JPH04332817A - Light applied measurement method - Google Patents

Light applied measurement method

Info

Publication number
JPH04332817A
JPH04332817A JP3102599A JP10259991A JPH04332817A JP H04332817 A JPH04332817 A JP H04332817A JP 3102599 A JP3102599 A JP 3102599A JP 10259991 A JP10259991 A JP 10259991A JP H04332817 A JPH04332817 A JP H04332817A
Authority
JP
Japan
Prior art keywords
light
optical
measured
wavelength
optical output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3102599A
Other languages
Japanese (ja)
Inventor
Toshihiko Yoshino
俊彦 芳野
Naohiro Kaneman
金万 直弘
Munechika Saito
斉藤 宗敬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissin Electric Co Ltd
Original Assignee
Nissin Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissin Electric Co Ltd filed Critical Nissin Electric Co Ltd
Priority to JP3102599A priority Critical patent/JPH04332817A/en
Publication of JPH04332817A publication Critical patent/JPH04332817A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measuring Fluid Pressure (AREA)
  • Optical Transform (AREA)
  • Measuring Magnetic Variables (AREA)
  • Measuring Instrument Details And Bridges, And Automatic Balancing Devices (AREA)

Abstract

PURPOSE:To measure an amount to be measured without being influenced by light transmission loss. CONSTITUTION:A light modulation part 12 comprising a light emitting part 11, a polarizer 23, a birefringence element 22 and a light detector 24, a light receiving part 13 and a measuring part 14 are provided. The light emitting part 11 is equipped with a light emission source 15 for generating light of wavelength lambda1 and a light emission source 16 for generating light of wavelength lambda2. The light receiving part 13 separately receives a light output of wavelength lambda1 and a light output of wavelength lambda2 generated by the light modulation part 12. The measuring part 14 calculates a ratio of light outputs of both wavelengths and calculates an amount to be measured from relation between the ratio in light outputs and the amount to be measured. A range of the amount where the light output to be a numerator of the ratio shows a large change while the light output to be a denominator of the ratio shows a slight change in the vicinity of the maximum value is specified to be a measurement range.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、複屈折素子を用いて圧
力、電界、磁界等の所定の被測定量を計測する光応用計
測方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical measurement method for measuring a predetermined measured quantity such as pressure, electric field, magnetic field, etc. using a birefringent element.

【0002】0002

【従来の技術】複屈折素子を利用した従来の光応用計測
装置の一例として、圧力を測定する計測装置を図8に示
した。同図において1は発光源で、この発光源1は光フ
ァイバ2を通してファイバコリメータ3に接続されてい
る。発光源1と光ファイバ2とコリメータ3とにより発
光部が構成されている。4はコリメータ2から出力され
た平行光線の内の45度偏光成分のみを透過させるよう
に設けられた直線偏光子で、この偏光子4の前方に複屈
折素子としてのガラスブロック5が配置されている。ガ
ラスブロック5の前方には、偏光方向が偏光子4に対し
て90度異なる直線偏光板からなる検光子6が配置され
、偏光子4とガラスブロック5と検光子6とにより光変
調部が構成されている。検光子6の前方に受光レンズ7
が配置され、受光レンズ7は光ファイバ8を通して受光
器9に接続されている。受光レンズ7と光ファイバ8と
受光器9とにより受光部が構成され、この受光部の出力
は測定部10に与えられている。
2. Description of the Related Art A measuring device for measuring pressure is shown in FIG. 8 as an example of a conventional optical measuring device using a birefringent element. In the figure, reference numeral 1 denotes a light emitting source, and this light emitting source 1 is connected to a fiber collimator 3 through an optical fiber 2. A light emitting section is composed of a light emitting source 1, an optical fiber 2, and a collimator 3. 4 is a linear polarizer provided to transmit only the 45 degree polarized component of the parallel light beam output from the collimator 2, and a glass block 5 as a birefringent element is placed in front of this polarizer 4. There is. In front of the glass block 5, an analyzer 6 made of a linear polarizing plate whose polarization direction is different from the polarizer 4 by 90 degrees is arranged, and the polarizer 4, the glass block 5, and the analyzer 6 constitute a light modulation section. has been done. A light receiving lens 7 is placed in front of the analyzer 6.
are arranged, and the light receiving lens 7 is connected to a light receiver 9 through an optical fiber 8. The light receiving lens 7, the optical fiber 8, and the light receiver 9 constitute a light receiving section, and the output of this light receiving section is given to the measuring section 10.

【0003】上記の計測装置においては、ガラスブロッ
ク5に被測定圧力Pが加えられる。発光源1から光ファ
イバ2に入射した光は、コリメータ3より平行光線束と
して出力される。偏光子4はこの平行光線の内の45度
偏光成分のみを透過させる。偏光子4から得られる45
度偏光は、ガラスブロック5に入射するが、ガラスブロ
ックの内部では、外圧Pにより光学的な異方性が生じて
いて、垂直水平方向の光の速度に差が生じるため、ガラ
スブロック5からの出力光は、位相差を有する垂直方向
(ガラスブロックの圧縮応力の方向)成分及び水平方向
成分の合成となり、リサージュ図形のごとく、四角形に
内接する楕円偏光となる。検光子6は、この楕円偏光の
長軸(または短軸)方向成分のみを通過させるため、検
光子6を通過した光は被測定圧力Pにより光強度変調さ
れた光となる。この光強度変調された光は受光レンズ7
と光ファイバ8とを通して受光器9に与えられ、該受光
器9により電気信号に変換される。測定部10は受光器
9から与えられる電気信号から被測定圧力Pを演算して
圧力の測定値を出力する。
[0003] In the above measuring device, a pressure P to be measured is applied to the glass block 5. Light that enters the optical fiber 2 from the light emitting source 1 is output from the collimator 3 as a parallel beam bundle. The polarizer 4 transmits only the 45 degree polarized component of this parallel light beam. 45 obtained from polarizer 4
The degree-polarized light enters the glass block 5, but the external pressure P causes optical anisotropy inside the glass block, causing a difference in the speed of light in the vertical and horizontal directions. The output light is a combination of a vertical component (direction of compressive stress in the glass block) and a horizontal component that have a phase difference, and becomes elliptically polarized light inscribed in a quadrilateral like a Lissajous figure. Since the analyzer 6 allows only the long axis (or short axis) direction component of this elliptically polarized light to pass through, the light that has passed through the analyzer 6 becomes light whose intensity is modulated by the pressure P to be measured. This light intensity modulated light is transmitted to the light receiving lens 7.
and an optical fiber 8 to a light receiver 9, and is converted into an electrical signal by the light receiver 9. The measurement unit 10 calculates the pressure to be measured P from the electrical signal given from the light receiver 9 and outputs the measured value of the pressure.

【0004】0004

【発明が解決しようとする課題】従来の光応用計測装置
では、光ファイバのベンディングロスや、コネクタのカ
ップリングロス等の、測定系における光伝送ロスの変化
が出力の変化として現れるため、測定誤差が大きくなる
という問題があった。
[Problem to be Solved by the Invention] In conventional optical applied measurement devices, changes in optical transmission loss in the measurement system, such as bending loss in optical fibers and coupling loss in connectors, appear as changes in output, resulting in measurement errors. The problem was that it became large.

【0005】なお図9に示すように、入射光からp偏光
成分とs偏光成分とをそれぞれ取出せる偏光ビームスプ
リッタを検光子6として使用して、検光子6に接続した
2本の光ファイバA,Bから互いに反転した出力I,I
´を取り出し、これらの出力を平均化して光伝送ロスを
補償する方法が知られている。
As shown in FIG. 9, a polarizing beam splitter capable of extracting a p-polarized light component and an s-polarized light component from the incident light is used as the analyzer 6, and two optical fibers A are connected to the analyzer 6. ,B outputs I,I which are inverted from each other
A method is known in which the optical transmission loss is compensated for by extracting the output power and averaging these outputs.

