JPH04331A - Manufacture of aluminum combined sintered body - Google Patents

Manufacture of aluminum combined sintered body

Info

Publication number
JPH04331A
JPH04331A JP2099789A JP9978990A JPH04331A JP H04331 A JPH04331 A JP H04331A JP 2099789 A JP2099789 A JP 2099789A JP 9978990 A JP9978990 A JP 9978990A JP H04331 A JPH04331 A JP H04331A
Authority
JP
Japan
Prior art keywords
powder
mixed
sintered body
manufacture
aluminum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2099789A
Other languages
Japanese (ja)
Inventor
Tomoyuki Abe
知行 阿部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP2099789A priority Critical patent/JPH04331A/en
Publication of JPH04331A publication Critical patent/JPH04331A/en
Pending legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)

Abstract

PURPOSE:To manufacture an Al combined sintered body light in weight and excellent in specific strength and wear resistance by mixing Al powder with the mixed powder of Al and Ti contg. Al-Ti intermetallic compounds by a mechanical alloying method, compacting it and thereafter executing sintering in an inert atmosphere. CONSTITUTION:The fine powder of Al and Ti is mixed in the molar ratio of 1:1, and this mixed powder is subjected to mechanical alloying treatment for long time by a ball mill or the like to manufacture the mixed powder of Al and Ti in which Al-Ti intermetallic compounds are formed in the joined part. This powder is mixed into Al powder in the ratio of 10 to 50vol.%, is compacted into a desired shape and is thereafter sintered in the atmosphere of an inert gas such as Ar. The Al series alloy sintered material contg. Al as a matrix and Al-Ti intermetallic compounds as a reinforcing material, light in weight and excellent in wear resistance and specific strength can be obtd.

Description

【発明の詳細な説明】 〔概要〕 アルミニウム複合焼結体の製造方法に関し、アルミニウ
ムとチタニウムとの金属間化合物を強化物質として分散
させた複合焼結体を得ることを目的とし、 メカニカルアロイング処理により金属間化合物を形成し
たアルミニウムとチタニウムとの混合粉末をアルミニウ
ム粉末中に添加して混合し、該混合粉を圧粉成形して得
た成形体を不活性雰囲気中で焼結することを特徴として
アルミニウム複合焼結体の製造方法を構成する。
[Detailed Description of the Invention] [Summary] Regarding a method for producing an aluminum composite sintered body, the purpose is to obtain a composite sintered body in which an intermetallic compound of aluminum and titanium is dispersed as a reinforcing substance, and a mechanical alloying process is performed. A mixed powder of aluminum and titanium that has formed an intermetallic compound is added and mixed into aluminum powder, and the mixed powder is compacted and the resulting compact is sintered in an inert atmosphere. This constitutes a method for manufacturing an aluminum composite sintered body.

〔産業上の利用分野〕[Industrial application field]

本発明はアルミニウム複合焼結体の製造方法に関する。 The present invention relates to a method for manufacturing an aluminum composite sintered body.

アルミニウム(以下略してAj7)は比重2.7と軽く
、表面は酸化皮膜(不動態皮膜γ−AI!tOs)に覆
われて乾燥雰囲気では優れた耐蝕性を示し、また地球上
に広(分布していることから廉価であるなどの特徴をも
っているが、他方では高温状態では水酸化物(AftO
s ・HtOやAlxes ・3 H,O)を生じて腐
蝕し易く、融点は660℃と低く、またヤング率が小さ
いなどの欠点をもっている。
Aluminum (hereinafter referred to as Aj7) has a light specific gravity of 2.7, and its surface is covered with an oxide film (passive film γ-AI!tOs), which shows excellent corrosion resistance in a dry atmosphere. It has characteristics such as being inexpensive because of the fact that it is
It easily corrodes by forming s .HtO and Alxes .3H,O), has a low melting point of 660° C., and has a small Young's modulus.

そこで、軽く、廉価である特徴を活かし、耐蝕性や硬度
を増すことが行われている。
Therefore, efforts are being made to take advantage of the characteristics of being light and inexpensive to increase corrosion resistance and hardness.

