JPH04333501A - Production of metal sintered body - Google Patents

Production of metal sintered body

Info

Publication number
JPH04333501A
JPH04333501A JP1677991A JP1677991A JPH04333501A JP H04333501 A JPH04333501 A JP H04333501A JP 1677991 A JP1677991 A JP 1677991A JP 1677991 A JP1677991 A JP 1677991A JP H04333501 A JPH04333501 A JP H04333501A
Authority
JP
Japan
Prior art keywords
degreasing
binder
green body
vacuum
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1677991A
Other languages
Japanese (ja)
Inventor
Noboru Matsunaga
昇 松永
Ichiro Sogaishi
曽我石 一郎
Atsushi Tawada
多和田 敦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Janome Corp
Original Assignee
Janome Sewing Machine Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Janome Sewing Machine Co Ltd filed Critical Janome Sewing Machine Co Ltd
Priority to JP1677991A priority Critical patent/JPH04333501A/en
Publication of JPH04333501A publication Critical patent/JPH04333501A/en
Pending legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)

Abstract

PURPOSE:To produce a metal sintered body by forming a fine metal powder along with a thermoplastic binder, rapidly heating and degreasing the formed body in a short time to remove the binder and sintering the formed body. CONSTITUTION:A formed body 8 is embedded in the powder 15 of a backup material placed in a vacuum box 9, the opening of the box 9 is covered with a flexible sheet 16, the box is evacuated, and the formed body 8 is hydrostatically backed up by the powder 15, rapidly heated at the rate of about 100-300 deg.C/hr and degreased while preferably lowering the vacuum as the degreasing proceeds. Consequently, the degreasing time is reduced from 60-100hr in the conventional process to 4-6hr.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は金属焼結体の製造方法に
係り、特に金属粉末を熱可塑性バインダ−とともに射出
成形し、脱脂によつてバインダ−を除去した後焼結する
いわゆる金属粉末射出成形法に基づいて金属焼結体を製
造する方法における脱脂方法に関するものである。
[Industrial Application Field] The present invention relates to a method of manufacturing a metal sintered body, and more particularly to a so-called metal powder injection method in which metal powder is injection molded together with a thermoplastic binder, the binder is removed by degreasing, and then sintered. The present invention relates to a degreasing method in a method of manufacturing a metal sintered body based on a molding method.

【0002】0002

【従来の技術】従来の金属焼結体の製造は、金型に充填
された金属粉末をプレス成形してまず圧粉体を形成し、
次いで、この圧粉体を焼結炉に入れて所定の温度で加熱
して焼結させて焼結体とする、いわゆる粉末冶金法にに
基づいて行われていた。
[Prior Art] In the conventional manufacturing of metal sintered bodies, metal powder filled in a mold is first press-molded to form a green compact.
Next, this green compact is placed in a sintering furnace, heated at a predetermined temperature, and sintered to form a sintered body, which is the so-called powder metallurgy method.

【0003】しかしながら、粉末冶金法の場合は、金属
粉末の成形がプレスによつて行われるので成形できる製
品の形状が制約され、極めて単純な形状の製品しか形成
できなかつた。
However, in the case of powder metallurgy, since the metal powder is molded using a press, the shapes of products that can be molded are restricted, and only products with extremely simple shapes can be formed.

【0004】このため近年、金属粉末の成形技術として
射出成形法を利用した焼結体の製造方法である、いわゆ
る金属粉末射出成形法が開発された。
For this reason, in recent years, a so-called metal powder injection molding method has been developed, which is a method for producing a sintered body using injection molding as a metal powder molding technique.

【0005】金属粉末射出成形法によると、金属粉末の
成形が射出成形によつて行われるので、粉末冶金の場合
のプレス成形とは異なつて、どのように複雑な形状の製
品でも精度良く容易に成形できるようになつた。
[0005] According to the metal powder injection molding method, metal powder is molded by injection molding, so unlike press molding in powder metallurgy, products of any complex shape can be easily and accurately molded. Now it can be molded.

【0006】この製造方法においては、粒径10μm以
下程度の金属の微粉末に熱可塑性のバインダ−を配合し
て射出成形によつて、まず射出成形体であるいわゆるグ
リ−ンボデイ形成する。
In this manufacturing method, a thermoplastic binder is mixed with fine metal powder having a particle size of about 10 μm or less, and a so-called green body, which is an injection molded product, is first formed by injection molding.

