JPH0433239A - Cathode-ray tube - Google Patents

Cathode-ray tube

Info

Publication number
JPH0433239A
JPH0433239A JP13519590A JP13519590A JPH0433239A JP H0433239 A JPH0433239 A JP H0433239A JP 13519590 A JP13519590 A JP 13519590A JP 13519590 A JP13519590 A JP 13519590A JP H0433239 A JPH0433239 A JP H0433239A
Authority
JP
Japan
Prior art keywords
glass
softening point
ray tube
phosphor
low softening
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13519590A
Other languages
Japanese (ja)
Inventor
Hajime Morishita
森下 ▲はじめ▼
Nobuaki Hayashi
伸明 林
Saburo Nonogaki
野々垣 三郎
Masahito Ito
雅人 伊藤
Osamu Sasaya
笹谷 治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP13519590A priority Critical patent/JPH0433239A/en
Publication of JPH0433239A publication Critical patent/JPH0433239A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To easily form a fluorescent screen on which the light of phosphors can be efficiently extracted by adding vanadium pentaoxide to borophosphate glass to obtain low-softening point glass not deteriorated in a strong alkaline aqueous solution. CONSTITUTION:Phosphoric acid (85% H3PO4), boron oxide (B2O3), basic magnesium carbonate (MgCO3)4, cerium acetate (Ce(CH3COO)3.H2O), lithium carbonate (LiCO3), sodium hydrogencarbonate (NaHCO3), and vanadium pentaoxide (V2O5) are mixed. The mixture is put in a crucible, and it is gradually heated from the room temperature and baked to obtain the borophosphate glass made of P2O5 35-50mol%, B203 2-10mol%, MgO.CaO, BaO, CeO2, Li20, Na2O, and V2O5. A new meshy structure is formed between V2O5 and P2O5 in the glass, and the elution of ions into an alkaline aqueous solution can be prevented.

Description

【発明の詳細な説明】[Detailed description of the invention] 【産業上の利用分野】[Industrial application field]

本発明はブラウン管螢光面に係り、特に明るい螢光面を
有するブラウン管に関する。
The present invention relates to a cathode ray tube fluorescent surface, and particularly to a cathode ray tube having a bright fluorescent surface.

【従来の技術】[Conventional technology]