すなわち、耐蝕性を増すには電解酸化法により表面に酸
化皮膜を形成したり、合金化するなどの方法がとられて
いる。
That is, in order to increase the corrosion resistance, methods such as forming an oxide film on the surface by electrolytic oxidation or alloying are used.

一方、磁気ディスク装置のアームのように高速で駆動し
、且つ優れた耐摩耗性を必要とする用途があり、これに
は軽量で比強度が高い金属材料を必要としている。
On the other hand, there are applications such as the arm of a magnetic disk device that are driven at high speed and require excellent wear resistance, and this requires metal materials that are lightweight and have high specific strength.

〔従来の技術〕[Conventional technology]

電算機の周辺機器には高速動作を必要とする機器が多く
、か\る部材の軽量化を目的としてA1合金などのAI
!系材系材側く使用されている。
Many computer peripherals require high-speed operation, and AI such as A1 alloy is being used to reduce the weight of such components.
! It is often used on the side of wood-based materials.

然し、高速で駆動する軸受などの部材はAl系材料では
耐摩耗性が劣るために依然として鉄系。
However, parts such as bearings that are driven at high speeds are still made of iron because aluminum-based materials have poor wear resistance.

青銅系など比重の大きな材料が使用されている。Materials with high specific gravity, such as bronze, are used.

そこで、軽量化のために、か\る用途に対してもAI!
系材系材側用が要望されていた。
Therefore, in order to reduce weight, AI is also used for such applications!
There was a request for use on the wood-based material side.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

本発明は、耐摩耗性が必要な用途に使用され、軽量で且
つ比強度が高く、表面処理を必要としない軽量で高強度
なAl系材料を提供することを目的とする。
An object of the present invention is to provide a lightweight, high-strength Al-based material that is used in applications requiring wear resistance, is lightweight, has high specific strength, and does not require surface treatment.

〔課題を解決するための手段〕[Means to solve the problem]

上記の課題はメカニカルアロイング処理により接合部に
金属間化合物を形成したAnとチタニウム(以下Ti)
との混合粉末をAI2粉末中に添加して混合し、か\る
混合粉を圧粉成形して得た成形体を不活性雰囲気中で焼
結することを特徴としてAf複合焼結体の製造方法を構
成することにより解決することができる。
The above problem is caused by mechanical alloying treatment of An and titanium (hereinafter referred to as Ti), which form an intermetallic compound at the joint.
The production of an Af composite sintered body is characterized by adding and mixing a mixed powder with AI2 powder, compacting the mixed powder, and sintering the molded body obtained in an inert atmosphere. This can be solved by configuring a method.

〔作用〕[Effect]

発明者はAj’を構成元素とする金属間化合物は硬度が
大きく、耐摩耗性に優れている点に着目した。
The inventor noticed that an intermetallic compound containing Aj' as a constituent element has high hardness and excellent wear resistance.

そこで、本発明は耐摩耗性を向上する方法としてTiと
の金属間化合物を強化物質としてAI中に分散させるも
のである。
Therefore, in the present invention, as a method for improving wear resistance, an intermetallic compound with Ti is dispersed in AI as a reinforcing substance.

そして、構造体を任意形状に構成するために圧粉成形し
た後に焼結する方法をとる。
Then, in order to configure the structure into an arbitrary shape, a method is used in which the structure is compacted and then sintered.

二\で、金属間化合物をAIマトリックス中に均一に分
散させる方法として予めAfとTiを溶融して金属間化
合物を形成した後、粉砕して粉体とし、これをAI粉末
中に混合するのも一つの方法ではあるが、工数が増加し
、コストの上昇を招くことが問題である。
2. As a method for uniformly dispersing intermetallic compounds in the AI matrix, Af and Ti are melted in advance to form an intermetallic compound, which is then ground into powder and mixed into the AI powder. Although this is one method, the problem is that it increases the number of steps and costs.

そこで、本発明は工数増を招かないで、金属間化合物と
Afとの密着性を向上し、また焼結工程において温度制
御を行うことを目的とし、本発明においてはメカニカル
アロイング処理した粉末をAI粉末中に加えるものであ
る。
Therefore, the present invention aims to improve the adhesion between intermetallic compounds and Af without increasing the number of steps, and to control the temperature in the sintering process.In the present invention, mechanically alloyed powder is used. It is added to AI powder.