【0007】熱可塑性バインダ−としては、エチレン・
酢酸ビニル共重合体、ポリ(メタ)アクリレ−ト、ポリ
エチレン、ポリプロピレン、ポリスチレン、ポリアミド
のような熱可塑性合成樹脂類、フタル酸ジブチルのよう
な可塑剤類、パラフインワツクスのようなワツクス類等
を適宜配合したものが用いられている。
[0007] As a thermoplastic binder, ethylene
Thermoplastic synthetic resins such as vinyl acetate copolymer, poly(meth)acrylate, polyethylene, polypropylene, polystyrene, and polyamide, plasticizers such as dibutyl phthalate, waxes such as paraffin wax, etc. An appropriate mixture is used.

【0008】次にグリ−ンボデイの中のバインダ−を焼
結の前に取り除くため、グリ−ンボデイを加熱炉に入れ
てバインダ−成分の最高融点温度である300℃程度ま
でに加熱し、グリ−ンボデイ中のバインダ−を熔融、分
解、蒸発等により取り除く脱脂を行い、バインダ−が除
かれた脱バインダ−体であるいわゆるブラウンボデイを
形成する。
Next, in order to remove the binder in the green body before sintering, the green body is placed in a heating furnace and heated to about 300°C, which is the highest melting point temperature of the binder component. Degreasing is performed to remove the binder in the body by melting, decomposition, evaporation, etc. to form a so-called brown body, which is a binder-free body from which the binder has been removed.

【0009】最後に、このバインダ−の取り除かれたブ
ラウンボデイを焼結炉の中で所定の焼結温度で加熱して
焼結して焼結体を形成する、
Finally, the brown body from which the binder has been removed is heated and sintered at a predetermined sintering temperature in a sintering furnace to form a sintered body.

【0010】従来の脱脂は、製品形状が単純な場合は、
図3に示すように、グリ−ンボデイ1をトレイ2の上に
敷かれた熔融したバインダ−を吸収するためのアルミナ
フイルタ−のような多孔質セラミツク板3の上に載せて
行われる。
Conventional degreasing, when the product shape is simple,
As shown in FIG. 3, the green body 1 is placed on a porous ceramic plate 3 such as an alumina filter placed on a tray 2 for absorbing the molten binder.

【0011】また製品形状が複雑な場合は、図4に示す
ように、熔融したバインダ−の吸収を良くするため、グ
リ−ンボデイ4をボツクス型のトレイ5に多孔質セラミ
ツク板6を下に敷くとともに周囲にアルミナのような耐
火物粉末7を充填した状態で脱脂する。
If the product shape is complex, as shown in FIG. 4, the green body 4 is placed on a box-shaped tray 5 with a porous ceramic plate 6 underneath to improve the absorption of the molten binder. At the same time, the surrounding area is filled with refractory powder 7 such as alumina and degreased.

【0012】0012

【発明が解決しようとする課題】しかしながら、脱脂の
際にバイダ−が熱膨張するので、脱脂後のブラウンボデ
イに変形、割れ、膨れ等が発生し易かつた。
[Problems to be Solved by the Invention] However, since the binder thermally expands during degreasing, deformation, cracking, blistering, etc. are likely to occur in the brown body after degreasing.

【0013】このような不良が発生するのを防ぐために
、脱脂のための加熱は、融点の低いバインダ−成分から
順番に徐々に除いて行くように1時間に3〜5℃程度の
ゆつくりした速度で行われていた。
[0013] In order to prevent such defects from occurring, heating for degreasing is performed at a slow rate of about 3 to 5°C per hour so that the binder components with the lowest melting point are gradually removed. It was done at speed.

【0014】このようにゆつくりとした加熱速度で脱脂
を行つても製品形状が複雑であつたりして不良の発生を
防げない場合は、さらに、図4に示すように、グリ−ン
ボデイをアルミナのような耐火物の粉末の中に埋め込ん
でバツクアツプするとともにバインダ−をバツクアツプ
材粉末に吸収させて脱脂を促すようにした状態で脱脂す
るようなことも行われていた。
If degreasing at such a slow heating rate does not prevent defects due to complex product shapes, the green body may be replaced with alumina as shown in FIG. It has also been done to degrease the binder by embedding it in powder of a refractory material such as powder and backing it up, and then absorbing the binder into the powder of the backup material to promote degreasing.

