JPH04332845A - Preparation of sample for observation by transmission electron microscope - Google Patents
Preparation of sample for observation by transmission electron microscopeInfo
- Publication number
- JPH04332845A JPH04332845A JP10228891A JP10228891A JPH04332845A JP H04332845 A JPH04332845 A JP H04332845A JP 10228891 A JP10228891 A JP 10228891A JP 10228891 A JP10228891 A JP 10228891A JP H04332845 A JPH04332845 A JP H04332845A
- Authority
- JP
- Japan
- Prior art keywords
- sample
- section
- cross
- observation
- preparation
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000002360 preparation method Methods 0.000 title claims abstract description 5
- 230000005540 biological transmission Effects 0.000 title claims 2
- 238000000034 method Methods 0.000 claims abstract description 19
- 238000005498 polishing Methods 0.000 claims description 18
- 238000010884 ion-beam technique Methods 0.000 claims description 2
- 238000004627 transmission electron microscopy Methods 0.000 claims 1
- 239000004065 semiconductor Substances 0.000 abstract description 14
- 238000005530 etching Methods 0.000 abstract description 2
- 238000003475 lamination Methods 0.000 abstract description 2
- 239000000523 sample Substances 0.000 description 36
- 238000010586 diagram Methods 0.000 description 9
- 238000005520 cutting process Methods 0.000 description 7
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 6
- 229910052710 silicon Inorganic materials 0.000 description 6
- 239000010703 silicon Substances 0.000 description 6
- 238000004458 analytical method Methods 0.000 description 5
- 230000007547 defect Effects 0.000 description 5
- 235000012431 wafers Nutrition 0.000 description 5
- 238000005464 sample preparation method Methods 0.000 description 3
- 238000007796 conventional method Methods 0.000 description 2
- 238000003917 TEM image Methods 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000000635 electron micrograph Methods 0.000 description 1
- 239000003822 epoxy resin Substances 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 229920000647 polyepoxide Polymers 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000012827 research and development Methods 0.000 description 1
- 239000004576 sand Substances 0.000 description 1
- 238000000992 sputter etching Methods 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
Landscapes
- Sampling And Sample Adjustment (AREA)
Abstract
Description
【0001】0001
【産業上の利用分野】本発明は、TEM観察による半導
体デバイスの内部不良欠陥解析等に於ける断面観察用試
料作製方法に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for preparing a sample for cross-sectional observation in the analysis of internal defects in semiconductor devices by TEM observation.
【0002】0002
【従来の技術】ここでは、半導体断面TEM観察を例に
とり、以下に述べる。従来の半導体断面TEM観察用試
料作製方法の工程ブロック図を図2に示す。TEM観察
による半導体デバイスの内部不良欠陥解析等に於いて、
良好な結果を得るためには鮮明なTEM像写真を得るこ
とが必要であり、そのためには試料の観察部の厚さを可
能な限り薄くし、試料を透過する電子数を増やさなけれ
ばならない。理想的な半導体デバイス断面観察用試料を
図7に示す。例えば、加速電圧400kV時の電子プロ
ーブの透過能は約2〜3μm程度であるから、鮮明なT
EM像写真を得るためには図6に示した観察部の厚さを
1μm以下にする必要がある。断面試料の作製には図2
に示すように、まず”試料の切り出し”工程で、デバイ
ス試料とシリコンウェハー5枚を、それぞれ5mm×5
mmの大きさに切り出す。次の”張り合わせ”では、図
4(1)に示すように、切り出したデバイス試料10の
表と裏にそれぞれ3枚のシリコンウェハー20と2枚の
シリコンウェハー30をエポキシ樹脂等により接着する
。そして”試料薄片の切り出し”で、図4(2)に示す
ように出来上がった直方体から接着面に垂直に0.5〜
1.0mmの厚さで、その内部に観察目的箇所を含むよ
うに薄片を切り出す。次に、観察断面を表面に出すため
に、切り出した薄片に目的の断面に近い側から荒研磨及
びバフ研磨を施すことで、その面を鏡面とし、金属顕微
鏡を用いてその断面中心部にTEM観察対象物の断面構
造が存在しているかどうかを確認する。ここで面中心部
にその断面構造が確認されないときは、再び荒研磨及び