すなわち、AfとTiとの固溶体はA1との密着性が必
ずしも良くないが、メカニカルアロイング処理した金属
粉を加えると化合物を形成している接触部分を除き、他
はAn7とTiであることから、焼結に当たってメカニ
カルアロインク処理を施したAI粉はマトリックスのA
A粉と一様に焼結することができ、強固な結合を保持す
ることができる。
In other words, a solid solution of Af and Ti does not necessarily have good adhesion to A1, but when mechanically alloyed metal powder is added, except for the contact area forming a compound, the rest is An7 and Ti. , AI powder subjected to mechanical alloy ink treatment during sintering has matrix A
It can be sintered uniformly with A powder and can maintain a strong bond.

また、メカニカルアロイング処理したAn2とTiの混
合粉を加えた理由は発熱反応を抑制するためである。
Further, the reason for adding the mechanically alloyed mixed powder of An2 and Ti is to suppress the exothermic reaction.

すなわち、AI原子とTi原子とが反応してAn−Ti
金属間化合物を生ずる反応は発熱反応であり、金属間化
合物を生ずるモル比に混合して加熱する場合はAIの融
点(660℃)以上の温度にまで発熱し、そのためにA
I!I!リックスが溶解し、焼結が均一に進行しないと
云う問題がある。
In other words, AI atoms and Ti atoms react to form An-Ti
The reaction that produces an intermetallic compound is an exothermic reaction, and when the mixture is heated to a molar ratio that produces an intermetallic compound, heat is generated to a temperature higher than the melting point of AI (660°C), and therefore A
I! I! There is a problem that the liquefaction melts and sintering does not proceed uniformly.

そこで、本発明は予めメカニカルアロインク処理をして
AIとTi粉の接合部を金属間化合物にしてお(ことに
より、マトリックスのAA粉に混合して昇温する場合に
、AfとTiとが反応して金属間化合物を形成する場合
でも発熱温度をAn7の融点以下に抑制することができ
、従って良好な焼結体を形成することができる。
Therefore, in the present invention, mechanical alloy ink treatment is applied in advance to make the joint between AI and Ti powder into an intermetallic compound (by this, when mixed with AA powder of the matrix and heated, Af and Ti Even when reacting to form an intermetallic compound, the exothermic temperature can be suppressed to below the melting point of An7, and therefore a good sintered body can be formed.

なお、本発明において、AnマトリックスへのAl−T
i金属間化合物粉末の添加量をlO〜50体積%と限定
する理由は、10体積%以下では必要とする耐摩耗性を
付与できないからであり、また50体積%以上ではマト
リックスが連続層をなさず成形歩留まりが低下するから
である。
In addition, in the present invention, Al-T to the An matrix
The reason why the amount of intermetallic compound powder added is limited to 10 to 50% by volume is that if it is less than 10% by volume, the required wear resistance cannot be imparted, and if it is more than 50% by volume, the matrix will not form a continuous layer. This is because the molding yield decreases first.

〔実施例〕〔Example〕

実施例1: 粒径が一100メツシュのAA粉末と、粒径が−100
メツシユのTi粉末を用意し、AIとTiをl:lのモ
ル比に秤量し、高エネルギーボールミルを用いて24時
間に亙ってメカニカルアロイング処理した。
Example 1: AA powder with a particle size of 1100 mesh and -100 mesh particle size
Meshes of Ti powder were prepared, AI and Ti were weighed at a molar ratio of 1:1, and mechanical alloying was performed using a high-energy ball mill for 24 hours.

そして、このメカニカルアロイ粉とAl粉とを10 :
 90の体積%になるように混合し、この混合粉を2.
5 t/cm’の条件で直径20mm、長さ10mmの
円筒状にプレス成形した。
Then, this mechanical alloy powder and Al powder were mixed at 10:
Mix the powder to a volume of 90%, and add this mixed powder to 2.
It was press-molded into a cylindrical shape with a diameter of 20 mm and a length of 10 mm under conditions of 5 t/cm'.

そして、この試料をアルゴン(Ar)雰囲気中で650
℃で1時間に亙って加熱して焼結した。
This sample was then heated at 650° C. in an argon (Ar) atmosphere.
It was sintered by heating at .degree. C. for 1 hour.

