℃まで
安定である。また、ダイヤモンドは、Fe 、Co 、
Ni 等の元素や、高温下で炭化物を形成するW、Ta
、Ti 、Zr 等と反応してしまうのに対して、c
−BNはそれらの元素と反応しないという利点がある。On the other hand, boron nitride (hereinafter abbreviated as c-BN), which has a cubic zincblende crystal structure, has a high hardness and high thermal conductivity second only to diamond. c-
BN has chemical stability that diamond does not have; diamond turns into graphite at about 600°C in the air, whereas c-BN is stable up to about 1200°C in the air. In addition, diamonds include Fe, Co,
Elements such as Ni, W and Ta that form carbides at high temperatures
, Ti, Zr, etc., whereas c
-BN has the advantage of not reacting with those elements.
【0005】このようなc−BNもまた、ダイヤモンド
と同様にその合成には高温・高圧を必要とし、そのため
工業的な普及が進まず、これまでプラズマCVD法、光
CVD法等のCVD法によって低温下で薄膜に合成しよ
うとする研究が盛んになされている。Similar to diamond, c-BN also requires high temperature and high pressure for its synthesis, and for this reason, it has not been widely used industrially. A lot of research is being done to synthesize thin films at low temperatures.
【0006】[0006]
【発明が解決しようとする課題】ところが、ダイヤモン
ドは高硬度であるものの前述したように化学的安定性に
欠けるため、例えば研磨用工具としてダイヤモンド薄膜
で被覆した工具を開発しても、前述したような鉄族金属
の切削には使用できないという問題があり、更には高温
になる環境下での応用に制限があるという問題がある。[Problems to be Solved by the Invention] However, although diamond has high hardness, it lacks chemical stability as mentioned above, so even if a tool coated with a thin diamond film was developed for use as a polishing tool, for example, it would not work as described above. There is a problem that it cannot be used for cutting iron group metals, and furthermore, there is a problem that there are restrictions on its application in high temperature environments.
【0007】そのような場合には、基体をダイヤモンド
の代わりにc−BN薄膜で被覆することで工具等を作製
することが考えられるが、c−BNはダイヤモンドに次
ぐ硬度しか有していないため、一般的に、ダイヤモンド
より耐摩耗性が劣るという問題がある。[0007] In such cases, it may be possible to manufacture tools by coating the base with a c-BN thin film instead of diamond, but c-BN has a hardness only second to that of diamond. , generally has a problem of inferior wear resistance than diamond.
【0008】また、上記のようなダイヤモンド薄膜やc
−BN薄膜を合成する従来のCVD法には次のような問
題があり、未だ工業化には至っていないのが実状である
。■炭化水素や有機化合物系のガスを用いたCVD法で
は、ダイヤモンドの結晶構造を有するものだけでなく、
アモルファス状の炭素がより多く析出する傾向がある。
また、窒化ホウ素の合成においても、c−BNではなく
、軟質の六方晶系のグラファイト構造状の窒化ホウ素(
h−BN)が多分に形成される傾向がある。■CVD法
では一般的に、ダイヤモンド構造やc−BN構造を薄膜
内に析出させるためには、基体を高い温度に加熱する必
要があり、そのため基体の種類が限定される。■CVD
法によるものは、ダイヤモンド薄膜やc−BN薄膜の基
体に対する密着性が悪く、そのため薄膜が基体から剥離
しやすい。[0008] Furthermore, diamond thin films and c
-The conventional CVD method for synthesizing a BN thin film has the following problems, and the reality is that it has not yet been commercialized. ■The CVD method using hydrocarbon and organic compound gases can process not only diamond crystal structures, but also
More amorphous carbon tends to precipitate. In addition, in the synthesis of boron nitride, boron nitride (which has a soft hexagonal graphite structure) is used instead of c-BN.
h-BN) tends to be formed in large quantities. (2) In the CVD method, it is generally necessary to heat the substrate to a high temperature in order to precipitate a diamond structure or c-BN structure in a thin film, which limits the types of substrates that can be used. ■CVD
When using this method, the adhesion of the diamond thin film or c-BN thin film to the substrate is poor, and therefore the thin film is likely to peel off from the substrate.
【0009】そこでこの発明は、被覆膜の化学的安定性
および硬度の高い膜被覆物、並びに、基体の表面にその
ような被覆膜を低温下でしかも密着性良く形成すること
ができる膜被覆物の製造方法を提供することを主たる目
的とする。[0009] Therefore, the present invention provides a film coating with high chemical stability and hardness, and a film that can form such a coating film on the surface of a substrate at low temperatures and with good adhesion. The main objective is to provide a method for manufacturing a coating.