【0006】しかしながらこの方法は、2本の光ファイ
バA,Bのロスが等しいことを前提としているため実際
的でない。
However, this method is not practical because it assumes that the losses of the two optical fibers A and B are equal.

【0007】本発明の目的は、測定系における光伝送ロ
スの変化の影響をなくして、測定の精度を向上させるこ
とができる光応用計測方法を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide an optical measurement method that can eliminate the influence of changes in optical transmission loss in a measurement system and improve measurement accuracy.

【0008】[0008]

【課題を解決するための手段】本発明の光応用計測方法
では、被測定量に応じて内部に光学的異方性を生じる複
屈折素子を直線偏光子と検光子との間に配置してなる光
変調部を設けて、該光変調部に、波長λ1 の光と波長
λ2 の光とを供給して両波長の光を被測定量により光
強度変調し、光変調部から得られる波長λ1 の光出力
I1 と波長λ2 の光出力I2 とをそれぞれ区別し
て受光する。
[Means for Solving the Problems] In the optical measurement method of the present invention, a birefringent element that internally produces optical anisotropy depending on the quantity to be measured is disposed between a linear polarizer and an analyzer. A light modulation unit is provided, and the light modulation unit is supplied with light with a wavelength λ1 and light with a wavelength λ2, and the light intensity of both wavelengths is modulated by the amount to be measured, so that the wavelength λ1 obtained from the light modulation unit is The optical output I1 of wavelength λ2 and the optical output I2 of wavelength λ2 are respectively received separately.

【0009】波長λ1 の光出力I1 と波長λ2 の
光出力I2 との受光は1つの受光器により時分割で行
っても良く、波長λ1 用と波長λ2 用との2つの受
光器を用いてリアルタイムで行っても良い。
[0009] The optical output I1 having the wavelength λ1 and the optical output I2 having the wavelength λ2 may be received in a time-sharing manner by one optical receiver, or in real time by using two optical receivers, one for the wavelength λ1 and the other for the wavelength λ2. You can go there.

【0010】光出力I1 及びI2 を受光した後、被
測定量に対して光出力I2 が極大値付近で僅かな変化
を示す間に光出力I1 が被測定量に対して極小値側か
ら極大値側に、または極大値側から極小値側に大幅な変
化を示す特性が得られる被測定量の範囲を測定範囲とし
、該測定範囲での光出力I1 とI2 との比I1 /
I2 と被測定量との関係から被測定量を求める。
After receiving the optical outputs I1 and I2, while the optical output I2 shows a slight change near the maximum value with respect to the quantity to be measured, the optical output I1 changes from the minimum value side to the maximum value with respect to the quantity to be measured. The measurement range is defined as the range of the measured quantity in which a characteristic showing a large change from the maximum value side to the minimum value side or from the maximum value side to the minimum value side is defined as the measurement range, and the ratio of the optical outputs I1 and I2 in the measurement range is I1 /
The measurable quantity is determined from the relationship between I2 and the measurable quantity.

【0011】上記測定範囲は、直線偏光子と複屈折素子
との間に波長板を配置して、複屈折素子に入射する波長
λ1 及びλ2 の光の位相をシフトさせることにより
所望の範囲に調整することが可能である。
The above measurement range can be adjusted to a desired range by placing a wavelength plate between the linear polarizer and the birefringent element and shifting the phase of the light of wavelengths λ1 and λ2 incident on the birefringent element. It is possible to do so.

【0012】光出力I1 及びI2 がほぼ180度の
位相差を有する被測定量の範囲がある場合には、その範
囲で光出力I1 と光出力の和(I1 +I2 )がほ
ぼ一定になる。従ってこの場合には、比I1 /(I1
 +I2 )、またはI2 /(I1 +I2 )を演
算して、演算した比と被測定量との関係から被測定量を
求めるようにしてもよい。
If there is a range of measured quantities in which the optical outputs I1 and I2 have a phase difference of approximately 180 degrees, the sum of the optical outputs I1 and I2 (I1 + I2) becomes approximately constant within that range. Therefore, in this case, the ratio I1/(I1
+I2) or I2/(I1 +I2), and the quantity to be measured may be determined from the relationship between the calculated ratio and the quantity to be measured.

【0013】被測定量に応じて内部に光学的異方性を生
じる複屈折素子としては、被測定量に応じて適宜のもの
を用いる。例えば圧力を測定する場合には、ガラスやア
クリル樹脂等からなる透明体のブロックを用いることが
できる。また電界を測定する場合には、ポッケルス効果
を有するBSO(ビスマス・シリコン・オキサイド)等
の電気光学結晶のブロックを用いる。
[0013] As the birefringence element that produces internal optical anisotropy depending on the amount to be measured, an appropriate birefringence element is used depending on the amount to be measured. For example, when measuring pressure, a transparent block made of glass, acrylic resin, or the like can be used. Further, when measuring an electric field, a block of electro-optic crystal such as BSO (bismuth silicon oxide) having a Pockels effect is used.

【0014】磁界を被測定量とする場合には、印加され
る磁界に応じて透過光の偏光面を回転させる性質を有す
るYIG(イットリウム・鉄・ガーネット)等の磁気光
学材料のブロック(磁気光学素子)を変調手段として用
いる。この場合には、被測定磁界が印加される磁気光学
素子を直線偏光子と検光子との間に配置し、磁気光学素
子と直線偏光子との間に入射光の波長に応じて偏光面を
所定の角度回転させる旋光子を更に配置した光変調部を
用い、光変調部に波長λ1 の光と波長λ2 の光とを
供給して両波長の光を被測定磁界により光強度変調し、
光変調部から得られる波長λ1 の光出力I1 と波長
λ2 の光出力I2 とをそれぞれ受光する。そして被
測定磁界に対する光出力I1 ,I2 の特性から、被
測定磁界に対して光出力I2 が極大値付近で僅かな変
化を示す間に光出力I1 が被測定磁界に対して極小値
側から極大値側に、または極大値側から極小値側に大幅
な変化を示す部分の特性を選択して、選択した特性を与
える被測定磁界の範囲を測定範囲とし、測定範囲での光
出力I1 とI2 との比I1 /I2 と被測定磁界
との関係から被測定磁界を求める。
When a magnetic field is the quantity to be measured, a block of magneto-optical material such as YIG (yttrium, iron, garnet), which has the property of rotating the plane of polarization of transmitted light according to the applied magnetic field element) is used as a modulation means. In this case, the magneto-optical element to which the magnetic field to be measured is applied is placed between the linear polarizer and the analyzer, and the plane of polarization is set between the magneto-optical element and the linear polarizer according to the wavelength of the incident light. Using a light modulation section further disposed with a rotator rotated by a predetermined angle, the light modulation section is supplied with light of wavelength λ1 and light of wavelength λ2, and the light intensity of both wavelengths is modulated by the magnetic field to be measured,
An optical output I1 having a wavelength λ1 and an optical output I2 having a wavelength λ2 obtained from the optical modulator are respectively received. From the characteristics of the optical outputs I1 and I2 with respect to the magnetic field to be measured, it is found that while the optical output I2 shows a slight change in the vicinity of the maximum value with respect to the magnetic field to be measured, the optical output I1 increases from the minimum value side to the maximum value with respect to the magnetic field to be measured. Select the characteristic of the part that shows a large change from the value side or from the maximum value side to the minimum value side, set the range of the magnetic field to be measured that gives the selected characteristic as the measurement range, and measure the optical outputs I1 and I2 in the measurement range. The magnetic field to be measured is determined from the relationship between the ratio I1 /I2 and the magnetic field to be measured.

【0015】本発明の方法において、波長λ1 及びλ
2 は異なっていれば良く、λ1 <λ2でも、λ1 
>λ2 でも良い。
In the method of the invention, wavelengths λ1 and λ
2 only need to be different, and even if λ1 < λ2, λ1
>λ2 is also fine.