次に、この焼結体を微少部X線回折により組成を同定し
たところ、AI以外にAl−Tiの金属間化合物を確認
することができた。
Next, when the composition of this sintered body was identified by microscopic X-ray diffraction, it was possible to confirm an intermetallic compound of Al-Ti in addition to AI.

また、ビッカース硬度を測定したところ、A1合金の硬
度は約100 Hv(ビッカース)であるのに対し、部
分的に200〜300HVの値が認められた。
In addition, when the Vickers hardness was measured, the hardness of the A1 alloy was about 100 Hv (Vickers), but values of 200 to 300 HV were partially observed.

また、引張り強さの値は400〜500 MPaであっ
た。
Further, the tensile strength value was 400 to 500 MPa.

実施例2: 実施例1において、メカニカルアロイ粉とAl粉とを5
0 : 50の体積%になるように混合した以外は実施
例1と全(同様にして焼結体を作り、機械的特性を測定
した。
Example 2: In Example 1, mechanical alloy powder and Al powder were
A sintered body was prepared in the same manner as in Example 1 except that the mixture was mixed at a volume % of 0:50, and the mechanical properties were measured.

その結果、ビッカース硬度は大部分が約500 Hvで
あったが、部分的に600〜800 Hvであった。
As a result, the Vickers hardness was mostly about 500 Hv, but partially 600-800 Hv.

また、曲げ強さは約600 MPaであった。Moreover, the bending strength was about 600 MPa.

実施例3: 実施例1において、メカニカルアロイ粉とAl粉とを5
:95体積%になるように混合した以外は実施例1と全
く同様にして焼結体を作り、機械的特性を測定した。
Example 3: In Example 1, mechanical alloy powder and Al powder were
: A sintered body was prepared in the same manner as in Example 1 except that the mixture was 95% by volume, and its mechanical properties were measured.

その結果、ビッカース硬度は約100 Hvと1合金の
場合と殆ど同一であり、引張り強さも200MPa程度
であり、複合化の利点は見当たらなかった。
As a result, the Vickers hardness was about 100 Hv, which is almost the same as that of Alloy 1, and the tensile strength was about 200 MPa, so there was no advantage of compounding.

実施例4: 実施例1において、メカニカルアロイ粉とAl粉とを5
5 : 45体積%になるように混合した以外は実施例
1と全く同様にして焼結体を作り、機械的特性を測定し
た。
Example 4: In Example 1, mechanical alloy powder and Al powder were
5: A sintered body was prepared in the same manner as in Example 1 except that the mixture was mixed at 45% by volume, and its mechanical properties were measured.

その結果、ビッカース硬度は約600 Hvと大幅に増
加したが、Alマトリックスが不連続になるため脆く、
試験片の形成が困難であった。
As a result, the Vickers hardness increased significantly to approximately 600 Hv, but the aluminum matrix became brittle due to discontinuity.
It was difficult to form a test piece.

〔発明の効果〕〔Effect of the invention〕

本発明に係る複合焼結体の使用により耐摩耗性に優れ、
軽量で且つ比強度が高く、表面処理を必要としない焼結
部材を形成することができ、これにより装置の軽量化が
可能となる。
The use of the composite sintered body according to the present invention provides excellent wear resistance,
It is possible to form a sintered member that is lightweight and has high specific strength and does not require surface treatment, thereby making it possible to reduce the weight of the device.

Claims (1)

【特許請求の範囲】[Claims] (1)メカニカルアロイング処理により金属間化合物を
形成したアルミニウムとチタニウムとの混合粉末をアル
ミニウム粉末中に添加して混合し、該混合粉を圧粉成形
して得た成形体を不活性雰囲気中で焼結することを特徴
とするアルミニウム複合焼結体の製造方法。(2)請求
項1記載のアルミニウム粉末中への混合粉末の添加量が
10〜50体積%であることを特徴とするアルミニウム
複合焼結体の製造方法。
(1) A mixed powder of aluminum and titanium that has formed an intermetallic compound through mechanical alloying treatment is added to aluminum powder, mixed, and the mixed powder is compacted to obtain a compact in an inert atmosphere. A method for producing an aluminum composite sintered body, characterized by sintering the aluminum composite sintered body. (2) A method for producing an aluminum composite sintered body, characterized in that the amount of mixed powder added to the aluminum powder according to claim 1 is 10 to 50% by volume.
JP2099789A 1990-04-16 1990-04-16 Manufacture of aluminum combined sintered body Pending JPH04331A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2099789A JPH04331A (en) 1990-04-16 1990-04-16 Manufacture of aluminum combined sintered body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2099789A JPH04331A (en) 1990-04-16 1990-04-16 Manufacture of aluminum combined sintered body