【0010】0010
【課題を解決するための手段】上記目的を達成するため
、この発明の膜被覆物は、基体の表面に、結晶構造がダ
イヤモンド構造である炭素を含有する炭素膜を形成し、
更にこの炭素膜の表面に、立方晶系閃亜鉛鉱型の結晶構
造を有する窒化ホウ素を含有する窒化ホウ素膜を形成し
ていることを特徴とする。[Means for Solving the Problems] In order to achieve the above object, the film coating of the present invention forms a carbon film containing carbon whose crystal structure is a diamond structure on the surface of a substrate,
Furthermore, a boron nitride film containing boron nitride having a cubic zinc blende crystal structure is formed on the surface of this carbon film.
【0011】またこの発明の製造方法は、真空中で基体
に対して、炭素元素を含有する物質の蒸着と、不活性ガ
スイオンおよび水素イオンの内の少なくとも一種のイオ
ンの照射とを行い、次いで、ホウ素元素を含有する物質
の蒸着と、窒素イオン、不活性ガスイオンおよび水素イ
オンの内の少なくとも窒素イオンの照射とを行うことを
特徴とする。[0011] Furthermore, the manufacturing method of the present invention includes depositing a substance containing a carbon element onto a substrate in vacuum, irradiating it with at least one type of ion selected from inert gas ions and hydrogen ions, and then , is characterized by performing vapor deposition of a substance containing a boron element, and irradiation with at least nitrogen ions among nitrogen ions, inert gas ions, and hydrogen ions.
【0012】0012
【作用】上記膜被覆物においては、基体の表面に形成さ
れたダイヤモンド構造を有する炭素膜は、その表面が立
方晶系閃亜鉛鉱型の結晶構造を有する窒化ホウ素(c−
BN)を含有する窒化ホウ素膜によって覆われているた
め、その化学的安定性が向上し、高温下での酸化や鉄族
金属等との反応が防止される。しかも、表面のc−BN
構造を有する窒化ホウ素膜は、下地に高硬度のダイヤモ
ンド構造を有する炭素膜が存在するため、c−BN構造
を有する窒化ホウ素膜単体の場合に比べて膜の硬度が高
くなり、その耐摩耗性も向上する。[Function] In the above film coating, the carbon film having a diamond structure formed on the surface of the substrate has a surface made of boron nitride (c-
Since it is covered with a boron nitride film containing BN), its chemical stability is improved and oxidation and reaction with iron group metals etc. at high temperatures are prevented. Moreover, the c-BN on the surface
Because a boron nitride film with a structure has a carbon film with a highly hard diamond structure as its base, the film has higher hardness than a single boron nitride film with a c-BN structure, and its wear resistance improves. It also improves.
【0013】また、上記製造方法によれば、蒸着炭素原
子と照射イオンとの衝突により、炭素原子が励起され、
その作用によって、低温下で、結晶構造がダイヤモンド
構造である炭素を含有する炭素膜を容易に形成すること
ができる。同様に、照射イオンの励起作用によって、低
温下で、立方晶系閃亜鉛鉱型の結晶構造を有する窒化ホ
ウ素を含有する窒化ホウ素膜を容易に形成することがで
きる。しかも、蒸着原子と照射イオンとの衝突により、
基体と炭素膜との界面付近および炭素膜と窒化ホウ素膜
との界面付近に、それぞれ、その両側の構成原子より成
る混合層が形成され、これがあたかも楔のような働きを
するので、基体に対する各膜の密着性が向上する。Further, according to the above manufacturing method, the carbon atoms are excited by the collision between the vapor-deposited carbon atoms and the irradiated ions,
Due to this effect, a carbon film containing carbon having a diamond crystal structure can be easily formed at low temperatures. Similarly, a boron nitride film containing boron nitride having a cubic zincblende crystal structure can be easily formed at low temperatures by the excitation effect of irradiated ions. Moreover, due to the collision between the deposited atoms and the irradiated ions,
A mixed layer consisting of constituent atoms on both sides is formed near the interface between the substrate and the carbon film, and near the interface between the carbon film and the boron nitride film, and this acts like a wedge, so that each layer relative to the substrate Improves film adhesion.
【0014】[0014]
【実施例】図1は、この発明に係る膜被覆物の一例を示
す概略断面図である。DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 is a schematic sectional view showing an example of a membrane coating according to the present invention.
【0015】この膜被覆物は、基体2の表面に、結晶構
造がダイヤモンド構造である炭素を含有する炭素膜4を
形成し、更にこの炭素膜4の表面に、立方晶系閃亜鉛鉱
型の結晶構造を有する窒化ホウ素(c−BN)を含有す
る窒化ホウ素膜6を形成して成る。In this film coating, a carbon film 4 containing carbon having a diamond crystal structure is formed on the surface of the substrate 2, and a cubic zinc blende type carbon film is further formed on the surface of the carbon film 4. A boron nitride film 6 containing boron nitride (c-BN) having a crystal structure is formed.