【0016】尚当然のことであるが、本明細書において
、「被測定量」とは、光を応用して直接測定する量を意
味し、必ずしも測定の最終目的とする量を意味しない。 例えば電圧を測定する光PTの場合には、電圧が印加さ
れている導体の周囲の電界をポッケルス効果を利用して
測定することにより最終的には電圧を測定するが、本発
明の測定方法での被測定量は「電界」である。また光C
Tの場合には、電流が流れている導体の周囲の磁界を磁
気光学素子(ファラデー素子)を用いて検出することに
より、最終的には電流を測定するが、本発明の方法での
被測定量は「磁界」である。
[0016] As a matter of course, in this specification, the term "quantity to be measured" means a quantity that is directly measured by applying light, and does not necessarily mean a quantity that is the final objective of measurement. For example, in the case of optical PT that measures voltage, the voltage is ultimately measured by measuring the electric field around a conductor to which voltage is applied using the Pockels effect, but the measurement method of the present invention The measured quantity is the "electric field". Also light C
In the case of T, the current is ultimately measured by detecting the magnetic field around the conductor through which the current flows using a magneto-optical element (Faraday element). The quantity is the "magnetic field".

【0017】[0017]

【作用】上記のように、光変調部に波長λ1 の光と波
長λ2 の光とを供給し、光変調部から得られる波長λ
1 の光出力と波長λ2 の光出力とを区別して受光し
て、両波長の出力の比、またはいずれかの波長の光出力
と両波長の光出力の和との比をとるようにすると、比の
分子と分母とで光伝送ロスが打ち消し合ってキャンセル
されるため、光ファイバのベンディングロスや、コネク
タのカップリングロス等の光伝送ロスの変化の影響を受
けることなく計測を行うことができる。この場合、計測
精度を高めるためには、比の分母となる波長λ2 の光
出力I2 (参照出力)が測定範囲において余り変化し
ないことが望ましい。また一般に受光器は、入力が低く
なればなる程、検出すべき信号に対してバックグラウン
ドノイズが占める割合が大きくなり、S/N比が悪くな
るため、測定の精度を高めるためには参照出力I2 は
できるだけ大きいことが望ましい。従って参照出力I2
 は測定範囲においてできるだけ大きい値を維持し、か
つその変化ができるだけ少ないことが望ましい。一方測
定の分解能を高め、測定精度を高めるためには、比の分
子となる光出力I1 が被測定量に対してできるだけ大
きな変化を示すことが望ましい。
[Operation] As described above, the light with the wavelength λ1 and the light with the wavelength λ2 are supplied to the light modulator, and the wavelength λ obtained from the light modulator is
If the optical output of wavelength λ2 and the optical output of wavelength λ2 are received separately, and the ratio of the output of both wavelengths or the ratio of the optical output of either wavelength to the sum of the optical output of both wavelengths is calculated, Since optical transmission loss is canceled by the numerator and denominator of the ratio, it is possible to perform measurements without being affected by changes in optical transmission loss such as bending loss of optical fibers and coupling loss of connectors. . In this case, in order to improve measurement accuracy, it is desirable that the optical output I2 (reference output) at wavelength λ2, which is the denominator of the ratio, does not change much in the measurement range. Additionally, in general, the lower the input power of a photoreceiver, the greater the proportion of background noise in the signal to be detected, and the worse the S/N ratio becomes. It is desirable that I2 be as large as possible. Therefore, the reference output I2
It is desirable to maintain a value as large as possible within the measurement range and to have as little variation as possible. On the other hand, in order to improve measurement resolution and measurement accuracy, it is desirable that the optical output I1, which is the numerator of the ratio, exhibits as large a change as possible with respect to the quantity to be measured.

【0018】光出力は被測定量に対してほぼ正弦波状の
変化を示すので、光出力の大きさが大きく、かつその変
化が少ない領域は光出力が極大値を示す付近の領域であ
る。また光出力の変化が大きい領域は、光出力が極小値
側から極大値側に変化する領域または光出力が極大値側
から極小値側に変化する領域である。従って本発明のよ
うに、被測定量に対して光出力I2 が極大値付近で僅
かな変化を示す間に光出力I1 が被測定量に対して極
小値側から極大値側に、または極大値側から極小値側に
大幅な変化を示す部分の特性を選択して、選択した特性
を与える被測定量の範囲を測定範囲とすると、測定の精
度を高めることができる。
Since the optical output shows a substantially sinusoidal change with respect to the quantity to be measured, the area where the optical output is large and its change is small is the area around the maximum optical output. Further, the region where the light output changes greatly is a region where the light output changes from the minimum value side to the maximum value side, or a region where the light output changes from the local maximum value side to the local minimum value side. Therefore, as in the present invention, while the optical output I2 shows a slight change near the maximum value with respect to the measured quantity, the optical output I1 changes from the minimum value side to the local maximum side with respect to the measured quantity, or the optical output I1 changes from the local minimum value side to the local maximum side, or The measurement accuracy can be improved by selecting a characteristic of a portion that shows a large change from the side to the minimum value side and setting the range of the measured quantity that gives the selected characteristic as the measurement range.

【0019】波長λ1 とλ2 との差によっては、被
測定量の特定の範囲で光出力I1 及びI2 がほぼ1
80度の位相差を有する場合がある。光出力I1 及び
I2 の極大値がほぼ等しいとすれば、この特定の範囲
では光出力の和(I1 +I2 )がそれぞれの光出力
の振幅の1/2にほぼ等しくなり、光出力の和(I1 
+I2 )の被測定量に対する変化は零に近くなる。従
ってこの場合には、光出力I1 及びI2 がほぼ18
0度の位相差を有する範囲で光出力I1 と光出力の和
(I1 +I2 )との比I1 /(I1 +I2 )
、または光出力I2 と光出力の和(I1 +I2 )
との比I2 /(I1 +I2 )を演算し、演算した
比と被測定量との関係から被測定量を求めることにより
、高い精度で測定を行うことができる。
Depending on the difference between the wavelengths λ1 and λ2, the optical outputs I1 and I2 may be approximately 1 in a specific range of the measured quantity.
It may have a phase difference of 80 degrees. If the maximum values of the optical outputs I1 and I2 are approximately equal, then in this specific range the sum of the optical outputs (I1 + I2) will be approximately equal to 1/2 of the amplitude of each optical output, and the sum of the optical outputs (I1
+I2) with respect to the measured quantity becomes close to zero. Therefore, in this case, the optical outputs I1 and I2 are approximately 18
The ratio of the optical output I1 to the sum of the optical outputs (I1 + I2) in a range with a phase difference of 0 degrees: I1 / (I1 + I2 )
, or the sum of the optical output I2 and the optical output (I1 + I2)
By calculating the ratio I2/(I1 +I2) and determining the amount to be measured from the relationship between the calculated ratio and the amount to be measured, measurement can be performed with high accuracy.

【0020】上記のように、本発明の測定方法では、光
出力I1 及びI2 の特性から特定の範囲を測定範囲
として選択するので、直線偏光子と複屈折素子と検光子
とにより変調部を構成した場合には、測定し得る被測定
量の範囲が限定される。所望の範囲の被測定量を測定し
得るようにするためには、測定に用いるのに適した特性
を示す被測定量の範囲をシフトさせればよい。そのため
には、光変調部の直線偏光子と複屈折素子との間に波長
板を配置して波長λ1 及びλ2 の光の位相を所定量
だけシフトさせれば良い。このように波長板を配置する
と、波長板による位相のシフト量に応じて測定に適した
特性を示す範囲が移動するため、測定範囲を所望の範囲
に調整することができる。
As described above, in the measurement method of the present invention, a specific range is selected as the measurement range based on the characteristics of the optical outputs I1 and I2, so the modulation section is composed of a linear polarizer, a birefringent element, and an analyzer. In this case, the range of measurable quantities that can be measured is limited. In order to be able to measure a measurand in a desired range, the range of the measurand that exhibits characteristics suitable for use in measurement may be shifted. For this purpose, a wavelength plate may be disposed between the linear polarizer and the birefringent element of the light modulation section to shift the phase of the light having wavelengths λ1 and λ2 by a predetermined amount. When the wave plate is arranged in this way, the range exhibiting characteristics suitable for measurement moves in accordance with the amount of phase shift by the wave plate, so the measurement range can be adjusted to a desired range.