Publications (1)

Publication Number Publication Date
JPH04331A true JPH04331A (en) 1992-01-06

Family

ID=14256696

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2099789A Pending JPH04331A (en) 1990-04-16 1990-04-16 Manufacture of aluminum combined sintered body

Country Status (1)

Country Link
JP (1) JPH04331A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010016269A1 (en) 2008-08-08 2010-02-11 学校法人日本大学 Pure-aluminum structural material with high specific strength solidified and molded by giant-strain processing method
CN103820663A (en) * 2013-11-05 2014-05-28 常州大学 Preparation method for fine Al3Ti particles-dispersed aluminum-base intermediate alloy

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010016269A1 (en) 2008-08-08 2010-02-11 学校法人日本大学 Pure-aluminum structural material with high specific strength solidified and molded by giant-strain processing method
CN103820663A (en) * 2013-11-05 2014-05-28 常州大学 Preparation method for fine Al3Ti particles-dispersed aluminum-base intermediate alloy
CN103820663B (en) * 2013-11-05 2016-04-13 常州大学 A kind of acquisition Al 3the preparation method of Ti particle small and dispersed contained aluminium-base intermediate alloy

Similar Documents

Publication Publication Date Title
JP4511097B2 (en) Method for producing FeCrAl material and material thereof
Pal et al. Investigation of the electroless nickel plated sic particles in sac305 solder matrix
Peng et al. An investigation on the ZnO retained ratio, microstructural evolution, and mechanical properties of ZnO doped Sn3. 0Ag0. 5Cu composite solder joints
CN109868392A (en) A kind of aluminum matrix composite and preparation method thereof of Fe-based amorphous alloy enhancing
JPS59215401A (en) Alloy steel powder for powder metallurgy and its production
Hanim et al. Microstructural and shear strength properties of RHA-reinforced Sn–0.7 Cu composite solder joints on bare Cu and ENIAg surface finish
JPH04331A (en) Manufacture of aluminum combined sintered body
JPH0413822A (en) Production of partially composite member
JPS63312901A (en) Heat resistant high tensile al alloy powder and composite ceramics reinforced heat resistant al alloy material using said powder
Karimi et al. Synthesis and characterization of Sn–Cu/SiO2 (np) lead-free nanocomposite solder through angular accumulative extrusion
Zhang et al. Microstructure and properties of SiC whisker reinforced Sn-0.3 Ag-0.7 Cu solder alloy
Zhai et al. Mechanical, photoelectric and thermal reliability of SAC307 solder joints with Ni-decorated MWCNTs for flip-chip LED package component during aging
JP2733684B2 (en) Joined sintered friction material
JPS6039737B2 (en) Manufacturing method for highly conductive metal-carbon fiber composite sliding member
CN1796589A (en) Duplexing sized high temperature resisting aluminium based composite material enhanced by granules of ceramics
JPH032338A (en) Composite reinforced alloy and its manufacture
Saud et al. Recent Studies in the Development of Ceramic-Reinforced Lead-Free Composite Solder
JPH0230726A (en) Fiber-reinforced metallic composite material
JPS5980745A (en) Molybdenum alloy
JPS6141745A (en) Fiber reinforced composite material having low thermal expansibility
JPS61104040A (en) Manufacture of magnetic al alloy
JP2679267B2 (en) Manufacturing method of brazing material
JPH1136037A (en) Hard molybdenum alloy, wear resistant alloy, and wear resistant sintered alloy, and their production
JP2992669B2 (en) Method for producing alumina-dispersed aluminum-titanium intermetallic compound composite containing specific impurities and titanium dioxide containing impurities
JPH04183835A (en) Manufacture of ni-ti alloy member