【0016】基体2の種類は特定のものに限定されるも
のではなく、例えば、超硬合金、工具鋼等の金属でも良
いし、その他セラミックス、ガラス等でも良い。またそ
の形状も特定のものに限定されるものではない。The type of substrate 2 is not limited to a specific one, and may be made of, for example, metal such as cemented carbide or tool steel, or other materials such as ceramics and glass. Moreover, the shape is not limited to a specific one either.
【0017】このような膜被覆物においては、基体2の
表面に形成されたダイヤモンド構造を有する炭素膜4は
その表面がc−BN構造を有する窒化ホウ素膜6によっ
て覆われているため、その化学的安定性が向上し、高温
下での酸化、Fe 、Co 、Ni 等の鉄族金属との
反応、更には高温下で炭化物を形成するW、Ta 、T
i 、Zr 等との反応が防止される。従ってこのよう
な膜被覆物の用途が非常に広がる。In such a film-coated product, since the surface of the carbon film 4 having a diamond structure formed on the surface of the substrate 2 is covered with the boron nitride film 6 having a c-BN structure, its chemical oxidation at high temperatures, reactions with iron group metals such as Fe, Co, and Ni, and even formation of carbides at high temperatures.
Reactions with i, Zr, etc. are prevented. Therefore, the applications of such membrane coatings are greatly expanded.
【0018】しかも、表面のc−BN構造を有する窒化
ホウ素膜6は、下地に高硬度のダイヤモンド構造を有す
る炭素膜4が存在するため、c−BN構造を有する窒化
ホウ素膜単体の場合に比べて膜の硬度が高くなり、その
耐摩耗性も向上する。Moreover, since the boron nitride film 6 having the c-BN structure on the surface has the carbon film 4 having a high hardness diamond structure as the base, it has a higher hardness than the case of a single boron nitride film having the c-BN structure. This increases the hardness of the film and improves its abrasion resistance.
【0019】また、ダイヤモンド構造を有する炭素膜4
の上に同じ結晶構造の窒化ホウ素膜6を形成しているの
で、格子定数の差が緩和され、c−BNが成長しやすく
その結晶性が向上するので、より高硬度の窒化ホウ素膜
6を実現することができる。[0019] Furthermore, carbon film 4 having a diamond structure
Since the boron nitride film 6 with the same crystal structure is formed on top of the boron nitride film 6, the difference in lattice constants is alleviated, making it easier for c-BN to grow and improving its crystallinity. It can be realized.
【0020】次に、上記のような膜被覆物の製造方法の
例を図2を参照しながら説明する。[0020] Next, an example of a method for manufacturing the above-mentioned membrane coating will be explained with reference to FIG.
【0021】真空容器(図示省略)内に、基体2を保持
するホルダ8が設けられており、それに向けて蒸発源1
0およびイオン源16が配置されている。またホルダ8
の近傍には、この例では計測・制御用に膜厚モニタ14
およびイオン電流モニタ20が配置されている。A holder 8 that holds the substrate 2 is provided in a vacuum container (not shown), and an evaporation source 1 is directed toward it.
0 and an ion source 16 are arranged. Also, holder 8
In this example, a film thickness monitor 14 for measurement and control is installed near the
and an ion current monitor 20 are arranged.
【0022】蒸発源10は後述するような種類の蒸発物
質12を蒸発させることができるものであれば、その方
式は問わない。例えば、蒸発材料を電子ビームや高周波
を用いて加熱するものや、ターゲットをスパッタリング
するもの等でも良い。The evaporation source 10 may be of any type as long as it can evaporate the type of evaporation substance 12 described below. For example, it may be possible to heat the evaporation material using an electron beam or high frequency, or to sputter a target.
【0023】イオン源16も後述するようなイオン18
を加速して引き出すことができるものであれば、その方
式は問わない。例えば、多極磁場型のいわゆるバケット
型イオン源が大面積大電流等の点で好ましいが、勿論そ
れ以外のイオン源でも良い。The ion source 16 also receives ions 18 as described below.
The method does not matter as long as it can accelerate and draw out. For example, a multi-pole magnetic field type so-called bucket ion source is preferable in terms of large area and large current, but other ion sources may of course be used.
【0024】成膜に際しては、所望の基体2をホルダ8
に取り付け、真空容器内を所定の真空度に排気した後、
まず、蒸発源10より炭素元素を含有する物質を蒸発さ
せ、これを基体2の表面に蒸着させる。このとき、蒸発
源10の蒸発材料には例えば高純度の炭素単体を用いれ
ば良い。During film formation, the desired substrate 2 is placed in the holder 8.
After evacuating the inside of the vacuum container to the specified degree of vacuum,
First, a substance containing carbon element is evaporated from the evaporation source 10 and deposited on the surface of the substrate 2. At this time, for example, high-purity simple carbon may be used as the evaporation material of the evaporation source 10.