従来のカラーブラウン管の螢光面は下記のようにして形
成される。 フェースプレートの内面に、螢光体を含むホトレジスト
スラリーを塗布して塗膜を形成し、螢光体が配置される
べき位置の塗膜を紫外光の露光によって硬化し、現像し
て螢光体層を設ける。三種類の発光色の螢光体層を設け
るために、3回同様の操作を繰返して、それぞれの発光
色の螢光体層を形成する。ついでアルミニウムの金属蒸
着膜を螢光体層の上に形成する。最後に有機物をパネル
ベークにより除去する。 この方法によって形成した螢光面においては、螢光体層
とフェースプレートは小面積の点でのみ接触しており、
はとんどの部分では接触していない。 現在カラーブラウン管の大型化に伴い、明るい画面の螢
光面を形成することが望まれている。ここに述べる明る
いブラウン管螢光面とは、フェースプレートの内面に塗
布された螢光体層が、電子ビームの照射によって生じた
励起発光をフェースプレートの外面に損失なく導く構造
を持った螢光面のことである。即ち励起発光した螢光体
の光を効率良く画面の前面に取り出すことができるよう
な構造の螢光面を意味する。 このような目的を達成する一つの方法として、我々は先
にフェースプレートの内面とそこに塗布された螢光体の
間に、浅いオプチカルコンタクトを持った構造の螢光面
を提案した。このような構造をもフた螢光面においては
、発光した光が外面に出るまでに通過する反射面が少な
く、また真空層に比べて高い屈折率を有する層を通過す
るので反射率が小さくなる。従って効率良く発光を外面
に取り出すことができる。 上記構造を持つ螢光面は、下記のようなプロセスを経る
ことにより形成することができる。 (1)フェースプレートの内面に、低軟化点ガラスの粉
末と酢酸バリウムと水ガラスからなる懸濁液を付与し、
懸濁液中で生成したケイ酸バリウムとともに沈降した低
軟化点ガラス粉体層を形成する。 (2)上記低軟化点ガラス粉体層を加熱して融解させ、
内面に融解した低軟化点ガラス層をもつフェースプレー
トを作成する。 (3)(2)の状態になフたフェースプレート内面に、
通常の方法で螢光体層を形成する。 (4)再び加熱融解して、低軟化点ガラス層と螢光体層
の間でオプチカルコンタクトをとる。 なお、本発明に関連する従来技術として、特願昭62−
273141号を挙げることができる。
The fluorescent surface of a conventional color cathode ray tube is formed as follows. A photoresist slurry containing a phosphor is applied to the inner surface of the face plate to form a coating film, and the coating film at the position where the phosphor is to be cured by exposure to ultraviolet light and developed to form the phosphor. Provide layers. In order to provide phosphor layers of three different luminescent colors, the same operation is repeated three times to form phosphor layers of each luminescent color. A metallized film of aluminum is then formed over the phosphor layer. Finally, organic matter is removed by panel baking. In the phosphor surface formed by this method, the phosphor layer and the faceplate are in contact only at small points;
are not in contact in most parts. Currently, as color cathode ray tubes become larger, it is desired to form a fluorescent surface for a bright screen. The bright cathode ray tube fluorescent surface described here is a fluorescent surface with a structure in which a phosphor layer coated on the inner surface of the face plate guides the excited luminescence generated by electron beam irradiation to the outer surface of the face plate without loss. It is about. In other words, it refers to a phosphor surface having a structure that allows the light of the phosphor that has been excited to emit light to be efficiently extracted to the front of the screen. As one way to achieve this goal, we previously proposed a phosphor surface with a shallow optical contact between the inner surface of the face plate and the phosphor coated there. In a fluorescent surface with such a structure, the emitted light has fewer reflective surfaces to pass through before exiting to the outer surface, and the reflectance is low because it passes through a layer with a higher refractive index than the vacuum layer. Become. Therefore, the emitted light can be efficiently extracted to the outside surface. The fluorescent surface having the above structure can be formed through the following process. (1) A suspension consisting of low softening point glass powder, barium acetate, and water glass is applied to the inner surface of the face plate,
A layer of low softening point glass powder is formed which settles together with the barium silicate produced in the suspension. (2) heating and melting the low softening point glass powder layer;
A face plate with a layer of fused low softening point glass on the inner surface is created. (3) On the inner surface of the face plate when it is in the state of (2),
A phosphor layer is formed in a conventional manner. (4) Heat and melt again to establish optical contact between the low softening point glass layer and the phosphor layer. In addition, as a prior art related to the present invention, Japanese Patent Application No. 1983-
No. 273141 can be mentioned.

【発明が解決しようとする課題】[Problem to be solved by the invention]

しかしながら、上記プロセスの(1)において強アルカ
リ性の水ガラスを使用するために、低軟化点ガラスの粉
末が加水分解を起こし劣化するという問題があった。加
水分解を起こした低軟化点ガラスは融解温度が元のもの
に比べて高くなるため、従来の加熱温度では十分に融解
せず、一部白濁化した透明度の悪い膜しか形成できなか
った。 本発明の目的は、強アルカリ性の水溶液中においても劣
化することのない低軟化点ガラスを提供し、励起発光し
た螢光体の光を効率良く画面の前面に取り出すことがで
きるような構造の螢光面を容易に形成できるようにする
ことである。
However, since strongly alkaline water glass is used in the above process (1), there is a problem that the low softening point glass powder is hydrolyzed and deteriorated. Since the melting temperature of hydrolyzed low-softening glass is higher than that of the original glass, it cannot be sufficiently melted at conventional heating temperatures, and only a partly cloudy film with poor transparency can be formed. The purpose of the present invention is to provide a low softening point glass that does not deteriorate even in a strongly alkaline aqueous solution, and to provide a phosphor glass having a structure that allows the light of the excited phosphor to be efficiently extracted to the front of the screen. The object of the present invention is to make it possible to easily form a light surface.

【課題を解決するための手段】[Means to solve the problem]