【0021】[0021]

【実施例】図1及び図2は圧力を測定する場合に本発明
を適用した実施例を示したもので、図1は本発明の方法
を実施する光応用計測装置の全体的な構成を示し、図2
は図1の光変調部付近の上面図を示している。これらの
図において11は発光部、12は発光部11から与えら
れる光を被測定圧力Pで変調する光変調部(センサ部)
、13は光変調部12から得られる光出力を受光する受
光部、14は受光部13が受光した光出力から被測定圧
力を演算する測定部である。
[Example] Figures 1 and 2 show an example in which the present invention is applied when measuring pressure, and Figure 1 shows the overall configuration of an optical measurement device that implements the method of the present invention. , Figure 2
shows a top view of the vicinity of the light modulation section in FIG. In these figures, 11 is a light emitting section, and 12 is a light modulating section (sensor section) that modulates the light given from the light emitting section 11 by the measured pressure P.
, 13 is a light receiving section that receives the optical output obtained from the light modulating section 12, and 14 is a measuring section that calculates the pressure to be measured from the optical output received by the light receiving section 13.

【0022】発光部11は、波長λ1 の光を発生する
第1の発光源15と、波長λ2 の光を発生する第2の
発光源16とを備え、これらの発光源15及び16はそ
れぞれ光ファイバ17及び18を介してカプラ19の入
力側に接続されている。カプラ19の出力側は光ファイ
バ20を通してコリメータ21に接続されている。第1
及び第2の発光源15及び16と光ファイバ17及び1
8と、カプラ19と光ファイバ20とコリメータ21と
により、発光部11が構成されている。
The light emitting unit 11 includes a first light source 15 that generates light with a wavelength λ1 and a second light source 16 that generates light with a wavelength λ2, and these light sources 15 and 16 each emit light. It is connected via fibers 17 and 18 to the input side of coupler 19. The output side of the coupler 19 is connected to a collimator 21 through an optical fiber 20. 1st
and second light emitting sources 15 and 16 and optical fibers 17 and 1
8, a coupler 19, an optical fiber 20, and a collimator 21 constitute a light emitting section 11.

【0023】光変調部12は複屈折素子としてのガラス
ブロック22と、ガラスブロック22を間にして光の伝
送方向に対向配置された直線偏光子23及び検光子24
とからなっている。偏光子23はその直線偏光の方向が
垂直方向(複屈折素子の圧縮応力の方向)に対して45
度傾いた偏光板からなり、検光子24は、その直線偏光
の方向が、垂直方向に対して偏光子とは逆方向に45度
傾いた偏光板からなっている。即ち偏光子23及び検光
子24は、それぞれの偏光方向が直交するように設けら
れている。
The light modulator 12 includes a glass block 22 as a birefringent element, a linear polarizer 23 and an analyzer 24 which are arranged opposite to each other in the light transmission direction with the glass block 22 in between.
It consists of The direction of linear polarization of the polarizer 23 is 45 with respect to the perpendicular direction (direction of compressive stress of the birefringent element).
The analyzer 24 is composed of a polarizing plate tilted at an angle of 45 degrees, and the direction of linearly polarized light thereof is tilted at 45 degrees in a direction opposite to that of the polarizer with respect to the vertical direction. That is, the polarizer 23 and the analyzer 24 are provided so that their polarization directions are orthogonal to each other.

【0024】受光部13は、光変調部の検光子24から
与えられる光出力を受光する受光レンズ25と、該受光
レンズ25に光ファイバ26を介して接続されて、光変
調部から得られる光出力を波長λ1 の光出力(波長λ
1 の光を圧力Pで変調したもの)と波長λ2 の光出
力(波長λ2 の光を圧力Pで変調したもの)とに分け
る分波器27と、分波器27の2つの出力端に光ファイ
バ28及び29を介してそれぞれ接続された第1及び第
2の受光器30及び31とからなっている。ここで第1
の受光器30は波長λ1 の光出力を受光して、受光し
た光出力に相応した電気信号を測定部14に与える。ま
た第2の31は波長λ2 の光出力を受光して、受光し
た光出力に相応した電気信号を測定部14に与える。
The light receiving section 13 includes a light receiving lens 25 that receives the light output from the analyzer 24 of the light modulating section, and a light receiving lens 25 that is connected to the light receiving lens 25 via an optical fiber 26 to receive the light output from the light modulating section. Optical output with wavelength λ1 (wavelength λ
A demultiplexer 27 separates light into wavelength λ2 (light of wavelength λ2 modulated by pressure P) and light output of wavelength λ2 (light of wavelength λ2 modulated by pressure P); It consists of first and second light receivers 30 and 31 connected via fibers 28 and 29, respectively. Here the first
The photoreceiver 30 receives the optical output of the wavelength λ1 and provides the measuring section 14 with an electrical signal corresponding to the received optical output. Further, the second 31 receives the optical output of wavelength λ2 and provides the measuring section 14 with an electrical signal corresponding to the received optical output.

【0025】測定部14は、波長λ1 の光出力と波長
λ2 の光出力との比を演算して、この光出力の比と被
測定圧力との関係から被測定圧力を演算する。
The measuring section 14 calculates the ratio of the optical output of the wavelength λ1 and the optical output of the wavelength λ2, and calculates the pressure to be measured from the relationship between the ratio of the optical outputs and the pressure to be measured.

【0026】図1の光応用計測装置において、第1の発
光源15及び第2の発光源16から出力された波長λ1
 及びλ2 の光は、カプラ19により混合されて光フ
ァイバ20に供給され、該光ファイバ20からコリメー
タ21を通して平行光線として偏光子23に与えられる
In the optical application measurement device shown in FIG. 1, the wavelength λ1 output from the first light source 15 and the second light source 16
and λ2 are mixed by a coupler 19 and supplied to an optical fiber 20, which passes through a collimator 21 and is applied to a polarizer 23 as a parallel beam.

【0027】偏光子23に与えられた光は45度傾いた
直線偏光となってガラスブロック22に入射する。ガラ
スブロック22内では、加えられた被測定圧力Pにより
、光学的異方性が生じているため、ガラスブロック22
からの出力光は楕円偏光となり、検光子24からの出力
は光強度変調された光変調出力となる。
The light applied to the polarizer 23 becomes linearly polarized light tilted at 45 degrees and enters the glass block 22. Inside the glass block 22, optical anisotropy occurs due to the applied pressure P to be measured, so the glass block 22
The output light from the analyzer 24 becomes elliptically polarized light, and the output from the analyzer 24 becomes a light intensity modulated light output.

【0028】ここでガラスブロックに加えられた圧力を
P、定数をK、光出力の最大値をIo とすると、波長
λ1 の光変調出力I1 は次式で与えられる。
Here, assuming that the pressure applied to the glass block is P, the constant is K, and the maximum value of the optical output is Io, the optical modulation output I1 at the wavelength λ1 is given by the following equation.

【0029】   I1 =Io[1−cos{K( P/λ1)}]
                         
 …(1)同様に、波長λ2 の光変調出力I2 は次
式で与えられる。
I1 = Io[1-cos {K(P/λ1)}]

...(1) Similarly, the optical modulation output I2 of wavelength λ2 is given by the following equation.

【0030】   I2 =Io[1−cos{K( P/λ2)}]
                         
 …(2)ここでλ2 =1.5 λ1 とすると、光
変調出力I1 及びI2 の被測定圧力Pに対する特性
は、Io =1とすると、それぞれ図3の曲線■及び■
のようになる。即ち、波長λ1 の光では、圧力P=P
o の点で光変調出力が第1のピークを迎えるが、波長
λ2 の光では、(λ1 /λ2 )×Po の点で光
変調出力が第1のピークを迎える。
I2 = Io[1-cos {K(P/λ2)}]

...(2) Here, when λ2 = 1.5 λ1, the characteristics of the optically modulated outputs I1 and I2 with respect to the measured pressure P are as follows from the curves ■ and ■ in Fig. 3, respectively, when Io = 1.
become that way. That is, for light of wavelength λ1, pressure P=P
The optical modulation output reaches its first peak at the point o, but for light of wavelength λ2, the optical modulation output reaches its first peak at the point (λ1/λ2)×Po.