鏡面研磨をした後に金属顕微鏡で観察するこの断面形成
工程を、TEM観察対象物の断面構造が面中心部に現れ
るまで繰り返す。ここで削りすぎたために観察対象物を
失った場合、複数の試料があるときは試料の切り出しか
らやり直せばよいが、唯一の試料であった場合は解析全
体がストップしてしまう。BACKGROUND OF THE INVENTION Here, TEM observation of a cross section of a semiconductor will be taken as an example and will be described below. FIG. 2 shows a process block diagram of a conventional method for preparing a sample for semiconductor cross-sectional TEM observation. In analyzing internal defects in semiconductor devices using TEM observation,
In order to obtain good results, it is necessary to obtain clear TEM images, and for this purpose, the thickness of the observation area of the sample must be made as thin as possible, and the number of electrons passing through the sample must be increased. An ideal sample for cross-sectional observation of a semiconductor device is shown in FIG. For example, the penetration power of an electron probe at an accelerating voltage of 400 kV is about 2 to 3 μm, so a clear T
In order to obtain an EM image photograph, the thickness of the observation area shown in FIG. 6 needs to be 1 μm or less. Figure 2 shows how to prepare a cross-sectional sample.
As shown in , first, in the "sample cutting" process, the device sample and five silicon wafers are each cut into 5 mm x 5
Cut out into mm size. In the next "bonding", as shown in FIG. 4(1), three silicon wafers 20 and two silicon wafers 30 are bonded to the front and back sides of the cut out device sample 10 using epoxy resin or the like. Then, in "cutting out the sample thin section", as shown in Figure 4 (2), from the completed rectangular parallelepiped, 0.5~
A thin section with a thickness of 1.0 mm is cut out so that the observation target area is included inside the section. Next, in order to expose the cross section to be observed, the cut thin section is roughly polished and buffed from the side closest to the desired cross section to make that surface a mirror surface, and a metallurgical microscope is used to examine the center of the cross section using a TEM. Check whether the cross-sectional structure of the object to be observed exists. If the cross-sectional structure is not confirmed at the center of the surface, repeat rough polishing and mirror polishing again and then observe with a metallurgical microscope until the cross-sectional structure of the object to be observed with TEM appears at the center of the surface. . If the object to be observed is lost due to excessive cutting, if there are multiple samples, all you have to do is cut out the sample and start over, but if it is the only sample, the entire analysis will stop.
【0003】目的のTEM観察断面が鏡面として完成し
た後、その薄片状の試料から観察対象物を中心とする直
径3mmの円盤を超音波ディスクカッターで切り抜き、
観察断面とは反対側から荒研磨をして試料の厚さを10
0μm程度にする。そしてさらに、ボール研磨により試
料中心部の厚さを20μm程度までもっていき、鏡面研
磨を施した後、イオンミリングにより図7に示した形状
に仕上げる。After the desired TEM observation cross section is completed as a mirror surface, a disk with a diameter of 3 mm centered on the object to be observed is cut out from the flaky sample using an ultrasonic disk cutter.
Roughly polish the sample from the opposite side to the observed cross section to reduce the thickness of the sample to 10
The thickness should be approximately 0 μm. Further, the thickness of the center of the sample is increased to about 20 μm by ball polishing, mirror polishing is performed, and the shape shown in FIG. 7 is finished by ion milling.