【0015】しかし、グリ−ンボデイを耐火物粉末の中
に埋め込んで脱脂をしても、脱脂の進行にともなつてバ
インダ−の熱分解によるガスが多量に発生し、耐火物粉
末の層がくずれてグリ−ンボデイとの間に隙間ができる
ので十分なバツクアツプができなくなり、やはり不良が
発生する。
However, even if the green body is embedded in refractory powder and degreased, a large amount of gas is generated due to thermal decomposition of the binder as degreasing progresses, causing the layer of refractory powder to collapse. Since a gap is created between the green body and the green body, sufficient backup cannot be achieved, and defects also occur.

【0016】このように、従来は脱脂を3℃/時間で加
熱すると300℃まで加熱するのに100時間程度と非
常に長い時間がかかり、しかも不良の発生を完全に防ぐ
こともできなかつた。
[0016] As described above, conventionally, when degreasing is heated at 3°C/hour, it takes a very long time of about 100 hours to heat up to 300°C, and furthermore, it has not been possible to completely prevent the occurrence of defects.

【0017】本発明は、このような従来技術の欠点を解
消し、加熱速度が非常に早く脱脂時間が短く、しかも不
良が殆ど発生しない脱脂法を提供することを目的とする
ものである。
The object of the present invention is to eliminate these drawbacks of the prior art and to provide a degreasing method that has a very fast heating rate, short degreasing time, and almost no defects.

【0018】[0018]

【課題を解決するための手段】すなわち本発明は、金属
微粉末とバインダ−とより成る成形用組成物を成形しグ
リ−ンボデイを形成する成形工程と、このグリ−ンボデ
イを加熱しバインダ−を取り除いてブラウンボデイを形
成する脱脂工程と、このブラウンボデイを焼結して焼結
体を形成する焼結工程とより成る金属焼結体の製造方法
において、前記脱脂工程が、グリ−ンボデイを減圧ボツ
クス内のバツクアツプ材粉末中に埋め込む工程、減圧ボ
ツクスを開口部を柔軟性シ−トで覆つた後真空排気によ
り減圧する工程、及びグリ−ンボデイの所定の脱脂温度
に加熱する工程より成り、グリ−ンボデイが減圧状態の
下でバツクアツプ材粉末で静水圧的にバツクアツプされ
つつ脱脂し、さらに好ましくは、脱脂作業時の減圧ボツ
クス内の減圧度を脱脂の進行にともなうグリ−ンボデイ
からのバインダ−の除去度合に応じて徐々に低くしバツ
クアツプ力を弱くするよう調節するることを特徴とする
金属焼結体の製造方法である。
[Means for Solving the Problems] That is, the present invention includes a molding process of molding a molding composition comprising fine metal powder and a binder to form a green body, and a molding process of heating the green body to release the binder. A method for manufacturing a metal sintered body comprising a degreasing step of removing fat to form a brown body, and a sintering step of sintering the brown body to form a sintered body. The process consists of embedding the decompression box in backup material powder in the box, reducing the pressure by vacuum evacuation after covering the opening of the decompression box with a flexible sheet, and heating the green body to a predetermined degreasing temperature. - The body is degreased while being hydrostatically backed up with backup material powder under reduced pressure, and more preferably, the degree of vacuum in the vacuum box during the degreasing operation is adjusted to reduce the amount of binder from the green body as the degreasing progresses. This method of manufacturing a metal sintered body is characterized in that the back-up force is adjusted to be gradually lowered and weakened depending on the degree of removal.

【0019】[0019]

【作用】本発明は前記したように構成され、脱脂の際、
グリ−ンボデイは減圧ボツクス内に減圧状態の下でバツ
クアツプ材粉末の中に埋め込まれおり、しかも減圧ボツ
クスの開口部は柔軟性シ−トでおおわれているので、こ
の開口面から圧力が掛かつてバツクアツプ材の層は絶え
ずグリ−ンボデイの全周面に密着していて静水圧的な力
でバツクアツプしており、バインダ−の熱分解ガスが発
生してもバツクアツプ材層とグリ−ンボデイとの間に空
隙ができることもないので、急速に加熱しても割れ等の
不良は発生しない。
[Operation] The present invention is constructed as described above, and during degreasing,
The green body is embedded in the vacuum material powder under reduced pressure in a vacuum box, and the opening of the vacuum box is covered with a flexible sheet, so that when pressure is applied from this opening surface, the vacuum The material layer is constantly in close contact with the entire circumference of the green body and is backed up by hydrostatic pressure, so even if thermal decomposition gas from the binder is generated, there will be no gap between the backed up material layer and the green body. Since no voids are formed, defects such as cracks will not occur even if heated rapidly.