【0031】ここで測定系の伝送ロスが1/γであると
して、この因子を(1)式及び(2)式に加えると、(
1)式及び(2)式はそれぞれ次の(1)´式及び(2
)´式のようになる。
Here, assuming that the transmission loss of the measurement system is 1/γ, adding this factor to equations (1) and (2), we get (
Equations 1) and (2) are the following equations (1)' and (2), respectively.
)´It becomes like the expression.

【0032】   I1 =(Io/γ)[1−cos{K( P/λ
1)}]                     
 …(1)´  I2 =(Io/γ)[1−cos{
K( P/λ2)}]               
       …(2)´  ここで比R=I1 /I
2 をとると、  R=I1 /I2 =[1−cos
{K( P/λ1)}]/[1−cos{K( P/λ
2)}]                     
                         
                …(3)(1)式ま
たは(2)式において、γは光ファイバのベンディング
ロスの変化や、コネクタのカップリングロスの変化によ
り変動するため、これらの式により被測定圧力Pを演算
した場合には、計測誤差がある程度大きくなるのを避け
ることができない。
I1 = (Io/γ) [1-cos {K( P/λ
1)}]
...(1)' I2 = (Io/γ) [1-cos{
K(P/λ2)}]
...(2)' Here, the ratio R=I1/I
2, R=I1 /I2 = [1-cos
{K( P/λ1)}]/[1-cos{K( P/λ
2)}]

...(3) In equations (1) or (2), γ changes due to changes in the bending loss of the optical fiber and changes in the coupling loss of the connector, so when the measured pressure P is calculated using these equations, In this case, it is unavoidable that the measurement error will increase to some extent.

【0033】これに対し、(3)式から明らかなように
、光出力の比Rは伝送ロスの影響を受けない。従って、
波長λ1 の光出力と波長λ2 の光出力とをそれぞれ
受光して、両光出力の比を演算し、(3)式から被測定
圧力Pを演算するようにすれば、伝送損失の影響を受け
ずに圧力の測定を行うことができる。
On the other hand, as is clear from equation (3), the optical output ratio R is not affected by transmission loss. Therefore,
If the optical output of wavelength λ1 and the optical output of wavelength λ2 are respectively received, the ratio of both optical outputs is calculated, and the measured pressure P is calculated from equation (3), it is possible to avoid the influence of transmission loss. Pressure measurements can be made without

【0034】前述したように、光出力の比I1 /I2
 と被測定量との関係から被測定量を高い精度で求める
ためには、測定範囲で参照出力I2 の大きさができる
だけ大きく、かつその変化幅ができるだけ狭いことが望
ましく、また光出力I1 はできるだけ大幅な変化を示
すことが望ましい。
As mentioned above, the ratio of optical outputs I1 /I2
In order to obtain the measured quantity with high precision from the relationship between It is desirable to show a significant change.

【0035】そこでIo =1とし、I1 ,I2 及
びI1 /I2 を圧力Pに対して図示するとそれぞれ
図3の曲線■,■及び■のようになる。図3から明らか
なようにP´〜P″の範囲では、光出力I1 が被測定
圧力Pに対して、極小値側から極大値側にほぼ直線的に
大幅に変化する。一方光出力I2 (参照出力)は極大
値付近で変化するが、この範囲での光出力I2 の変化
幅は光出力I1 の変化幅に比べると十分に狭い。従っ
て被測定圧力の演算に当っては、このP´〜2P″の範
囲の特性を選択し、この範囲P´〜2P″を測定範囲と
して、I1 ,I2 の比をとると、伝送ロスの影響を
受けることなく、光出力の比Rと圧力Pとを対応させる
ことができ、正確な計測値を得ることができる。
Therefore, when Io = 1 and I1, I2, and I1/I2 are plotted against pressure P, the curves ■, ■, and ■ in FIG. 3 are obtained, respectively. As is clear from FIG. 3, in the range of P' to P'', the optical output I1 changes significantly linearly from the minimum value side to the maximum value side with respect to the measured pressure P. On the other hand, the optical output I2 ( Although the reference output (reference output) changes near the maximum value, the range of change in the optical output I2 in this range is sufficiently narrow compared to the range of change in the optical output I1.Therefore, when calculating the pressure to be measured, this P' By selecting the characteristics in the range of ~2P'' and taking the ratio of I1 and I2 with this range P'~2P'' as the measurement range, the ratio R of the optical output and the pressure P can be calculated without being affected by transmission loss. can be matched and accurate measurement values can be obtained.

【0036】一般に、被測定量に対して波長λ2 の光
出力I2 が極大値付近で僅かな変化を示す間に波長λ
1 の光出力I1 が被測定量に対して極小値側から極
大値側に、または極大値側から極小値側に大幅な変化を
示す部分の特性を選択して、選択した特性を与える被測
定量の範囲を測定範囲とすることにより、両波長の光出
力の比と被測定量との対応関係をほぼ直線的な関係とす
ることができ、正確な計測を行うことができる。
In general, while the optical output I2 at the wavelength λ2 shows a slight change near the maximum value with respect to the measured quantity, the wavelength λ2
1, where the optical output I1 shows a significant change from the minimum value side to the local maximum side or from the local maximum side to the local minimum side with respect to the measured quantity, and select the characteristic of the part that gives the selected characteristics. By setting the range of the quantity as the measurement range, the correspondence between the ratio of the optical outputs of both wavelengths and the quantity to be measured can be set to a substantially linear relationship, and accurate measurement can be performed.

【0037】上記の実施例において、P´〜2P″の領
域での光出力I1 ,I2 の比を用いて計測を行う場
合、P´〜2P″を所望の測定範囲とするように、調整
をするのが好ましい。そのためには偏光子23と複屈折
素子22との間に波長板を挿入して、該波長板により複
屈折素子に入射する光の位相を適量シフトさせればよい
。例えばP´を被測定圧力の零点とするためには、図1
に破線で示したように、偏光子23と複屈折素子22と
の間に波長λ1 の光の位相をP´/2Po 波長分だ
けシフトさせる波長板32を配置すればよい。このよう
に波長λ1 に対するP´/2Po 波長板32を挿入
すると、光学的なバイアスがかかり、被測定圧力の零点
がP´に移動する。この場合、波長板32は、波長λ2
 (=α・λ1 )の光に対しては、(P´/2Po)
(1/α)波長板として作用する。
In the above embodiment, when measuring using the ratio of the optical outputs I1 and I2 in the region P' to 2P'', adjustments are made so that P' to 2P'' is the desired measurement range. It is preferable to do so. To do this, a wavelength plate may be inserted between the polarizer 23 and the birefringent element 22, and the wave plate may shift the phase of the light incident on the birefringent element by an appropriate amount. For example, in order to set P' as the zero point of the measured pressure,
As shown by the broken line in , a wavelength plate 32 may be disposed between the polarizer 23 and the birefringent element 22 to shift the phase of the light having the wavelength λ1 by a wavelength of P'/2Po. When the P'/2Po wavelength plate 32 for the wavelength λ1 is inserted in this way, an optical bias is applied and the zero point of the pressure to be measured moves to P'. In this case, the wavelength plate 32 has a wavelength λ2
For light of (=α・λ1), (P′/2Po)
It acts as a (1/α) wavelength plate.