【0025】そして上記蒸着と同時にまたは交互に、イ
オン源16より加速されたイオン18を引き出してこれ
を基体2に向けて照射する。このときのイオン18には
、一種以上の不活性ガス(0族元素)イオン、あるいは
水素イオン、あるいは一種以上の不活性ガスイオンと水
素イオンとの混合イオンを用いる。Simultaneously or alternately with the vapor deposition, accelerated ions 18 are extracted from the ion source 16 and irradiated toward the substrate 2. As the ions 18 at this time, one or more types of inert gas (group 0 element) ions, hydrogen ions, or mixed ions of one or more types of inert gas ions and hydrogen ions are used.
【0026】これによって、基体2に蒸着された炭素原
子と照射されたイオン18との衝突によって、当該炭素
原子が励起され、その作用によって、結晶構造がダイヤ
モンド構造である炭素を含有する炭素膜4が基体2の表
面に形成される。即ち、高温・高圧相であるダイヤモン
ドが形成される。この際、照射イオン18のエネルギー
による蒸着原子の励起作用を利用してダイヤモンドを合
成するため、基体2を加熱する必要はなく、上記のよう
な炭素膜4を低温下で容易に形成することができる。ま
た、イオン18と衝突した蒸着原子が基体2の表面内に
押し込められ、基体2と炭素膜4の界面付近には両者の
構成原子より成る混合層が形成され、これがあたかも楔
のような働きをするので、炭素膜4と基体2との密着性
が著しく向上する。[0026] As a result, the carbon atoms deposited on the substrate 2 collide with the irradiated ions 18, and the carbon atoms are excited, and by this action, the carbon film 4 containing carbon whose crystal structure is a diamond structure is formed. is formed on the surface of the base 2. That is, diamond, which is a high temperature and high pressure phase, is formed. At this time, since diamond is synthesized using the excitation effect of the deposited atoms due to the energy of the irradiated ions 18, there is no need to heat the substrate 2, and the carbon film 4 as described above can be easily formed at low temperatures. can. Further, the vapor deposited atoms collided with the ions 18 are pushed into the surface of the base 2, and a mixed layer consisting of constituent atoms of both is formed near the interface between the base 2 and the carbon film 4, which acts as if it were a wedge. Therefore, the adhesion between the carbon film 4 and the base 2 is significantly improved.
【0027】上記の場合、照射イオン18に上記のよう
なイオンを用いるのは、不活性ガスイオンは蒸着炭素原
子と反応せずにそれを励起することができ、しかも重い
イオンを用いれば励起エネルギーがより大になるからで
あり、水素イオンも炭素原子と反応せず、また還元作用
によって膜中から酸素のような不純物を除去する作用が
あり、しかも軽いため膜中に欠陥を作る割合が少ないか
らである。In the above case, the reason why the above ions are used as the irradiation ions 18 is that inert gas ions can excite the deposited carbon atoms without reacting with them, and if heavy ions are used, the excitation energy is low. This is because hydrogen ions do not react with carbon atoms, and their reduction action removes impurities such as oxygen from the film. Moreover, because they are light, they are less likely to form defects in the film. It is from.
【0028】また照射イオン18の加速エネルギーは、
特に限定されないが、その照射によって炭素膜4内に形
成される欠陥等の損傷を軽減するために、40KeV程
度以下にするのが好ましい。Further, the acceleration energy of the irradiated ions 18 is:
Although not particularly limited, in order to reduce damage such as defects formed in the carbon film 4 due to the irradiation, it is preferable to set the voltage to about 40 KeV or less.
【0029】次に、上記工程によって基体2の表面にダ
イヤモンド構造含有の炭素膜4を形成した後に、その表
面に、以下の工程によってc−BN構造の窒化ホウ素膜
6を形成する。Next, after the diamond structure-containing carbon film 4 is formed on the surface of the substrate 2 by the above steps, a c-BN structure boron nitride film 6 is formed on the surface by the following steps.
【0030】即ち、例えば蒸発源10内の蒸発材料を、
高純度のホウ素単体あるいは窒化ホウ素に入れ換え、そ
こから蒸発物質12として、ホウ素を含有している物質
を蒸発させ、これを基体2上の炭素膜4の表面に蒸着さ
せる。但し、蒸発源10内の蒸発材料を入れ換える代わ
りに、別の蒸発源を用いても良い。That is, for example, the evaporation material in the evaporation source 10 is
High-purity elemental boron or boron nitride is substituted, and a substance containing boron is evaporated therefrom as an evaporation substance 12, and this is evaporated onto the surface of the carbon film 4 on the substrate 2. However, instead of replacing the evaporation material in the evaporation source 10, another evaporation source may be used.