【0020】さらに脱脂を行つている際に、脱脂が進ん
でグリ−ンボデイから除かれたバインダ−の量が増え、
グリ−ンボデイの強度が弱まるにしたがつて減圧度を低
くしてバツクアツプ材のバツクアツプ力を弱めるので、
グリ−ンボデイの強度に応じた適性なバツクアツプ力で
バツクアツプされので、不良の発生が一層防げる。
Furthermore, during degreasing, the amount of binder removed from the green body increases as the degreasing progresses.
As the strength of the green body weakens, the degree of decompression is lowered to weaken the back-up force of the back-up material.
Since the green body is backed up with an appropriate backing force depending on its strength, the occurrence of defects can be further prevented.

【0021】[0021]

【実施例】以下、本発明の実施例を図面を参照して説明
する。
Embodiments Hereinafter, embodiments of the present invention will be described with reference to the drawings.

【0022】図1は、本発明の実施例を示す縦断面図で
あり、9は、上面が開口した減圧ボツクスで、この減圧
ボツクス1にはセラミツク、ステンレス等の耐熱性のフ
イルタ−11を先端に装着した真空排気管10が接続し
ており、真空排気管10には真空ポンプ(図示せず)と
を結ぶ真空接続管12が接続され、真空接続管12には
吸気量調節バルブ14を設けた吸気管13が接続してい
る。
FIG. 1 is a vertical cross-sectional view showing an embodiment of the present invention. Reference numeral 9 denotes a vacuum box with an open top, and a heat-resistant filter 11 made of ceramic, stainless steel, etc. is attached to the top of the vacuum box 1. A vacuum exhaust pipe 10 attached to the vacuum exhaust pipe 10 is connected to the vacuum exhaust pipe 10, and a vacuum connecting pipe 12 that connects to a vacuum pump (not shown) is connected to the vacuum connecting pipe 12. An intake pipe 13 is connected thereto.

【0023】15は、減圧ボツクス9の中に充填された
アルミナのような耐火物の粉末であるバツクアツプ材粉
末であり、真空排気の際にバツクアツプ材粉末15が真
空排気管10の中に吸い込まれるのはフイルタ−11に
よつてを防がれており、また減圧ボツクス9内の減圧度
は、吸気管13からの吸気量を調節バルブ14で調節す
ることによつてを調節できるようになつている。
Reference numeral 15 denotes a back-up material powder, which is a refractory powder such as alumina, filled in the vacuum box 9, and the back-up material powder 15 is sucked into the vacuum exhaust pipe 10 during evacuation. This is prevented by a filter 11, and the degree of pressure reduction in the pressure reduction box 9 can be adjusted by adjusting the amount of intake air from the intake pipe 13 with a control valve 14. There is.

【0024】脱脂は、バツクアツプ材粉末15の中にグ
リ−ンボデイ8を埋め込んだ後上面の開口を金属箔のよ
うな耐熱性の柔軟性シ−ト16で覆つた減圧ボツクス9
を加熱炉に入れ、炉に設けた配管穴から外に出た真空排
気管10に真空接続管12を接続し、真空ポンプの作動
によつて減圧ボツクス9内を減圧しつつ加熱して行われ
る。
Degreasing is performed by embedding the green body 8 in the backup material powder 15 and then using a vacuum box 9 whose upper opening is covered with a heat-resistant flexible sheet 16 such as metal foil.
is placed in a heating furnace, a vacuum connection pipe 12 is connected to the vacuum exhaust pipe 10 that comes out from a piping hole provided in the furnace, and the inside of the decompression box 9 is heated while being depressurized by the operation of a vacuum pump. .

【0025】この脱脂作業に際して、真空ポンプが作動
し減圧ボツクス9内が減圧状態となると、開口を覆つた
柔軟性シ−ト16はバツクアツプ材15の層の表面に吸
着され、バツクアツプ材15は、大気との圧力差に基づ
く加圧力が加えられて強固にかたまる。
During this degreasing work, when the vacuum pump is operated and the pressure inside the decompression box 9 is reduced, the flexible sheet 16 covering the opening is adsorbed to the surface of the layer of the backup material 15, and the backup material 15 is Pressure is applied based on the pressure difference with the atmosphere, making it solid.

【0026】このため、バツクアツプ材15の中に埋め
込まれたグリ−ンボデイ8は、いかなる形状であつても
バツクアツプ材15によつて全表面が均一に押圧される
静水圧的なバツクアツプを受ける状態となる。
Therefore, regardless of the shape of the green body 8 embedded in the backup material 15, the green body 8 is in a state where the entire surface is uniformly pressed by the backup material 15 and is subjected to hydrostatic pressure backup. Become.