【0004】0004
【発明が解決しようとする課題】ここでは、超微細な構
造を持つ半導体の断面TEM観察を例にとり、以下に述
べる。半導体の断面TEM観察では、試料の観察面の中
心部に観察目的箇所が存在していること、及び、その部
分が十分に薄くなっていることが必要条件である。しか
し、その限られた場所に、μm単位のパラメターで決定
されている半導体デバイスの構造のある特定箇所が来る
ようにすることは、非常に困難なことである。上記の従
来例に従って試料作製を行う場合、図4(1)に示した
直方体から、その内部に観察目的箇所を含むように試料
の薄片を切り出し、研磨により目的の断面が試料表面に
現れるようにする。この断面形成工程において、精確に
目的の断面を試料表面に現すためには、目的とする断面
の薄片の表面からの深さが、μmオーダーで精確にわか
っていなければならないが、この従来の断面形成方法に
おいては、その時点に研磨されている面と目的の断面ま
での距離が全く不明確であるために、過剰な研磨を起こ
し易く、その試料はこの時点で断念され、再び最初から
やり直さなくてはならない。多大な注意を払いながら、
極僅かだけの荒研磨をしては鏡面研磨を施した後に金属
顕微鏡で確認する工程を繰り返し行って満足できる断面
を得ることは、可能性がないわけではないが、精確さに
欠けるために費やされる時間は膨大なものになり、作業
能率を極めて低下させてしまう。また、削りすぎたため
に観察対象物を失った場合、複数の試料があるときは試
料の切り出しからやり直せばよいが、唯一の試料であっ
た場合は解析全体がストップしてしまい、強いてはその
研究、開発等に多大な影響を与えてしまう。このために
、TEM観察による半導体デバイス等の特定された内部
不良欠陥解析等は容易に行えない。[Problems to be Solved by the Invention] Here, a cross-sectional TEM observation of a semiconductor having an ultra-fine structure will be taken as an example and will be described below. In cross-sectional TEM observation of a semiconductor, it is necessary that the observation target location be present in the center of the observation surface of the sample and that the portion be sufficiently thin. However, it is extremely difficult to ensure that a specific location in the structure of a semiconductor device, which is determined by parameters in μm, is located in this limited location. When preparing a sample according to the above-mentioned conventional example, a thin section of the sample is cut out from the rectangular parallelepiped shown in Figure 4 (1) so that the observation target area is included inside it, and then polished so that the desired cross section appears on the sample surface. do. In this cross-section forming process, in order to accurately represent the desired cross-section on the sample surface, the depth of the desired cross-section from the surface of the thin slice must be precisely known in the μm order. In the formation method, the distance between the surface being polished and the desired cross-section is completely unclear at that point, so it is easy to over-polish, and the sample is abandoned at this point without having to start over again. must not. With great care,
It is possible to obtain a satisfactory cross-section by repeating the process of performing very slight rough polishing, mirror polishing, and checking with a metallurgical microscope, but it is costly due to lack of precision. The amount of time spent on this process is enormous, and work efficiency is extremely reduced. In addition, if you lose the object to be observed due to excessive cutting, if there are multiple samples, you can start over by cutting out the sample, but if it is the only sample, the entire analysis will stop, and the research will be forced to stop. , which will have a significant impact on development. For this reason, it is not easy to analyze identified internal defects in semiconductor devices or the like by TEM observation.
【0005】本発明の試料作製方法は、この断面形成工
程において、観察対象の断面の位置をFIBのエッチン
グによるマークから精確に知ることで作業時間を大幅に
短縮、かつ、削りすぎによる試料消失の防止をする事で
、TEM観察による半導体デバイスの内部不良欠陥解析
等やその関連した研究、開発等の作業能率を上げること
を目的とするものである。[0005] The sample preparation method of the present invention greatly reduces the working time by accurately knowing the position of the cross section to be observed from the mark etched by the FIB in this cross-section forming step, and prevents the specimen from disappearing due to over-shaving. By preventing this, the purpose is to improve the work efficiency of internal failure defect analysis of semiconductor devices by TEM observation, and related research and development.
【0006】[0006]
【課題を解決するための手段】本発明の試料作製方法は
、TEM観察による半導体デバイスの内部不良欠陥解析
等の作業能率を上げることを実現するために、断面形成
工程の前に、試料中の観察したい場所の近くに収束イオ
ンビーム(FIB)でマーキングし、そのマーキングし
た側から試料を研磨する。[Means for Solving the Problems] In the sample preparation method of the present invention, in order to improve work efficiency such as internal failure defect analysis of semiconductor devices by TEM observation, the sample preparation method A mark is made using a focused ion beam (FIB) near the location to be observed, and the sample is polished from the marked side.