【0031】そして上記蒸発と同時にまたは交互に、例
えばイオン源16に供給するイオン源ガスを切り換えて
、イオン源16からイオン18として、窒素イオン、あ
るいは窒素イオンと不活性ガスイオン、あるいはそれら
に水素イオンを混合したものを引き出してこれを基体2
に向けて照射する。但し、イオン源16に供給するイオ
ン源ガスを切り換える代わりに、別のイオン源を用いて
も良い。Simultaneously or alternately with the above evaporation, for example, the ion source gas supplied to the ion source 16 is switched, and the ions 18 from the ion source 16 are nitrogen ions, nitrogen ions and inert gas ions, or hydrogen ions and hydrogen ions. Pull out the mixture of ions and transfer it to base 2.
irradiate towards. However, instead of switching the ion source gas supplied to the ion source 16, another ion source may be used.
【0032】これによって、炭素膜4上に蒸着されたホ
ウ素原子と照射されたイオン18との衝突によって、当
該ホウ素原子が励起され、その作用によって、立方晶系
閃亜鉛鉱型の結晶構造を有する窒化ホウ素(c−BN)
を含有する窒化ホウ素膜6が炭素膜4の表面に形成され
る。即ち、高温・高圧相であるc−BNが形成される。[0032] As a result, the boron atoms deposited on the carbon film 4 collide with the irradiated ions 18, and the boron atoms are excited, and this action causes the carbon film to have a cubic zincblende crystal structure. boron nitride (c-BN)
A boron nitride film 6 containing carbon is formed on the surface of the carbon film 4. That is, c-BN, which is a high temperature/high pressure phase, is formed.
【0033】この場合も、照射イオン18のエネルギー
による蒸着原子の励起作用を利用してc−BNを合成す
るため、上記のような窒化ホウ素膜6を低温下で容易に
形成することができる。また、イオン18と衝突した蒸
着原子が炭素膜4の表面内に押し込められ、炭素膜4と
窒化ホウ素膜6との界面付近にも両者の構成原子により
成る混合層が形成され、これがあたかも楔のような働き
をするので、窒化ホウ素膜6と炭素膜4との密着性も著
しく向上する。In this case as well, since c-BN is synthesized by utilizing the excitation effect of the deposited atoms due to the energy of the irradiated ions 18, the boron nitride film 6 as described above can be easily formed at a low temperature. Further, the vapor deposited atoms that collided with the ions 18 are pushed into the surface of the carbon film 4, and a mixed layer consisting of the constituent atoms of the carbon film 4 and the boron nitride film 6 is also formed near the interface between the two, which looks like a wedge. Because of this function, the adhesion between the boron nitride film 6 and the carbon film 4 is also significantly improved.
【0034】上記の場合、照射イオン18に上記のよう
なイオンを用いるのは、窒素イオンはホウ素と反応させ
て窒化ホウ素を形成するためであり、これと不活性ガス
イオンや水素イオンを併用しても良いのは、これらのイ
オンによって、上記炭素膜4形成の場合と同様、蒸着ホ
ウ素の励起を助けることができるからである。In the above case, the above ions are used as the irradiation ions 18 because nitrogen ions react with boron to form boron nitride, and inert gas ions and hydrogen ions are used in combination with this. This is because these ions can help excite the deposited boron, as in the case of forming the carbon film 4 described above.
【0035】またこの場合の照射イオン18の加速エネ
ルギーも、特に限定されないが、その照射によって窒化
ホウ素膜6内に形成される欠陥等の損傷を軽減するため
に、40KeV程度以下にするのが好ましい。The acceleration energy of the irradiated ions 18 in this case is also not particularly limited, but is preferably about 40 KeV or less in order to reduce damage such as defects formed in the boron nitride film 6 due to the irradiation. .
【0036】また、上記炭素膜4および窒化ホウ素膜6
を形成する場合、基体2に輸送する炭素あるいはホウ素
の原子数とイオンの個数比(即ちイオン/炭素原子数あ
るいはホウ素原子数/イオン)は特定のものに限定され
ないが、例えば炭素膜4の基体2に対する密着性をより
向上させるために、成膜の当初はイオン/炭素原子の輸
送比を大きくし、その後は膜へのイオン照射に伴う欠陥
生成を防ぐためにイオン/炭素原子の輸送比を連続的ま
たは断続的に減少させても良い。また、窒化ホウ素膜6
におけるB/N組成を基体2側から当該膜6の表面側に
向かって連続的または断続的に減少させても良く、その
ようにすれば、窒化ホウ素膜6の内部応力を緩和するこ
とができ、しかも炭素膜4との界面付近には炭素に対し
て濡れ性の良い(なじみの良い)ホウ素の割合が多くな
るので、窒化ホウ素膜6が剥がれにくくなり、しかも当
該膜6の表面付近にはc−BNが多く形成されるので硬
度は低下しない。Furthermore, the carbon film 4 and the boron nitride film 6
When forming a carbon film 4, the ratio of the number of carbon or boron atoms to the number of ions (i.e., the number of ions/carbon atoms or the number of boron atoms/ions) to be transported to the substrate 2 is not limited to a specific one. In order to further improve the adhesion to 2, the ion/carbon atom transport ratio is increased at the beginning of film formation, and thereafter the ion/carbon atom transport ratio is continuously increased to prevent defect formation due to ion irradiation to the film. It may be decreased periodically or intermittently. In addition, the boron nitride film 6
The B/N composition of the boron nitride film 6 may be decreased continuously or intermittently from the substrate 2 side to the surface side of the film 6, and in this way, the internal stress of the boron nitride film 6 can be alleviated. Moreover, since the proportion of boron, which has good wettability (compatibility) with carbon, increases near the interface with the carbon film 4, the boron nitride film 6 becomes difficult to peel off. Since a large amount of c-BN is formed, the hardness does not decrease.