【0027】この状態で加熱が行われると、熱はバツク
アツプ材15の層を加熱した後グリ−ンボデイ8の表面
に伝わり、グリ−ンボデイ8の中のバインダ−は表面か
ら順に軟化、熔融しバックアツプ材15の中に減圧作用
によつて吸い出され、グリ−ンボデイ8の中にはバイン
ダ−が吸い出されてできる穴である連通気孔が加速度的
にできていく。
When heating is performed in this state, the heat heats the layer of the back-up material 15 and then is transmitted to the surface of the green body 8, and the binder in the green body 8 is softened and melted from the surface in order, and the back-up material 15 is heated. The binder is sucked out into the binder 15 by the decompression action, and communicating holes, which are holes formed by the binder being sucked out, are formed in the green body 8 at an accelerated rate.

【0028】この際バツクアツプ材15によるバツクア
ツプがしつかり行われているので、バインダ−は総てこ
の連通気孔を通つて吸い出されて行き、バインダ−が膨
張していろいろの方向から吸い出されてグリ−ンボデイ
が割れるようなことはない。
At this time, since the backup material 15 is properly backed up, all of the binder is sucked out through the communicating holes, and the binder expands and is sucked out from various directions. There is no chance of the green body cracking.

【0029】なおこの際の加熱は、従来の3〜5℃/時
間といつた極めて緩やかな速度ではなく、100〜30
0℃/時間と極めて早い速度でバインダ−を構成する成
分の中の最も高い融点温度である300℃程度まで上げ
るようにする。
[0029] Note that the heating at this time was not done at a very slow rate of 3 to 5°C/hour as in the past, but at a rate of 100 to 30°C/hour.
The temperature is raised to about 300°C, which is the highest melting point among the components constituting the binder, at an extremely fast rate of 0°C/hour.

【0028】また、グリ−ンボデイ8は、脱脂が進みバ
インダ−が吸い出されるに従い強度が弱くなつていくの
で、脱脂の進み具合に応じてバツクアツプ材15による
バツクアツプの力を弱くする必要があり、これは、脱脂
の時間と温度とに基づいて調節バルブ14の調節によつ
て吸気管13から大気を吸い込ませて減圧ボツクス9内
の減圧度を下げることによつて行う。
Furthermore, as the degreasing progresses and the binder is sucked out, the strength of the green body 8 becomes weaker, so it is necessary to weaken the back-up force by the back-up material 15 according to the progress of the degreasing. This is done by sucking atmospheric air through the intake pipe 13 by adjusting the control valve 14 based on the degreasing time and temperature, thereby lowering the degree of vacuum in the vacuum box 9.

【0029】この脱脂に際しての減圧ボツクス9内の減
圧度の調節は、グリ−ンボデイの形状等によつて異なる
が、大体、脱脂温度が100℃達するまでは10tor
r程度、100〜200℃では50〜100torr程
度、200〜300℃では200〜300torr程度
の減圧度とするのが好ましい。
The degree of vacuum in the vacuum box 9 during degreasing varies depending on the shape of the green body, etc., but in general, the degree of vacuum in the vacuum box 9 is adjusted to 10 torr until the degreasing temperature reaches 100°C.
The degree of pressure reduction is preferably about 50 to 100 torr at 100 to 200°C, and about 200 to 300 torr at 200 to 300°C.

【0030】次に図2に示すような、厚さ9mm,長さ
35mm程度の比較的複雑で従来は脱脂の際に割れ等の
不良が発生し易かつた部品を種々の条件で脱脂した実施
例について従来例と比較しつつ説明する。
Next, as shown in Fig. 2, a relatively complex part with a thickness of about 9 mm and a length of about 35 mm, which was conventionally prone to cracking and other defects during degreasing, was degreased under various conditions. An example will be explained while comparing it with a conventional example.

【0031】まず、射出成形用の組成物はつぎの3種類
であつた。ただし、組成は重量部で示す。
First, the following three types of compositions were used for injection molding. However, the composition is shown in parts by weight.