【0007】[0007]
【実施例】次に、AI配線のTEG(Test El
ement Group)のAIの断面観察を一例に
とり、図面を参照しながら、本発明の実施例を説明する
。
図1に本発明によるTEM観察用試料作製過程の工程ブ
ロック図を示す。まず、従来の方法として同様に5mm
×5mmの1枚の試料片と5枚のシリコンウェハーを切
り出す。そして、それらを張り合わせる前に、試料の観
察目的部位周辺にFIBによるエッチングでマーキング
を施すのであるが、その一例を図3に示す。[Example] Next, TEG (Test El
Embodiments of the present invention will be described with reference to the drawings, taking as an example a cross-sectional observation of AI of element Group). FIG. 1 shows a process block diagram of the process of preparing a sample for TEM observation according to the present invention. First, as in the conventional method, 5mm
Cut out one sample piece of ×5 mm and five silicon wafers. Before pasting them together, a marking is applied around the observation target part of the sample by FIB etching, an example of which is shown in FIG.
【0008】高さが20μmの直角二等辺三角形を2つ
合わせたW型のマーキングを、目的の断面から荒研磨の
方向(目的の断面に垂直方向)に20μm離れたところ
へFIBを用いて図3のようにつける。図3に於いて、
直線a、bは目的の断面と試料表面の交換に平行である
。1つだけのマーキングであれば、誤ってマーキングの
されていない側から研磨をしたとき、観察目的の断面ま
で削ってしまう危険性がある。図4(2)のように試料
薄片を切り出してしまうと、どちら側にマーキングされ
ているのか全く判断がつかなくなってしまうので、図3
のように目的の断面を中心にはさんで両側にマーキング
することによって、どちら側から研磨をしても良いよう
にする。つまり図3においては図の右側、左側のどちら
側からも精確な研磨ができるわけである。[0008] A W-shaped marking made of two right-angled isosceles triangles with a height of 20 μm is placed 20 μm away from the target cross section in the rough polishing direction (perpendicular to the target cross section) using an FIB. Attach as in 3. In Figure 3,
Straight lines a, b are parallel to the exchange of the target cross section and the sample surface. If there is only one marking, there is a risk that if you accidentally polish from the unmarked side, you will end up shaving off the cross section you are looking for. If you cut out the sample thin section as shown in Figure 4 (2), you will not be able to tell which side is marked.
By marking both sides of the cross-section with the desired cross-section in the center, you can sand from either side. In other words, in FIG. 3, accurate polishing can be performed from either the right or left side of the figure.
【0009】ここで、図3の右側から研磨をはじめた場
合を例にとり、このFIBのマーキング40がどのよう
に目的断面までの距離を示すか、図3と図5を参照しな
がら説明していく。図3の直線cまで研磨が進んだとき
の断面を金属顕微鏡で観察すると、図5(1)のように
見える。W型のマーキングを構成している2つの直角二
等辺三角形の高さは20μmであるから、図3の直線c
上にあるW型のマーキングの2つの頂角の間は40μm
となり、目的断面までの距離も40μmである。すなわ
ち荒研磨、鏡面研磨の後、その断面を金属顕微鏡で観察
したとき図5(1)のように見えれば、目的の断面まで
の距離があと40μmであることが精確に把握できる。
また、研磨している断面が目的の断面から20〜40μ
mの距離にあるときは、図5(2)のように観測され、
そのとき研磨されている断面が目的の断面に平行であれ
ば、図の両矢印で示した2つの距離は等しくなる。図の
両矢印で示した距離xが等しくなければそのとき研磨さ
れている断面は目的断面に平行でないことがわかる。こ
こで両矢印で示される距離をxμmとすると、目的の断
面までの距離は、W型のマーキングが20μmの高さを
持つ2つの直角二等辺三角形でできていることから、
目的の断面までの距離 = 20+20・(1−
x/40)(μm)で与えられる。そして図5(3)の
ように見えれば、あと20μm削ればよいことになる。
シリコン基板の荒研磨時の研磨レートは約2μm/se
cと比較的遅いために、手動で時間を計測しながら研磨
を行ったとしても、かなり精確に削る深さを制御できる
。Now, taking as an example the case where polishing starts from the right side of FIG. 3, how the FIB marking 40 indicates the distance to the target cross section will be explained with reference to FIGS. 3 and 5. go. When the cross section when polishing has progressed to straight line c in FIG. 3 is observed with a metallurgical microscope, it appears as shown in FIG. 5(1). Since the height of the two right-angled isosceles triangles that make up the W-shaped marking is 20 μm, the straight line c in Figure 3
The distance between the two apex angles of the W-shaped marking on the top is 40μm
Therefore, the distance to the target cross section is also 40 μm. That is, if after rough polishing and mirror polishing, the cross section is observed with a metallurgical microscope and it looks like the one shown in FIG. 5(1), it can be accurately determined that the distance to the target cross section is 40 μm. Also, make sure that the cross section being polished is 20 to 40μ from the target cross section.