【0037】次に、この発明に従ったより具体的な実施
例と、従来例相当の比較例とについて説明する。Next, a more specific embodiment according to the present invention and a comparative example corresponding to the conventional example will be described.
【0038】実施例1
基体2に超硬合金(K10種)を用い、これをホルダ8
に設置した後、真空容器内を5×10−7Torr以下
の真空度に保持した。その後、蒸発源10より炭素(純
度99%)を蒸発させ基体2上に蒸着させると同時に、
イオン源16からネオンイオンを200eVの加速エネ
ルギーで照射した。このときのイオン/C輸送比は0.
25にした。Example 1 A cemented carbide (K10 type) was used for the base 2, and this was attached to the holder 8.
After the vacuum chamber was installed, the inside of the vacuum container was maintained at a vacuum level of 5×10 −7 Torr or less. Thereafter, carbon (purity 99%) is evaporated from the evaporation source 10 and deposited on the substrate 2, and at the same time,
Neon ions were irradiated from the ion source 16 with an acceleration energy of 200 eV. The ion/C transport ratio at this time is 0.
I made it 25.
【0039】上記工程にて炭素膜を1μm形成した後、
蒸発源10よりホウ素(純度99%)を蒸発させてこれ
を炭素膜上に蒸着させると同時に、イオン源16から水
素イオンを200eVの加速エネルギーで照射した。こ
のときのB/N輸送比は1にした。これによって形成し
た窒化ホウ素膜の膜厚は1μmであった。After forming a carbon film of 1 μm in the above step,
Boron (99% purity) was evaporated from the evaporation source 10 and deposited on the carbon film, and at the same time, hydrogen ions were irradiated from the ion source 16 with an acceleration energy of 200 eV. The B/N transport ratio at this time was set to 1. The thickness of the boron nitride film thus formed was 1 μm.
【0040】比較例1
基体2に超硬合金(K10種)を用い、これをホルダ8
に設置した後、真空容器内を5×10−7Torr以下
の真空度に保持した。その後、蒸発源10より炭素(純
度99%)を蒸発させ基体2上に蒸着させると同時に、
イオン源16からネオンイオンを200eVの加速エネ
ルギーで照射した。このときのイオン/C輸送比は0.
25にした。また、これによって形成した炭素膜の膜厚
は2μmであった。Comparative Example 1 A cemented carbide (K10 type) was used for the base 2, and the holder 8
After the vacuum chamber was installed, the inside of the vacuum container was maintained at a vacuum level of 5×10 −7 Torr or less. Thereafter, carbon (purity 99%) is evaporated from the evaporation source 10 and deposited on the substrate 2, and at the same time,
Neon ions were irradiated from the ion source 16 with an acceleration energy of 200 eV. The ion/C transport ratio at this time is 0.
I made it 25. The thickness of the carbon film thus formed was 2 μm.
【0041】比較例2
基体2に超硬合金(K10種)を用い、これをホルダ8
に設置した後、真空容器内を5×10−7Torr以下
の真空度に保持した。その後、蒸発源10よりホウ素(
純度99%)を蒸発させ基体2上に蒸着させると同時に
、イオン源16から窒素イオンを200eVの加速エネ
ルギーで照射した。このときのB/N輸送比は1にした
。
またこれによって形成した窒化ホウ素膜の膜厚は2μm
であった。Comparative Example 2 A cemented carbide (K10 type) was used for the base 2, and the holder 8
After the vacuum chamber was installed, the inside of the vacuum container was maintained at a vacuum level of 5×10 −7 Torr or less. After that, boron (
At the same time, nitrogen ions were irradiated from the ion source 16 with an acceleration energy of 200 eV. The B/N transport ratio at this time was set to 1. Also, the thickness of the boron nitride film formed in this way was 2 μm.
Met.