【0032】A.SUS304  100,EVA樹脂
  3.70, アクリル樹脂  2.76,パラフインワツクス  2
.76,DBP  1.27 B.SUS304  100,アクリル樹脂  7.0
,パラフインワツクス  1.0,ステアリン酸1.0
C.Fe−8%Ni  100,EVA  3.0,ア
クリル  2.5,パラフインワツクス  2.5,D
BP  1.0
A. SUS304 100, EVA resin 3.70, acrylic resin 2.76, paraffin wax 2
.. 76, DBP 1.27 B. SUS304 100, acrylic resin 7.0
, paraffin wax 1.0, stearic acid 1.0
C. Fe-8%Ni 100, EVA 3.0, acrylic 2.5, paraffin wax 2.5, D
BP 1.0

【0033】以上のような組成物を次ぎのような条件で
射出成形しグリ−ンボデイを得た。 ノズル温度      120〜150℃射出圧力  
      650kg/cmsqr
The above composition was injection molded under the following conditions to obtain a green body. Nozzle temperature 120-150℃ Injection pressure
650kg/cmsqr

【0034】グリ
−ンボデイの脱脂は前記した図1に示すように減圧ボツ
クスに充填した平均粒径2μmのアルミナ粉末の中に埋
め込んで次のような3種類の条件で加熱した。 イ .  100℃/時間の速度で温度を上昇させ30
0℃で3時間保持。 ロ .  200℃/時間の速度で温度を上昇させ30
0℃で3時間保持。 ハ .  300℃/時間の速度で温度を上昇させ30
0℃で3時間保持。
To degrease the green body, the body was embedded in alumina powder having an average particle size of 2 μm filled in a vacuum box as shown in FIG. 1, and heated under the following three conditions. stomach . Raise the temperature at a rate of 100°C/hour for 30
Hold at 0°C for 3 hours. B . Raise the temperature at a rate of 200°C/hour for 30
Hold at 0°C for 3 hours. C. Raise the temperature at a rate of 300°C/hour for 30
Hold at 0°C for 3 hours.

【0035】また減圧ボツクスの減圧度は次のように調
節した。 100℃まで、10torr 200℃まで、100torrまで徐々に下げる。 300℃まで、300torrまで徐々に下げる。
The degree of vacuum in the vacuum box was adjusted as follows. Gradually lower the temperature to 100°C, 10 torr, 200°C, and 100 torr. Gradually lower the temperature to 300°C and 300 torr.

【0036】以上のような減圧条件でA〜Cの組成物3
種類を各々イ〜ハの3種類の加熱条件で脱脂した9種類
の実施例について検討した結果によると、総ての実施例
において変形、割れ、膨れ等の不良は全く発生しなかつ
た。また、脱脂後に測定したバインダ−の除去率は94
.7〜98.7%と非常に高く、脱脂が極めて効率良く
行われたことが示され、その後の焼結によつて所定の炭
素含有率が保たれた良好な焼結体が得られた。
[0036] Compositions A to C 3 under the reduced pressure conditions as described above.
According to the results of examining nine types of Examples in which each type was degreased under three types of heating conditions (A to C), defects such as deformation, cracking, and blistering did not occur in any of the Examples. In addition, the binder removal rate measured after degreasing was 94.
.. The carbon content was extremely high, ranging from 7 to 98.7%, indicating that degreasing was performed extremely efficiently, and a good sintered body with a predetermined carbon content maintained through subsequent sintering was obtained.

【0037】これに対して、実施例と同様A〜Cの組成
物で射出成形した3種類のグリン−ンボデイを、単にア
ルミナ粉末の中に埋め込んだだけで各々イ〜ハの加熱条
件で加熱して脱脂をした9種類の従来例は、総てに割れ
、変形、表層剥離、膨れ等の何らかの不良が発生し崩れ
ていた。このため、脱脂後にはバインダ−の除去率が測
定できないとともに、焼結によつて焼結体とすることも
できなかつた。
On the other hand, three types of green bodies injection molded with the compositions A to C were simply embedded in alumina powder and heated under the heating conditions A to C as in the example. All of the nine types of conventional examples that were degreased had some kind of defect such as cracking, deformation, surface peeling, or blistering, and collapsed. For this reason, it was not possible to measure the binder removal rate after degreasing, and it was also impossible to form a sintered body by sintering.

【0038】[0038]

【発明の効果】本発明は以上のような構成及び作用のも
のであり、グリ−ンボデイがバックアツプ材粉末により
静水圧的に良くバツクアツプされた状態で脱脂され、脱
脂の際に急速に加熱できるので、従来60〜100時間
程度であつた脱脂時間が4〜6時間程度と非常に短くな
る。
[Effects of the Invention] The present invention has the structure and operation as described above, and the green body is degreased while being well backed up by the back-up material powder under hydrostatic pressure, and can be rapidly heated during degreasing. Therefore, the degreasing time, which was conventionally about 60 to 100 hours, is significantly shortened to about 4 to 6 hours.