When it is at a distance of m, it is observed as shown in Figure 5 (2),
If the cross section being polished is parallel to the target cross section, the two distances indicated by the double arrows in the figure will be equal. If the distances x indicated by the double-headed arrows in the figure are not equal, it can be seen that the cross section being polished is not parallel to the target cross section. Here, if the distance indicated by the double-headed arrow is xμm, then the distance to the target cross section is:
Distance to target cross section = 20+20・(1−
x/40) (μm). If it looks like Figure 5 (3), then it is only necessary to remove another 20 μm. The polishing rate during rough polishing of silicon substrate is approximately 2μm/se
Because it is relatively slow at c, even if you manually measure the time while polishing, you can control the depth of polishing quite accurately.
【0010】図3では目的の断面から20〜40μmの
範囲にのみマーキングを施したが、複数の範囲にマーキ
ングを施すことで、より精確性を増すことができる。そ
の一例を図6に示す。図3のマーキングに加えて60〜
80μmの範囲に図3のW型にもう1つ直角二等辺三角
形を加えたマーキング(V型が3つ)をし、100〜1
20μmの範囲には2つ加えたもの(V型が4つ;W型
が2つ)を、そして200〜300μmの範囲には底辺
が100μmの直角二等辺三角形をマーキングすること
で、その時点の研磨断面の位置を段階的に把握しながら
研磨を押し進めていくことができ、より精確性が向上す
る。In FIG. 3, markings are made only in the range of 20 to 40 μm from the target cross section, but accuracy can be further increased by marking in a plurality of ranges. An example is shown in FIG. In addition to the markings in Figure 3, 60~
Mark the W shape in Figure 3 with another right isosceles triangle (3 V shapes) in the 80 μm range, and
By marking the 20 μm range with 2 plus (4 V-shaped; 2 W-shaped) and the 200-300 μm range with a right-angled isosceles triangle with a base of 100 μm, the current Polishing can be progressed while gradually grasping the position of the polished cross section, further improving accuracy.
【0011】[0011]
【発明の効果】以上説明した通り、本発明を半導体等の
断面TEM観察用の試料作製過程に適用すれば、断面形
成工程に費やす時間が大幅に短縮されると同時に、削り
すぎというような失敗もなくなり、作業能率が大幅に向
上する。[Effects of the Invention] As explained above, if the present invention is applied to the sample preparation process for cross-sectional TEM observation of semiconductors, etc., the time spent in the cross-section forming process can be significantly shortened, and at the same time, mistakes such as over-cutting can be avoided. This will greatly improve work efficiency.
【図1】本発明の工程図。FIG. 1 is a process diagram of the present invention.
【図2】従来技術の工程図。FIG. 2 is a process diagram of the prior art.
【図3】本発明に於ける試料表面へのマーキング例を示
す図。FIG. 3 is a diagram showing an example of marking on a sample surface in the present invention.
【図4】図1及び図2において共通する『張り合わせ』
、『試料薄片の切り出し』の工程を示す図。[Figure 4] "Lamination" common in Figures 1 and 2
, A diagram showing the process of "cutting out a sample thin section."
【図5】本発明の実施例の説明を理解し易くするための
図。FIG. 5 is a diagram for making it easier to understand the explanation of the embodiment of the present invention.
【図6】本発明におけるマーキングの他の例を示す図。FIG. 6 is a diagram showing another example of marking in the present invention.