【0038】上記の実施例では、偏光子23の直線偏光
の方向と検光子24の直線偏光の方向とを直交させるよ
うにしたが、偏光子23の直線偏光の方向と検光子24
の直線偏光の方向とが同じになるように両者を配置して
もよい。このように偏光子23と検光子24とを配置し
た場合の両波長λ1 ,λ2 の光出力I1 ,I2 
及び両光出力の被I1 /I2 を被測定圧力Pに対し
て図示すると、それぞれ図4の曲線■,■及び■のよう
になる。
In the above embodiment, the direction of the linearly polarized light of the polarizer 23 and the direction of the linearly polarized light of the analyzer 24 are made to be perpendicular to each other.
Both may be arranged so that the directions of linearly polarized light are the same. When the polarizer 23 and analyzer 24 are arranged in this way, the optical outputs I1 and I2 of both wavelengths λ1 and λ2 are as follows.
When I1 /I2 of both optical outputs are plotted against the measured pressure P, the curves ■, ■, and ■ in FIG. 4 are obtained, respectively.

【0039】この場合にも、波長λ1 の光出力I1 
が圧力(被測定量)Pに対して大幅に変化し、かつ波長
λ2 の光出力I2 が極大値付近で僅かに変化する領
域、例えば図4のPp ´〜Pp ″の領域でのI1 
,I2 の測定値を用いて、両者の比Rをとれば、比R
と被測定圧力との対応関係をほぼ直線的にして正確な計
測値を得ることができる。
In this case as well, the optical output I1 at wavelength λ1
I1 changes significantly with respect to the pressure (measured quantity) P, and the optical output I2 of the wavelength λ2 changes slightly near the maximum value, for example, in the region Pp' to Pp'' in FIG.
, I2 and take the ratio R of both, the ratio R
Accurate measurement values can be obtained by making the correspondence between the pressure and the pressure to be measured almost linear.

【0040】尚図3及び図4において、測定範囲を光出
力I2 が極大値を示す圧力の前後の更に狭い範囲に設
定すれば、光出力I2 の変化幅が更に狭くなるため、
更に測定精度を高めることができる。
In addition, in FIGS. 3 and 4, if the measurement range is set to a narrower range before and after the pressure at which the optical output I2 shows the maximum value, the range of change in the optical output I2 becomes even narrower.
Furthermore, measurement accuracy can be improved.

【0041】上記の実施例では、受光部に分波器27を
設けて、波長λ1 及びλ2 の光出力を個別にリアル
タイムで受光するようにしているが、本発明においては
、両波長の光出力を区別して受光し得ればよいので、分
波器を使用せずに、1つの受光器により時分割で波長λ
1 とλ2 とを交互に検出するようにしてもよい。
In the above embodiment, a demultiplexer 27 is provided in the light receiving section to receive the optical outputs of wavelengths λ1 and λ2 individually in real time, but in the present invention, the optical outputs of both wavelengths are Since it is only necessary to distinguish between wavelengths λ and receive the light, one receiver can time-divisionally detect wavelengths λ without using a demultiplexer.
1 and λ2 may be detected alternately.

【0042】波長λ1 とλ2 との差によっては、被
測定量の特定の範囲で光出力I1 及びI2 がほぼ1
80度の位相差を有する場合がある。例えば図5(C)
の8Po 〜10Po の範囲では、波長λ1 の光出
力I1 と波長λ2 の光出力I2 とがほぼ180度
の位相差を有し、I1 はI2 を反転させたものと見
ることができる。この場合、光出力I1 及びI2 の
極大値が等しいとすれば、この特定の範囲では光出力の
和(I1 +I2 )がそれぞれの光出力の振幅の1/
2にほぼ等しくなり、光出力の和(I1 +I2 )の
被測定量に対する変化は零に近くなる。
Depending on the difference between the wavelengths λ1 and λ2, the optical outputs I1 and I2 may be approximately 1 in a specific range of the measured quantity.
It may have a phase difference of 80 degrees. For example, Figure 5(C)
In the range of 8Po to 10Po, the optical output I1 at the wavelength λ1 and the optical output I2 at the wavelength λ2 have a phase difference of approximately 180 degrees, and I1 can be seen as the inversion of I2. In this case, if the maximum values of the optical outputs I1 and I2 are equal, then in this specific range the sum of the optical outputs (I1 + I2) is 1/1/2 of the amplitude of each optical output.
2, and the change in the sum of optical outputs (I1 + I2) with respect to the measured quantity becomes close to zero.

【0043】従ってこの場合には、光出力I1 及びI
2 がほぼ180度の位相差を有する範囲の特性を選択
して、選択した特性を与える範囲8Po 〜10Po 
の前半または後半の範囲を測定範囲とし、該測定範囲で
の光出力I1 と光出力の和(I1 +I2 )との比
I1 /(I1 +I2 )と被測定量との関係、また
は該測定範囲での光出力I2 と光出力の和(I1 +
I2 )との比I2 /(I1 +I2 )と被測定量
との関係から被測定量を求めることにより、損失の影響
をなくして高い精度で測定を行うことができる。
Therefore, in this case, the optical outputs I1 and I
2 selects a characteristic in a range in which the phase difference is approximately 180 degrees, and selects a characteristic in a range where 2 is a phase difference of approximately 180 degrees to obtain a range of 8Po to 10Po that provides the selected characteristic.
The first or second half of the measurement range is defined as the measurement range, and the relationship between the ratio I1 / (I1 + I2 ) of the optical output I1 and the sum of the optical outputs (I1 + I2 ) in the measurement range and the measured quantity, or in the measurement range The sum of the optical output I2 and the optical output (I1 +
By determining the amount to be measured from the relationship between the ratio I2/(I1 + I2) and the amount to be measured, it is possible to eliminate the influence of loss and perform measurement with high accuracy.

【0044】上記の実施例では、圧力を測定するとした
が、ポッケルス効果を利用して電界を測定する場合等、
被測定量が印加されたときに光学的異方性を生じる複屈
折素子を変調手段として用いる場合に、上記と同様の構
成で本発明を実施できる。
In the above embodiment, pressure was measured, but when measuring an electric field using the Pockels effect, etc.
When a birefringent element that produces optical anisotropy when a measured quantity is applied is used as a modulation means, the present invention can be implemented with a configuration similar to the above.

【0045】また磁界を検出する場合には、透過光の偏
光面を磁界の強さに応じた角度だけ回転させる磁気光学
素子(ファラデー素子)を変調手段として用い、この磁
気光学素子を直線偏光子と検光子との間に配置すること
により、変調部を構成できることが知られているが、こ
の場合には、図6に示したように、直線偏光子23と磁
気光学素子22´との間に旋光子33を追加することに
より、高精度の測定を行うことが可能になる。
When detecting a magnetic field, a magneto-optical element (Faraday element) that rotates the polarization plane of transmitted light by an angle corresponding to the strength of the magnetic field is used as a modulation means, and this magneto-optical element is used as a linear polarizer. It is known that a modulator can be configured by placing the modulator between the linear polarizer 23 and the magneto-optical element 22', as shown in FIG. By adding the optical rotator 33 to the optical rotator 33, it becomes possible to perform highly accurate measurements.

【0046】図6の構成において、偏光子23を通過し
た直線偏光は旋光子33に入射する。直線偏光が旋光子
23を通過すると、その偏光面が波長により決まる角度
だけ回転する。従って旋光子23を通過した波長λ1 
の直線偏光と波長λ2 の直線偏光は、異なる角度回転
した状態で磁気光学素子22´に入射する。従って、検
光子24から得られる波長λ1 の光出力I1 の磁界
に対する特性と波長λ2 の光出力I2 の磁界に対す
る特性との間には、所定の位相差が生じる。この場合に
検光子24から得られる光出力I1 及びI2 の磁界
Hに対する特性は、例えば図7に示すようになるので、
同図のH´〜H″の範囲を測定範囲とし、該測定範囲で
光出力の比I1 /I2 を演算して、この比I1 /
I2 と磁界との関係から磁界を求めるようにすること
により、高い精度で磁界を測定することができる。
In the configuration shown in FIG. 6, the linearly polarized light that has passed through the polarizer 23 is incident on the optical rotator 33. When linearly polarized light passes through optical rotator 23, its plane of polarization is rotated by an angle determined by the wavelength. Therefore, the wavelength λ1 that passed through the optical rotator 23
The linearly polarized light of wavelength λ2 and the linearly polarized light of wavelength λ2 enter the magneto-optical element 22' in states rotated by different angles. Therefore, a predetermined phase difference occurs between the characteristics of the optical output I1 having the wavelength λ1 obtained from the analyzer 24 with respect to the magnetic field and the characteristics of the optical output I2 having the wavelength λ2 with respect to the magnetic field. In this case, the characteristics of the optical outputs I1 and I2 obtained from the analyzer 24 with respect to the magnetic field H are as shown in FIG. 7, for example.
The range from H' to H'' in the same figure is taken as the measurement range, and the ratio I1 /I2 of the optical output is calculated in the measurement range, and this ratio I1 /I2 is calculated.
By determining the magnetic field from the relationship between I2 and the magnetic field, the magnetic field can be measured with high accuracy.