【0039】次ぎに、脱脂が減圧状態で行われるので、
例えばパラフインワツクスの沸点は大気圧では350〜
450℃であるのに10torr程度の減圧度となると
180〜250℃となるようにバインダ−が非常に蒸発
し易く、従来の脱脂温度である350〜400℃と比べ
て300℃と低い温度でしかも早く脱脂できるので、焼
結体を形成する金属成分の酸化を防げる。
Next, since degreasing is carried out under reduced pressure,
For example, the boiling point of paraffin wax is 350~ at atmospheric pressure.
When the pressure is reduced to 10 torr even though the temperature is 450°C, the binder evaporates very easily at 180-250°C, and the degreasing temperature is as low as 300°C compared to the conventional degreasing temperature of 350-400°C. Since it can be degreased quickly, oxidation of the metal components that form the sintered body can be prevented.

【0040】また、減圧度を調節して脱脂の際のグリ−
ンボデイのバツクアツプ材による静水圧的なバツクアツ
プ力を調節できるので、グリ−ンボデイの強度に応じて
バツクアツプ力を調節できる。このため、バインダ−の
種類や配合量に基づく射出成形されたグリ−ンボデイ強
度に応じたバツクアツプが行えることは勿論、脱脂の進
行にともなつてバインダ−量が減り強度が下がつてもそ
の強度に応じたバツクアツプができるので、バツクアツ
プ力が強すぎてグリ−ンボデイが割れたりすることもな
い。
[0040] Also, the degree of decompression can be adjusted to reduce grease during degreasing.
Since the hydrostatic back-up force by the back-up material of the body can be adjusted, the back-up force can be adjusted according to the strength of the green body. Therefore, it is possible to back up the injection molded green body according to the strength of the injection molded green body based on the type and amount of binder, and even if the amount of binder decreases and the strength decreases as degreasing progresses. Since the back-up can be performed according to the amount of pressure, the back-up force will not be too strong and cause the green body to crack.

【0041】さらに、バインダ−の除去率が非常に高い
ので、焼結の際に残つたバインダ−が炭素化して、含有
炭素量をばらつかせたり、或は合金の融点を下げて熔融
状態とし、焼結体が変形したり、形ができない状態にな
つたりするようなこともない。
Furthermore, since the removal rate of the binder is extremely high, the binder remaining during sintering may carbonize, causing variations in the amount of carbon contained, or lowering the melting point of the alloy to bring it to a molten state. There is no possibility that the sintered body will be deformed or become unable to be shaped.

【0042】以上のように、本発明は、焼結する金属成
分或はバインダ−の種類や配合量等がどのような場合で
あつても、極めて短時間で脱脂を行つて良好な製品を得
ることのできる金属粉末射出成形法に基づく金属焼結体
の製造方法を提供し、これにより、どのような形状の製
品でも容易に金属焼結体として得られるようになる。
As described above, the present invention allows degreasing to be performed in an extremely short period of time and a good product to be obtained, regardless of the type or amount of the metal component to be sintered or the binder. The present invention provides a method for manufacturing a metal sintered body based on a metal powder injection molding method, which allows a product of any shape to be easily obtained as a metal sintered body.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】    本発明の脱脂法を示す縦断面図、[Fig. 1] A vertical cross-sectional view showing the degreasing method of the present invention,

【図
2】    本発明の実施例に用いた製品図、
[Figure 2] Product diagram used in the example of the present invention,

【図3】
    第1の従来の脱脂法を示す縦断面図、
[Figure 3]
A longitudinal cross-sectional view showing a first conventional degreasing method,

【図4】
    第2の従来の脱脂法を示す縦断面図。
[Figure 4]
FIG. 7 is a vertical cross-sectional view showing a second conventional degreasing method.

【符号の説明】[Explanation of symbols]

8.  グリ−ンボデイ 9.  減圧ボツクス 10.  真空排気管 11.  フイルタ− 12.  真空接続管 13.  吸気管 14.  吸気量調節バルブ 15.  バツクアツプ材粉末 16.  柔軟性シ−ト 8. Green body 9.  Decompression box 10. Vacuum exhaust pipe 11. Filter 12. Vacuum connection tube 13. Intake pipe 14. Intake volume control valve 15. Backup material powder 16. Flexible sheet