上記目的を達成するために、従来から知られているボロ
ホスフェートガラスに五酸化バナジウム(V、05)を
加えて耐アルカリ性を向上させ、強アルカリ性の水溶液
中においても劣化することのない低軟化点ガラスを提供
したものである。 五酸化バナジウムの添加により耐水性が向上することは
、リン鉛ガラス(リン、鉛、アルカリ金属、アルカリ土
類金属の酸化物からなるガラス)に関してては、レイ(
N、H,Ray) らにより、グラス テクノロジー(
Glass  Technolog)’)、14 (2
)、50−55 (1973)において報告されている
。しかしながら、我々の提供したリン酸ホウ素ガラス(
ボロホスフェートガラス)において同様の効果があると
は報告されていない。特にアルカリ性水溶液に対する特
性についてはほとんど知られていない。 本発明で用いられる低軟化点ガラス組成物として、P2
O5を35−50モル%、B2O2を2−10モル%含
んでいることが望ましい。この範囲内であれば、軟化点
温度は400℃前後になるのでブラウン管のフェースプ
レートの加熱工程でパネルガラスに変化を与えること無
く低軟化点ガラス層のみを融解することができる。また
五酸化バナジウムの添加量は0.2から3.5モル%の
範囲が望ましい。五酸化バナジウムの添加量がすくない
と耐水性が弱く、逆に多いと軟化点温度が高くなりプロ
セス上好ましくないからである。 [作用) 本発明によれば、五酸化バナジウムの添加により、ガラ
ス内部においてV2O5とP2O,の間で新しい網目状
構造が形成され、このためにアルカリ水溶液中へのイオ
ンの溶出が妨げられるために耐アルカリ性が向上したも
のである。
In order to achieve the above objective, we added vanadium pentoxide (V, 05) to the conventionally known borophosphate glass to improve its alkali resistance and have a low softening point that does not deteriorate even in strongly alkaline aqueous solutions. The glass was provided. The fact that water resistance is improved by the addition of vanadium pentoxide is that for phosphorus-lead glass (glass made of oxides of phosphorus, lead, alkali metals, and alkaline earth metals), Ray (
Glass Technology (N.H. Ray) et al.
Glass Technology)'), 14 (2
), 50-55 (1973). However, our provided boron phosphate glass (
Similar effects have not been reported for borophosphate glass (borophosphate glass). In particular, little is known about its properties against alkaline aqueous solutions. As a low softening point glass composition used in the present invention, P2
It is desirable to contain 35-50 mol% of O5 and 2-10 mol% of B2O2. If it is within this range, the softening point temperature will be around 400° C., so that only the low softening point glass layer can be melted in the heating process of the face plate of the cathode ray tube without changing the panel glass. Further, the amount of vanadium pentoxide added is preferably in the range of 0.2 to 3.5 mol%. This is because if the amount of vanadium pentoxide added is too small, the water resistance will be weak, whereas if it is too large, the softening point temperature will become high, which is unfavorable in terms of the process. [Function] According to the present invention, by adding vanadium pentoxide, a new network structure is formed between V2O5 and P2O inside the glass, which prevents the elution of ions into the alkaline aqueous solution. It has improved alkali resistance.