【0042】そして上記各試料の耐熱性を比較するため
、大気中で1000℃にて24時間アニールを行った。
アニール前後の各膜の特性をXPS(光電子分光法)に
よって、B、C原子の結合の変化を調べることにより比
較した。その結果、実施例1と比較例2のものは、B原
子のXPSスペクトルには何らの変化も見られなかった
が、比較例1のものは、C原子のXPSスペクトルがア
ニール前にはC−C結合を示す位置にあったが、アニー
ル後はC−O結合を示す位置に変わっていた(即ち酸化
していた)。また、上記各膜の硬度を10gf荷重ビッ
カース硬度によって測定したところ、実施例1、比較例
1のものはそれぞれ約7000Kg/mm2 、約70
00Kg/mm2 であったのが、比較例2のものは約
4500Kg/mm2 であった。このように、この発
明に従った試料(膜被覆物)は、耐熱性および硬度が共
に優れていることがわかる。[0042] In order to compare the heat resistance of each of the above samples, annealing was performed in the air at 1000°C for 24 hours. The characteristics of each film before and after annealing were compared by examining changes in the bonds between B and C atoms using XPS (photoelectron spectroscopy). As a result, in Example 1 and Comparative Example 2, no change was observed in the XPS spectra of B atoms, but in Comparative Example 1, the XPS spectra of C atoms were C- The position was indicative of a C bond, but after annealing, the position changed to a position indicative of a C--O bond (that is, it was oxidized). Furthermore, when the hardness of each of the above films was measured by Vickers hardness under a 10 gf load, the hardness of Example 1 and Comparative Example 1 was approximately 7000 Kg/mm2 and approximately 70 Kg/mm2, respectively.
00Kg/mm2, but that of Comparative Example 2 was about 4500Kg/mm2. Thus, it can be seen that the sample (film coating) according to the present invention is excellent in both heat resistance and hardness.
【0043】[0043]
【発明の効果】以上のようにこの発明の膜被覆物におい
ては、基体の表面に形成されたダイヤモンド構造を有す
る炭素膜は、その表面が立方晶系閃亜鉛鉱型の結晶構造
を有する窒化ホウ素(c−BN)を含有する窒化ホウ素
膜によって覆われているため、その化学的安定性が向上
し、高温下での酸化や鉄族金属等との反応が防止される
。しかも、表面のc−BN構造を有する窒化ホウ素膜は
、下地に高硬度のダイヤモンド構造を有する炭素膜が存
在するため、c−BN構造を有する窒化ホウ素膜単体の
場合に比べて膜の硬度が高くなり、その耐摩耗性も向上
する。また、ダイヤモンド構造を有する炭素膜の上に同
じ結晶構造の窒化ホウ素膜を形成しているので、格子定
数等の差が緩和され、c−BNが成長しやすくその結晶
性が向上するので、より高硬度の窒化ホウ素膜を実現す
ることができる。Effects of the Invention As described above, in the film coating of the present invention, the carbon film having a diamond structure formed on the surface of the substrate has a surface made of boron nitride having a cubic zinc blende crystal structure. Since it is covered with a boron nitride film containing (c-BN), its chemical stability is improved and oxidation and reaction with iron group metals etc. at high temperatures are prevented. Moreover, since the boron nitride film with the c-BN structure on the surface has a carbon film with a highly hard diamond structure underneath, the film has a hardness compared to the case of a single boron nitride film with the c-BN structure. and its wear resistance also improves. In addition, since a boron nitride film with the same crystal structure is formed on a carbon film with a diamond structure, differences in lattice constants, etc. are alleviated, making it easier for c-BN to grow and improving its crystallinity. A boron nitride film with high hardness can be realized.
【0044】また、この発明の製造方法によれば、蒸着
原子と照射イオンとの衝突によって蒸着原子が励起され
るので、基体の表面に、低温下で、結晶構造がダイヤモ
ンド構造である炭素を含有する炭素膜および立方晶系閃
亜鉛鉱型の結晶構造を有する窒化ホウ素を含有する窒化
ホウ素膜を容易に形成することができる。しかも、蒸着
原子と照射イオンとの衝突により、基体と炭素膜との界
面付近および炭素膜と窒化ホウ素膜との界面付近に、そ
れぞれ、その両側の構成原子より成る混合層が形成され
、これがあたかも楔のような働きをするので、基体に対
する各膜の密着性が向上する。Further, according to the manufacturing method of the present invention, since the vapor deposited atoms are excited by the collision between the vapor deposited atoms and the irradiated ions, carbon containing carbon having a diamond crystal structure is formed on the surface of the substrate at a low temperature. A carbon film containing boron nitride having a cubic zincblende crystal structure and a boron nitride film containing boron nitride having a cubic zincblende crystal structure can be easily formed. Moreover, due to the collision between the deposited atoms and the irradiated ions, a mixed layer consisting of constituent atoms on both sides is formed near the interface between the substrate and the carbon film and near the interface between the carbon film and the boron nitride film, respectively. Since it acts like a wedge, the adhesion of each film to the substrate is improved.
【図1】 この発明に係る膜被覆物の一例を示す概略
断面図である。FIG. 1 is a schematic cross-sectional view showing an example of a membrane coating according to the present invention.