【図7】理想的な完成試料を現す図。FIG. 7 is a diagram showing an ideal completed sample.
10 試料 20、30 シリコンウェハー 40 FIBによるマーキング 10 Sample 20, 30 Silicon wafer 40 Marking by FIB
Claims (1)
の試料作製過程の断面形成工程の前に、試料中の観察し
たい場所の近くに収束イオンビームでマーキングを施し
、そのマーキングした側から試料を研磨することを特徴
とする透過電子顕微鏡断面観察用試料作製方法。Claim 1: Before the cross-section forming step in the sample preparation process for transmission electron microscopy (TEM) observation, a mark is applied with a focused ion beam near the location in the sample to be observed, and the sample is inspected from the marked side. A method for preparing a sample for cross-sectional observation using a transmission electron microscope, the method comprising polishing.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10228891A JPH04332845A (en) | 1991-05-08 | 1991-05-08 | Preparation of sample for observation by transmission electron microscope |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10228891A JPH04332845A (en) | 1991-05-08 | 1991-05-08 | Preparation of sample for observation by transmission electron microscope |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH04332845A true JPH04332845A (en) | 1992-11-19 |
Family
ID=14323429
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP10228891A Pending JPH04332845A (en) | 1991-05-08 | 1991-05-08 | Preparation of sample for observation by transmission electron microscope |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH04332845A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103364299A (en) * | 2011-12-31 | 2013-10-23 | 英利能源(中国)有限公司 | Method for monitoring crosslinking degrees of EVA (Ethylene Vinylacetate Copolymer) adhesives |
-
1991
- 1991-05-08 JP JP10228891A patent/JPH04332845A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103364299A (en) * | 2011-12-31 | 2013-10-23 | 英利能源(中国)有限公司 | Method for monitoring crosslinking degrees of EVA (Ethylene Vinylacetate Copolymer) adhesives |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100329322B1 (en) | METOD OF PREPARING A PLAN-VIEW SAMPLE OF AN INTEGRATED CIRCUIT FOR TRANSMISSION ELECTRON MICROSCOPY, AND METlIOBS OF OBSERVING THE SAMPLE | |
JP3058394B2 (en) | Preparation method for cross-section specimen for transmission electron microscope | |
CN102384866B (en) | Sample set for transmission electron microscope tests and fabrication method thereof | |
CN102646566A (en) | Scanning electron microscope (SEM) sample fixture used in on line SEM observing and SEM sample observing method | |
TW407329B (en) | Manual precision micro-cleavage method | |
JP4357347B2 (en) | Sample processing method and sample observation method | |
JPH04332845A (en) | Preparation of sample for observation by transmission electron microscope | |
US7208965B2 (en) | Planar view TEM sample preparation from circuit layer structures | |
JP2754301B2 (en) | How to make a sample for electron microscope observation | |
KR100694580B1 (en) | method for manufacturing Transmission Electron Microscope of Specimen for Analyzing | |
CN113466268B (en) | Combined sample and preparation method thereof | |
JPH05302876A (en) | Preparing method of sample for tem observation and jig for grinding | |
JPH083768A (en) | Preparation of plane tem sample | |
JP2754302B2 (en) | Preparation method for electron microscope observation sample | |
JPH1084020A (en) | Processing method and inspection method for semiconductor | |
US11835492B2 (en) | Method for preparing sample for wafer level failure analysis | |
CN111812124A (en) | Failure analysis layer removing method | |
US7297950B2 (en) | Transmission electron microscope specimen and method of manufacturing the same | |
JP2004253232A (en) | Sample fixing table | |
JP2002318178A (en) | Defect evaluation method for semiconductor crystal | |
Maitra et al. | Microstructural Investigation and Serial Section Tomography on ASIC Chips for Assurance Through Reverse Engineering Applications | |
CN114964949A (en) | Preparation method of defect sample and failure analysis method of interconnection structure defect | |
WO2022033158A1 (en) | Wafer level failure analysis sample production method | |
KR0139577B1 (en) | Test specimen manufcturing method using ion milling device | |
JP3697408B2 (en) | Analytical sample preparation method |