【実施例】【Example】

以下、本発明を実施例によって説明する。 まず低軟化点ガラスの合成法について述べる。 下記に示すように原料を秤取り、メノウ乳鉢でよく混合
した。 リン酸(85%H3P04)  ・・・・・・103.
76g酸化ホウ素(B、O,)      ・・・・・
・3.66 g塩基性炭酸マグネシウム((MgCO□
)、・Mg(OH) z ・5 H−0)      
・=・・・8−74 g炭酸カルシウム(Ca COa
)   ・・・・・・9.09 g炭酸バリウム(B 
a COa)    ・・・・・・9.96 g酢酸セ
リウム(Ce (CHa COO)a ・Hz O)・
・・・・・0.68 g 炭酸リチウム(LiCO,)    ・・・・・・9.
44g炭酸水素ナトリウム(NaHCO,) ・・・・・・21.34g 五酸化バナジウム(V X○、)  ・・・・・・2.
72 g混合した化合物をるつぼに移した後、室温から
徐々に加熱して800℃で2時間空気中で焼成すること
により、45P205・5B20.・9Mg0・9Ca
C15BaO・0.2CeO2・12.65L i、0
 ・12.65Na20 ・1.5V、O,なる組成(
モル%)のボロホスフェートガラスを得た。 このガラスの軟化点は416℃±5℃であった。 このガラスをメノウ乳鉢で砕いて粉末とした。 このような方法で合成した低軟化点ガラスの組成とその
特性を第1表に示した。また五酸化バナジウムを含まな
い例も参考例として第1表に示した。 合成したガラスの耐水性を比較するために、これらを粉
末化し、25℃のIN水酸化ナトリウム水溶液中に浸漬
し、浸漬時間に対する加水分解の割合を測定した。一定
時間浸漬後取りだし、上澄液が中性を示すまで水洗を繰
返して行ない、乾燥後ガラス基板上で融解した。得られ
たガラス膜の透過率を測定し、その結果を第2表に示し
た。 この結果から、五酸化バナジウムを含むガラスは浸漬時
間が4時間以内であればほとんど変化しないことがわか
る。これに比べ参考例のガラスは加水分解が進行し融解
しない部分が生じ、加熱後の試料は白濁化し、このため
透過率が下がる。 第2表 耐水性の比較(アルカリ浸漬時間と透過率の関
係)次に本発明のガラスを用いて螢光面を形成した例に
ついて述べる。 対角線の長さ6インチのフェースプレートの内面を、イ
オン交換水625mΩと0.9%酢酸バリウム40 m
 Aの混合液で満たす。これにイオン交換水225mm
、本発明のガラス粉末0.04g、11%の水ガラス4
0mQの懸濁液を注入した。1o分間放置してフェース
プレートの内面上にガラス粉末を沈降させた。上澄液を
少しずつ除去し、フェースプレートを自然乾燥させた。 次に450℃に調節した炉の中で1時間加熱した。冷却
後イオン交換水で洗浄して、透明な低軟化点ガラスの薄
い層を持ったフェースプレートが得られた。ついで同様
にして、顔料付青色螢光体を内面に塗布した。その後4
50℃で1時間加熱し、フェースプレートの内面と螢光
体との間を低軟化点ガラスを介してオプチカルコンタク
トを形成した。 さらにアルミニウム蒸着、フリットベーク、電子銃装着
を行ないブラウン管とした。比較のため、低軟化点ガラ
ス層を形成しない以外は全く同様にして比較域を形成し
た。両者のブラウン管について輝度比較をおこなうと、
オプチカルコンタクトの有る場合の方が無い場合に比べ
て10%明るかった。
Hereinafter, the present invention will be explained by examples. First, we will discuss the synthesis method of low softening point glass. The raw materials were weighed as shown below and mixed well in an agate mortar. Phosphoric acid (85% H3P04)...103.
76g boron oxide (B, O,)...
・3.66 g basic magnesium carbonate ((MgCO□
), ・Mg(OH) z ・5 H-0)
・=・・・8-74 g Calcium carbonate (Ca COa
) ...9.09 g barium carbonate (B
a COa) ...9.96 g Cerium acetate (Ce (CHa COO)a ・Hz O)・
...0.68 g Lithium carbonate (LiCO,) ...9.
44g Sodium hydrogen carbonate (NaHCO,) 21.34g Vanadium pentoxide (VX○,) 2.
After transferring 72 g of the mixed compound to a crucible, it was gradually heated from room temperature and fired in air at 800°C for 2 hours to produce 45P205/5B20.・9Mg0・9Ca
C15BaO・0.2CeO2・12.65L i, 0
・12.65Na20 ・1.5V, O, composition (
mol %) of borophosphate glass was obtained. The softening point of this glass was 416°C±5°C. This glass was crushed into powder in an agate mortar. Table 1 shows the composition and properties of the low softening point glass synthesized by this method. Examples that do not contain vanadium pentoxide are also shown in Table 1 as reference examples. In order to compare the water resistance of the synthesized glasses, they were powdered and immersed in an IN aqueous sodium hydroxide solution at 25° C., and the rate of hydrolysis with respect to the immersion time was measured. After being immersed for a certain period of time, it was taken out, washed repeatedly with water until the supernatant liquid showed neutrality, dried, and then melted on a glass substrate. The transmittance of the obtained glass film was measured and the results are shown in Table 2. This result shows that glass containing vanadium pentoxide hardly changes if the immersion time is within 4 hours. In contrast, in the glass of the reference example, hydrolysis progresses and some portions do not melt, and the sample after heating becomes cloudy, resulting in a decrease in transmittance. Table 2 Comparison of water resistance (relationship between alkali immersion time and transmittance) Next, an example in which a fluorescent surface was formed using the glass of the present invention will be described. The inner surface of a faceplate with a diagonal length of 6 inches was coated with 625 mΩ of ion-exchanged water and 40 m of 0.9% barium acetate.
Fill with mixture A. Add 225mm of ion exchange water to this.
, 0.04 g of glass powder of the invention, 11% water glass 4
0 mQ of suspension was injected. The glass powder was allowed to settle on the inner surface of the faceplate for 10 minutes. The supernatant was removed little by little, and the faceplate was air-dried. Next, it was heated for 1 hour in a furnace adjusted to 450°C. After cooling and washing with ion-exchanged water, a face plate with a thin layer of transparent low softening point glass was obtained. Then, a pigmented blue phosphor was applied to the inner surface in the same manner. then 4
It was heated at 50° C. for 1 hour to form an optical contact between the inner surface of the face plate and the phosphor via the low softening point glass. Furthermore, aluminum evaporation, frit baking, and electron gun mounting were performed to create a cathode ray tube. For comparison, a comparison area was formed in exactly the same manner except that the low softening point glass layer was not formed. When comparing the brightness of both cathode ray tubes,
The light with optical contacts was 10% brighter than the light without optical contacts.