【図2】 この発明に係る製造方法を実施する装置の
一例を示す概略図である。FIG. 2 is a schematic diagram showing an example of an apparatus for carrying out the manufacturing method according to the present invention.
2 基体 4 炭素膜 6 窒化ホウ素膜 10 蒸発源 12 蒸発物質 16 イオン源 18 イオン 2 Base 4 Carbon film 6 Boron nitride film 10 Evaporation source 12 Evaporation substances 16 Ion source 18 Ion
Claims (2)
ド構造である炭素を含有する炭素膜を形成し、更にこの
炭素膜の表面に、立方晶系閃亜鉛鉱型の結晶構造を有す
る窒化ホウ素を含有する窒化ホウ素膜を形成しているこ
とを特徴とする膜被覆物。1. A carbon film containing carbon having a diamond crystal structure is formed on the surface of a substrate, and boron nitride having a cubic zinc blende crystal structure is further formed on the surface of this carbon film. A film coating characterized by forming a film containing boron nitride.
有する物質の蒸着と、不活性ガスイオンおよび水素イオ
ンの内の少なくとも一種のイオンの照射とを行い、次い
で、ホウ素元素を含有する物質の蒸着と、窒素イオン、
不活性ガスイオンおよび水素イオンの内の少なくとも窒
素イオンの照射とを行うことを特徴とする膜被覆物の製
造方法。[Claim 2] Depositing a substance containing a carbon element and irradiating at least one kind of ions among inert gas ions and hydrogen ions onto a substrate in a vacuum, and then depositing a substance containing a boron element on a substrate. Deposition of substances and nitrogen ions,
A method for producing a membrane coating, comprising irradiating with at least nitrogen ions of inert gas ions and hydrogen ions.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP13598791A JPH04333578A (en) | 1991-05-09 | 1991-05-09 | Film coated body and production thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP13598791A JPH04333578A (en) | 1991-05-09 | 1991-05-09 | Film coated body and production thereof |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH04333578A true JPH04333578A (en) | 1992-11-20 |
Family
ID=15164549
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP13598791A Pending JPH04333578A (en) | 1991-05-09 | 1991-05-09 | Film coated body and production thereof |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH04333578A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1999000325A1 (en) * | 1997-06-30 | 1999-01-07 | Nippon Steel Corporation | Carbonaceous particles and carbonaceous fibers both coated with boron nitride, and lithium secondary cells produced by using the same as negative active material |
-
1991
- 1991-05-09 JP JP13598791A patent/JPH04333578A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1999000325A1 (en) * | 1997-06-30 | 1999-01-07 | Nippon Steel Corporation | Carbonaceous particles and carbonaceous fibers both coated with boron nitride, and lithium secondary cells produced by using the same as negative active material |
US6194067B1 (en) * | 1997-06-30 | 2001-02-27 | Nippon Steel Corporation | Carbonaceous particles and carbonaceous fibers both coated with boron nitride, and lithium secondary cells produced by using the same as negative active material |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5766783A (en) | Boron-aluminum nitride coating and method of producing same | |
US5316804A (en) | Process for the synthesis of hard boron nitride | |
US7645513B2 (en) | Cubic boron nitride/diamond composite layers | |
US5723188A (en) | Process for producing layers of cubic boron nitride | |
US4869929A (en) | Process for preparing sic protective films on metallic or metal impregnated substrates | |
JPH04333578A (en) | Film coated body and production thereof | |
JPH09125229A (en) | Hard film, hard coated member, and production thereof | |
JP2770650B2 (en) | Boron nitride-containing film-coated substrate and method for producing the same | |
JP2513338B2 (en) | Method for forming boron nitride thin film coated substrate | |
JP3491288B2 (en) | Boron nitride-containing film-coated substrate and method for producing the same | |
JPH0649637B2 (en) | High hardness boron nitride synthesis method | |
JPH06248420A (en) | Hard film coated member | |
JP2861753B2 (en) | Substrate coated with boron nitride containing film | |
JPH07150337A (en) | Production of nitride film | |
JPH04124272A (en) | Cubic boron nitride coating member and its production | |
JP2961790B2 (en) | Method for producing boron nitride-containing thin film-coated substrate | |
JPH0794081B2 (en) | Hard carbon coated parts | |
JPH07258822A (en) | Boron nitride containing film and its production | |
Boo et al. | Low-temperature growth of Ti (C, N) thin films on D2 steel and Si (100) substrates by plasma-enhanced metalorganic chemical vapor deposition | |
JP2023542734A (en) | Al-rich AlTiN coating layer produced by PVD from metal target | |
JPS6369973A (en) | Production of cubic boron nitride film | |
JPH04310515A (en) | Highly hard ceramic coating film and its production | |
JPH05247627A (en) | Production of boron nitride-containing film | |
JPS62207869A (en) | Parts coated with hard boron nitride containing oxygen | |
JPH0718414A (en) | Film stuck body and its production |