【0047】[0047]

【発明の効果】以上のように、本発明によれば、波長λ
1 の光と波長λ2 の光とを光変調部に供給し、光変
調部から得られる波長λ1 の光出力と波長λ2 の光
出力とを区別して受光して、両波長の光出力の比、また
は両波長の光出力の和に対するいずれかの光出力の比を
とることにより、光の伝送ロスが関係する因子を除去す
るようにしたため、光ファイバのベンディングロスや、
コネクタのカップリングロス等の光伝送ロスの変化の影
響を受けることなく計測を行うことができる。
Effects of the Invention As described above, according to the present invention, the wavelength λ
1 and the light with wavelength λ2 are supplied to the optical modulator, and the optical output with wavelength λ1 and the optical output with wavelength λ2 obtained from the optical modulator are received separately, and the ratio of the optical outputs of both wavelengths is calculated. Or, by taking the ratio of the optical output of either wavelength to the sum of the optical outputs of both wavelengths, factors related to optical transmission loss are removed, so the bending loss of the optical fiber,
Measurement can be performed without being affected by changes in optical transmission loss such as connector coupling loss.

【0048】特に本請求項1または4に記載した発明に
おいては、比の分母となる光出力I2 が極大値付近で
僅かな変化を示す間に比の分子となる光出力I1 が大
きな変化を示す特性が得られる被測定量の範囲を測定範
囲として、該測定範囲で光出力の比I1 /I2 をと
るようにしたので、S/N比を良好にして、計測精度を
高めることができる利点がある。
In particular, in the invention described in claim 1 or 4, while the optical output I2, which is the denominator of the ratio, shows a slight change near the maximum value, the optical output I1, which is the numerator of the ratio, shows a large change. The range of the measured quantity in which the characteristics can be obtained is taken as the measurement range, and the optical output ratio I1 /I2 is taken in this measurement range, which has the advantage of improving the S/N ratio and increasing the measurement accuracy. be.

【0049】また請求項2に記載した発明によれば、光
変調部の直線偏光子と複屈折素子との間に波長板を配置
することにより、上記の特性が得られる被測定量の範囲
をシフトさせるようにしたので、波長板を適宜に選択す
ることにより、測定範囲を所望の範囲に調整することが
できる利点がある。
Further, according to the invention described in claim 2, by arranging a wavelength plate between the linear polarizer and the birefringent element of the light modulation section, the range of the measured quantity in which the above characteristics can be obtained can be widened. Since it is shifted, there is an advantage that the measurement range can be adjusted to a desired range by appropriately selecting a wavelength plate.

【0050】更に請求項3に記載した発明によれば、光
出力I1 及びI2 がほぼ180度の位相差を有する
部分の特性を選択して、選択した特性を与える被測定量
の範囲で比I1 /(I1 +I2 )またはI2 /
(I1 +I2 )をとるようにしたので、比の分母の
変化を少なくして、高い精度で測定を行うことができる
利点がある。
Furthermore, according to the invention described in claim 3, the characteristics of the portion where the optical outputs I1 and I2 have a phase difference of approximately 180 degrees are selected, and the ratio I1 is adjusted within the range of the measured quantity giving the selected characteristics. /(I1 +I2) or I2/
Since (I1 + I2) is taken, there is an advantage that the change in the denominator of the ratio can be reduced and measurement can be performed with high accuracy.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】本発明の実施例の光応用計測方法で用いる装置
の構成を概略的に示した構成図である。
FIG. 1 is a configuration diagram schematically showing the configuration of an apparatus used in an optical measurement method according to an embodiment of the present invention.

【図2】図1の要部の構成を示した上面図である。FIG. 2 is a top view showing the configuration of main parts in FIG. 1;

【図3】本発明の実施例において受光部が受光する波長
λ1 の光出力I1 と波長λ2 の光出力I2 と光
出力の比I1 /I2 とを被測定量に対してし示した
線図である。
FIG. 3 is a diagram showing the optical output I1 of the wavelength λ1 received by the light receiving section, the optical output I2 of the wavelength λ2, and the optical output ratio I1 /I2 with respect to the measured quantity in the embodiment of the present invention. be.

【図4】本発明の他の実施例において受光部が受光する
波長λ1 の光出力I1 と波長λ2 の光出力I2 
と光出力の比I1 /I2 とを被測定量に対してし示
した線図である。
FIG. 4: Optical output I1 at wavelength λ1 and optical output I2 at wavelength λ2 received by the light receiving section in another embodiment of the present invention.
FIG. 2 is a diagram showing the ratio of optical output I1 /I2 to the measured quantity.

【図5】(A)は本発明の他の実施例において、受光部
が受光する波長λ1 の光出力I1 と波長λ2 の光
出力I2 との和を被測定量に対して示した線図である
。(B)は同実施例において、比I1 /(I1+I2
 )を被測定量に対して示した線図である。(C)は光
出力I1及びI2 をそれぞれ被測定量に対して示した
線図である。
FIG. 5(A) is a diagram showing the sum of the optical output I1 at the wavelength λ1 and the optical output I2 at the wavelength λ2 received by the light receiving section with respect to the measured quantity in another embodiment of the present invention. be. (B) is the ratio I1/(I1+I2
) is a diagram showing the measured quantity. (C) is a diagram showing the optical outputs I1 and I2 with respect to the measured quantities, respectively.

【図6】本発明の他の実施例で用いる装置の構成を概略
的に示す構成図である。
FIG. 6 is a configuration diagram schematically showing the configuration of an apparatus used in another embodiment of the present invention.

【図7】図6の実施例の光出力の被測定量に対する特性
の一例を示した線図である。
7 is a diagram showing an example of the characteristics of the optical output of the embodiment of FIG. 6 with respect to the measured quantity; FIG.

【図8】従来の光応用計測方法で用いる装置の構成を概
略的に示した構成図である。
FIG. 8 is a configuration diagram schematically showing the configuration of an apparatus used in a conventional optical measurement method.

【図9】従来の光応用計測方法において提案されている
光伝送ロスの影響の低減方法を説明する説明図である。
FIG. 9 is an explanatory diagram illustrating a method for reducing the influence of optical transmission loss that has been proposed in a conventional optical measurement method.