【発明の効果】【Effect of the invention】

Claims (1)

【特許請求の範囲】[Claims] 1、フェースプレート内面と蛍光体層との間で、低軟化
点ガラス層を介してオプチカルコンタクトを持つ螢光面
を有するブラウン管において、その低軟化点ガラス組成
物として、P_2O_5を35−50モル%、B_2O
_3を2−10モル%を含み、かつ他の成分としてアル
カリ土類金属およびアルカリ金属の酸化物およびV_2
O_5を含むボロホスフェートガラスを用いたことを特
徴とするブラウン管。
1. In a cathode ray tube having a fluorescent surface with optical contact between the inner surface of the face plate and the phosphor layer via a low softening point glass layer, 35-50 mol% of P_2O_5 is used as the low softening point glass composition. ,B_2O
Contains 2-10 mol% of _3, and as other components alkaline earth metals and alkali metal oxides and V_2
A cathode ray tube characterized by using borophosphate glass containing O_5.
JP13519590A 1990-05-28 1990-05-28 Cathode-ray tube Pending JPH0433239A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13519590A JPH0433239A (en) 1990-05-28 1990-05-28 Cathode-ray tube

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13519590A JPH0433239A (en) 1990-05-28 1990-05-28 Cathode-ray tube

Publications (1)

Publication Number Publication Date
JPH0433239A true JPH0433239A (en) 1992-02-04

Family

ID=15146070

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13519590A Pending JPH0433239A (en) 1990-05-28 1990-05-28 Cathode-ray tube

Country Status (1)

Country Link
JP (1) JPH0433239A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007119329A (en) * 2005-09-30 2007-05-17 Hoya Corp Optical glass, preform for precision press molding and its manufacturing method, optical element and its manufacturing method
JP2012067430A (en) * 2010-08-23 2012-04-05 Kurabo Ind Ltd Entangled yarn for stuffing and stuffed article using the same
CN103097280A (en) * 2010-08-23 2013-05-08 仓敷纺绩株式会社 Stuffed article

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007119329A (en) * 2005-09-30 2007-05-17 Hoya Corp Optical glass, preform for precision press molding and its manufacturing method, optical element and its manufacturing method
US7799714B2 (en) 2005-09-30 2010-09-21 Hoya Corporation Optical glass, precision press molding preform and manufacturing method of the same, optical element and manufacturing method of the same
JP2012067430A (en) * 2010-08-23 2012-04-05 Kurabo Ind Ltd Entangled yarn for stuffing and stuffed article using the same
CN103097280A (en) * 2010-08-23 2013-05-08 仓敷纺绩株式会社 Stuffed article
US9670054B2 (en) 2010-08-23 2017-06-06 Kurashiki Boseki Kabushiki Kaisha Stuffed article

Similar Documents

Publication Publication Date Title
JPH1129339A (en) Aluminosilicate glass for instrument having flat display
CN1953942A (en) Glass composition for covering electrodes and glass paste containing the same
CA2519729A1 (en) Glass or glass-ceramic
JP2000086283A (en) Luminescent glass
KR20070114747A (en) Glass composition for lamp, lamp, backlight unit and method for producing glass composition for lamp
KR20080033254A (en) Glass substrate with low infrared transmission for display screen
KR20060058706A (en) Vessel for external electrode fluorescent lamp
CN110040941A (en) A kind of visible absorption glass and its preparation method and application
US4376169A (en) Low-melting, lead-free ceramic frits
US20070007871A1 (en) Plasma display panel
JPH0433239A (en) Cathode-ray tube
JP2002060242A (en) Funnel for cathode ray tube and cathode ray tube using the same
JP2003026442A (en) Glass substrate for field emission display
KR20010070135A (en) Plasma display device and front glass board the same
KR19990044440A (en) Glass for substrate and plasma display device using same
JPH09255355A (en) Glass composition for substrate
JPS6238303B2 (en)
JPH0421619B2 (en)
JPS58120537A (en) Panel glass for cathode ray tube
JPS6191039A (en) Glass composition and fluorescent lamp and cathode ray tube thereby
JP4453305B2 (en) Fluorescent lamp outer tube and fluorescent lamp
JPH1111975A (en) Glass substrate for plasma display panel
CN101421198A (en) Glass for illumination
US3585057A (en) Lead phosphate optical glass
JP2003054985A (en) Glass substrate for field emission display