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】金属微粉末とバインダ−とより成る成形用
組成物を成形しグリ−ンボデイを形成する成形工程と、
このグリ−ンボデイを加熱しバインダ−を取り除いてブ
ラウンボデイを形成する脱脂工程と、このブラウンボデ
イを焼結して焼結体を形成する焼結工程とより成る金属
焼結体の製造方法において、前記脱脂工程が、グリ−ン
ボデイを減圧ボツクス内のバツクアツプ材粉末中に埋め
込む工程、減圧ボツクスを開口部を柔軟性シ−トで覆つ
た後真空排気により減圧する工程、及びグリ−ンボデイ
の所定の脱脂温度に加熱する工程より成り、グリ−ンボ
デイが減圧状態の下でバツクアツプ材粉末で静水圧的に
バツクアツプされつつ脱脂されることを特徴とする金属
焼結体の製造方法。
1. A molding step of molding a molding composition comprising fine metal powder and a binder to form a green body;
A method for manufacturing a metal sintered body, which comprises a degreasing step of heating the green body to remove the binder to form a brown body, and a sintering step of sintering the brown body to form a sintered body. The degreasing process includes embedding the green body in backup material powder in a vacuum box, covering the opening of the vacuum box with a flexible sheet and reducing the pressure by vacuum evacuation, and removing the green body from a predetermined area. 1. A method for producing a metal sintered body, which comprises a step of heating to a degreasing temperature, and is characterized in that the green body is hydrostatically backed up with backing up material powder under reduced pressure while being degreased.
【請求項2】脱脂作業時の減圧ボツクス内の減圧度を脱
脂の進行にともなつてのグリ−ンボデイからのバインダ
−の除去度合に応じて徐々に下げバツクアツプ力を弱く
する用調節することを特徴とする請求項1記載の金属焼
結体の製造方法。
2. The degree of vacuum in the vacuum box during degreasing work is adjusted to gradually lower and weaken the back-up force in accordance with the degree of removal of binder from the green body as degreasing progresses. The method for producing a metal sintered body according to claim 1.
JP1677991A 1991-01-18 1991-01-18 Production of metal sintered body Pending JPH04333501A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1677991A JPH04333501A (en) 1991-01-18 1991-01-18 Production of metal sintered body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1677991A JPH04333501A (en) 1991-01-18 1991-01-18 Production of metal sintered body

Publications (1)

Publication Number Publication Date
JPH04333501A true JPH04333501A (en) 1992-11-20

Family

ID=11925685

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1677991A Pending JPH04333501A (en) 1991-01-18 1991-01-18 Production of metal sintered body

Country Status (1)

Country Link
JP (1) JPH04333501A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106825559A (en) * 2017-01-07 2017-06-13 东莞易力禾电子有限公司 resistor copper electrode sintering process

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106825559A (en) * 2017-01-07 2017-06-13 东莞易力禾电子有限公司 resistor copper electrode sintering process

Similar Documents

Publication Publication Date Title
JP6162311B1 (en) Manufacturing method of powder metallurgy sintered body by additive manufacturing method
JP2634213B2 (en) Method for producing powder molded article by isostatic press
CN105441881B (en) The manufacturing method of chromium target and combinations thereof
TW501956B (en) Superplasticity forming mould and mould insert
JP4729253B2 (en) Silicon monoxide sintered body and silicon monoxide sintered target
JPH04333501A (en) Production of metal sintered body
US5080843A (en) Method of manufacturing an object of a powdered ceramic material
US7763204B2 (en) Manufacturing process and apparatus
WO1994020242A1 (en) Process for manufacturing powder injection molded parts
EP0053140A1 (en) Method for manufacturing tubes
JPH06179083A (en) Composite material, production of composite material and production of composite material molding
JPH0220687B2 (en)
JP2732256B2 (en) Ceramic sintered body and method for producing the same
JP5002087B2 (en) CHROMIA SINTERED BODY AND ITS MANUFACTURING METHOD
JP2002210717A (en) Method for manufacturing ceramic molding
JP4365284B2 (en) Method for producing reinforced platinum / platinum composite material
JP3429041B2 (en) Method for producing metal material having air permeability and water permeability
JPH11131103A (en) Composition for powder injection molding and production of powder injection molded goods
JPH10259404A (en) Calcined compact of carbonyl iron powder and powder injection molding method
JP2005320581A (en) Method for manufacturing porous metal body
JPH02172853A (en) Production of ceramic sintered body
JP2539759B2 (en) Degreasing method for powder molded products
TW501971B (en) Hot pressing molds for magnesium fluoride plates
KR101353727B1 (en) Method of making spray formed metal tools
JPH03193860A (en) Production of ti-al intermetallic compound member