【符号の説明】[Explanation of symbols]

11…発光部、12…光変調部、13…受光部、14…
測定部、15…第1の発光源、16…第2の発光源、1
7,18,20,26,28,29…光ファイバ、19
…カプラ、21…コリメータ、22…複屈折素子、23
…直線偏光子、24…検光子、27…分波器、30…第
1の受光器、31…第2の受光器。
11... Light emitting section, 12... Light modulating section, 13... Light receiving section, 14...
Measuring unit, 15...first light emitting source, 16...second light emitting source, 1
7, 18, 20, 26, 28, 29...optical fiber, 19
...Coupler, 21...Collimator, 22...Birefringence element, 23
... linear polarizer, 24 ... analyzer, 27 ... demultiplexer, 30 ... first light receiver, 31 ... second light receiver.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】  被測定量に応じて内部に光学的異方性
を生じる複屈折素子を直線偏光子と検光子との間に配置
してなる光変調部に、波長λ1 の光と波長λ2 の光
とを供給して両波長の光を被測定量により光強度変調し
、光変調部から得られる波長λ1 の光出力I1 と波
長λ2 の光出力I2 とをそれぞれ受光し、被測定量
に対して光出力I2 が極大値付近で僅かな変化を示す
間に光出力I1が被測定量に対して極小値側から極大値
側に、または極大値側から極小値側に大幅な変化を示す
特性が得られる被測定量の範囲を測定範囲とし、前記測
定範囲での光出力の比I1 /I2 と被測定量との関
係から被測定量を求めることを特徴とする光応用計測方
法。
Claim 1: A light modulation unit including a birefringence element that generates optical anisotropy internally depending on the quantity to be measured is arranged between a linear polarizer and an analyzer, and a light with a wavelength λ1 and a light with a wavelength λ2. The light of both wavelengths is modulated in intensity by the quantity to be measured, and the optical output I1 with the wavelength λ1 and the optical output I2 with the wavelength λ2 obtained from the optical modulation section are respectively received and applied to the quantity to be measured. On the other hand, while the optical output I2 shows a slight change near the maximum value, the optical output I1 shows a large change from the minimum value side to the local maximum side or from the local maximum side to the local minimum side with respect to the measured quantity. An optical applied measurement method characterized in that the range of the measured quantity for which characteristics can be obtained is defined as a measurement range, and the measured quantity is determined from the relationship between the optical output ratio I1 /I2 in the measurement range and the measured quantity.
【請求項2】  前記直線偏光子と複屈折素子との間に
波長板を配置し、前記波長板により前記複屈折素子に入
射する光の位相をシフトさせて前記測定範囲を所望の範
囲に調整することを特徴とする請求項1に記載の光応用
測定方法。
2. A wavelength plate is disposed between the linear polarizer and the birefringent element, and the wavelength plate shifts the phase of light incident on the birefringent element to adjust the measurement range to a desired range. The optical application measurement method according to claim 1, characterized in that:
【請求項3】  被測定量に応じて内部に光学的異方性
を生じる複屈折素子を直線偏光子と検光子との間に配置
してなる光変調部に、波長λ1 の光と波長λ2 の光
とを供給して両波長の光を被測定量により光強度変調し
、光変調部から得られる波長λ1 の光出力I1 と波
長λ2 の光出力I2 とをそれぞれ受光し、光出力I
1 及びI2 がほぼ180度の位相差を有する特性が
得られる被測定量の範囲で、前記光出力I1 と光出力
の和(I1 +I2 )との比I1 /(I1 +I2
 )または光出力I2 と光出力の和(I1 +I2 
)との比I2 /(I1 +I2 )を演算し、演算し
た比と被測定量との関係から被測定量を求めることを特
徴とする光応用計測方法。
3. A light modulation unit including a birefringent element that generates optical anisotropy internally depending on the quantity to be measured is arranged between a linear polarizer and an analyzer. The light of both wavelengths is modulated in intensity by the amount to be measured, and the optical output I1 with the wavelength λ1 and the optical output I2 with the wavelength λ2 obtained from the optical modulation section are respectively received, and the optical output I
1 and I2 have a phase difference of approximately 180 degrees, the ratio of the optical output I1 to the sum of the optical outputs (I1 + I2) is I1 / (I1 + I2
) or the sum of the optical output I2 and the optical output (I1 + I2
), and calculates the measured quantity from the relationship between the calculated ratio and the measured quantity.
【請求項4】  被測定磁界が印加される磁気光学素子
を直線偏光子と検光子との間に配置し、前記磁気光学素
子と直線偏光子との間に入射光の波長に応じて偏光面を
所定の角度回転させる旋光子を更に配置した光変調部を
設け、前記光変調部に波長λ1 の光と波長λ2 の光
とを供給して両波長の光を被測定磁界により光強度変調
し、光変調部から得られる波長λ1 の光出力I1 と
波長λ2 の光出力I2 とをそれぞれ受光し、被測定
磁界に対して光出力I2 が極大値付近で僅かな変化を
示す間に光出力I1 が被測定磁界に対して極小値側か
ら極大値側に、または極大値側から極小値側に大幅な変
化を示す特性が得られる被測定磁界の範囲を測定範囲と
し、前記測定範囲での前記光出力I1 とI2 との比
I1 /I2 と被測定磁界との関係から被測定磁界を
求めることを特徴とする光応用計測方法。
4. A magneto-optical element to which a magnetic field to be measured is applied is arranged between a linear polarizer and an analyzer, and a polarization plane is arranged between the magneto-optical element and the linear polarizer according to the wavelength of the incident light. A light modulation section is further provided with an optical rotator that rotates the light by a predetermined angle, and the light modulation section is supplied with light of wavelength λ1 and light of wavelength λ2, and the light intensity of the light of both wavelengths is modulated by the magnetic field to be measured. , receives the optical output I1 with the wavelength λ1 and the optical output I2 with the wavelength λ2 obtained from the optical modulator, and while the optical output I2 shows a slight change near the maximum value with respect to the magnetic field to be measured, the optical output I1 The measurement range is defined as the range of the magnetic field to be measured in which a characteristic that shows a significant change from the minimum value side to the local maximum side or from the local maximum side to the local minimum side with respect to the measured magnetic field is defined as the measurement range. An optical application measurement method characterized by determining a magnetic field to be measured from a relationship between a ratio I1 /I2 of optical outputs I1 and I2 and a magnetic field to be measured.
JP3102599A 1991-05-08 1991-05-08 Light applied measurement method Pending JPH04332817A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3102599A JPH04332817A (en) 1991-05-08 1991-05-08 Light applied measurement method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3102599A JPH04332817A (en) 1991-05-08 1991-05-08 Light applied measurement method

Publications (1)

Publication Number Publication Date
JPH04332817A true JPH04332817A (en) 1992-11-19

Family

ID=14331705

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3102599A Pending JPH04332817A (en) 1991-05-08 1991-05-08 Light applied measurement method

Country Status (1)

Country Link
JP (1) JPH04332817A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003294491A (en) * 2002-03-04 2003-10-15 Independence Technology Llc Sensor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003294491A (en) * 2002-03-04 2003-10-15 Independence Technology Llc Sensor

Similar Documents

Publication Publication Date Title
US6122415A (en) In-line electro-optic voltage sensor
JP3131144B2 (en) Polarization mode dispersion measurement device
EP2010925B1 (en) Fiber-optic current sensor with polarimetric detection scheme
JPH0123067B2 (en)
EP1619513A2 (en) Fiber optics apparatus and method for accurate current sensing
US4933629A (en) Method and apparatus for optically measuring electric and magnetic quantities having an optical sensing head exhibiting the Pockel&#39;s and Faraday effects
US6285182B1 (en) Electro-optic voltage sensor
CN105137147B (en) Optical voltage measuring device
JPH05249207A (en) Photosensor
EP0175358A2 (en) Optical sensing equipment
JP2004525361A (en) Method for electro-optically measuring voltage in a temperature-compensated manner and apparatus for carrying out the method
JPH02118416A (en) Optical sensor
JPH04332817A (en) Light applied measurement method
JPS6357729B2 (en)
JP2004279380A (en) Angle of rotation measuring instrument
JP2509692B2 (en) Optical measuring device
JPS5899761A (en) Electric field/magnetic field measuring apparatus with light
CA2320037A1 (en) Method and device for measuring a magnetic field with the aid of the faraday effect
JPH04328433A (en) Method and apparatus for optical measurement
JP4053677B2 (en) Photocurrent / voltage measuring device
JP3041637B2 (en) Optical applied DC current transformer
JPH07191061A (en) Sensor using light
GB1570802A (en) Measuring apparatus employing an electro-optic transducer
Peek Dynamic polarization detection
JPH0599690A (en) Optically applied measuring method and device