JPH04331956A - Substrate drying method - Google Patents

Substrate drying method

Info

Publication number
JPH04331956A
JPH04331956A JP10106791A JP10106791A JPH04331956A JP H04331956 A JPH04331956 A JP H04331956A JP 10106791 A JP10106791 A JP 10106791A JP 10106791 A JP10106791 A JP 10106791A JP H04331956 A JPH04331956 A JP H04331956A
Authority
JP
Japan
Prior art keywords
substrate
pure water
pressure
point
drying
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10106791A
Other languages
Japanese (ja)
Inventor
Hidetaka Yahagi
秀隆 矢萩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP10106791A priority Critical patent/JPH04331956A/en
Publication of JPH04331956A publication Critical patent/JPH04331956A/en
Pending legal-status Critical Current

Links

Landscapes

  • Photoreceptors In Electrophotography (AREA)
  • Drying Of Solid Materials (AREA)

Abstract

PURPOSE:To dry a substrate surface without nonuniformly deteriorating its property by washing the substrate with ordinary-temp. pure water, then drying the substrate by a freeze drying method. CONSTITUTION:After the cylindrical substrate consisting of aluminum is immersed into a neutral detergent, the substrate is washed with the pure water at 23 deg.C (point a) under atm. pressure. The substrate is in succession cooled rapidly down to -20 deg.C (point b) under atm. pressure to freeze the pure water remaining on the surface. The pressure is then reduced down to 3Torr (point c) at this temp. and the substrate is heated up to 23 deg.C (point d) under the same pressure to sublimate the pure water remaining on the surface; thereafter, the pressure is restored to the atm. pressure (point a) and the dried substrate is obtd. The substrate is rapidly cooled down to the temp. below the triple point to freeze the moisture on the substrate surface and thereafter, the pure water is sublimated at ordinary temp. or below under the reduced pressure, by which the substrate surface is uniformly dried.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】この発明は、電子写真感光体,磁
気記録媒体あるいは各種半導体製品に用いられる基板の
純水洗浄後の乾燥方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for drying a substrate used in an electrophotographic photoreceptor, a magnetic recording medium, or various semiconductor products after cleaning with pure water.

【0002】0002

【従来の技術】電子写真感光体,磁気記録媒体あるいは
各種半導体製品においては、いろいろの基板が用いられ
る。電子写真感光体は、通常アルミニウム合金からなる
円筒状の基板上にセレン/テルル合金,セレン/ひ素合
金,有機顔料などの光導電性材料を蒸着あるいは塗布し
て感光層を形成することにより得られる。磁気記録媒体
は、例えばアルミニウム合金板上にニッケル/りん合金
層を設けてなる非磁性基板上にスパッタ法により磁性層
などを形成することにより得られる。また、各種半導体
製品においては、銅,アルミニウム,セラミックスなど
からなる基板上に半導体素子,電子部品などが固着され
る。
2. Description of the Related Art Various substrates are used in electrophotographic photoreceptors, magnetic recording media, and various semiconductor products. Electrophotographic photoreceptors are usually obtained by forming a photosensitive layer on a cylindrical substrate made of an aluminum alloy by vapor depositing or coating a photoconductive material such as a selenium/tellurium alloy, a selenium/arsenic alloy, or an organic pigment. . A magnetic recording medium is obtained by forming a magnetic layer or the like by sputtering on a non-magnetic substrate, such as a nickel/phosphorus alloy layer provided on an aluminum alloy plate. Furthermore, in various semiconductor products, semiconductor elements, electronic components, etc. are fixed onto a substrate made of copper, aluminum, ceramics, or the like.

【0003】これらの基板は、使用に際して、その表面
が充分に清浄化されていることが必要であり、脱脂,洗
浄が施される。従来、この脱脂,洗浄工程ではトリクレ
ンやフロンなどの強力な脱脂力を持つ塩素系溶剤が用い
られてきたが、近年、環境問題が大きく取り上げられる
ようになり、これらの塩素系溶剤に替えて洗剤などの水
溶性界面活性剤が用いられるようになってきた。
[0003] When these substrates are used, their surfaces must be sufficiently cleaned, and they are degreased and washed. Traditionally, in this degreasing and cleaning process, chlorinated solvents with strong degreasing power such as Trichlorene and Freon have been used, but in recent years, environmental issues have become a hot topic, and detergents have been used instead of these chlorinated solvents. Water-soluble surfactants such as

【0004】ところが、塩素系溶剤を用いる場合には、
もともと揮発性が強いために洗浄後の乾燥工程を必要と
しなかったが、水溶性界面活性剤を用いる場合には、脱
脂,洗浄後に、水溶性界面活性剤を除去するための純水
によるすすぎ洗浄が必要であり、それに続く乾燥工程が
必要となる。このために、基板を水溶性界面活性剤で脱
脂し、常温の純水ですすぎ洗浄した後、温度約70℃以
上の高温の純水に浸漬して引き上げるという乾燥方法,
いわゆる純水乾燥法が採られてきた。
However, when using chlorinated solvents,
Originally, there was no need for a drying process after washing because of its strong volatility, but when using a water-soluble surfactant, rinsing with pure water is required after degreasing and washing to remove the water-soluble surfactant. and a subsequent drying step. For this purpose, a drying method is used in which the substrate is degreased with a water-soluble surfactant, rinsed with pure water at room temperature, and then immersed in pure water at a temperature of approximately 70°C or higher and pulled up.
A so-called pure water drying method has been adopted.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、上述の
純水乾燥においては、乾燥むらが生じ易く基板表面品質
にばらつきが生じ易いという欠点があった。
However, the above-mentioned pure water drying has the disadvantage that drying tends to be uneven and the surface quality of the substrate tends to vary.

【0006】また、基板がアルミニウムまたはアルミニ
ウム合金からなる場合には、基板表面が乾燥の前後で変
質するという問題があった。すなわち、アルミニウムは
水と反応し易く、特に高温の水または水蒸気に接すると
表面が酸化される。しかもこの酸化状態は温度により異
なるため、ばらつきが発生し易く、基板表面は乾燥の前
後で変質し、しかも品質にばらつきが生じてしまう。
Furthermore, when the substrate is made of aluminum or an aluminum alloy, there is a problem in that the surface of the substrate changes in quality before and after drying. That is, aluminum easily reacts with water, and its surface is oxidized, especially when it comes into contact with high-temperature water or steam. Moreover, since this oxidation state differs depending on the temperature, variations are likely to occur, and the substrate surface changes in quality before and after drying, resulting in variations in quality.

【0007】このような表面品質にばらつきのある基板
を用いると、電子写真感光体あるいは磁気記録媒体の特
性がばらつくことになり、また、半導体製品においては
半導体素子,電子部品などの固着にばらつきが生じるこ
とになり、好ましくない。
[0007] If such a substrate with uneven surface quality is used, the characteristics of the electrophotographic photoreceptor or magnetic recording medium will vary, and in the case of semiconductor products, the adhesion of semiconductor elements, electronic parts, etc. will vary. This is not desirable.

【0008】この発明は、上述の点に鑑みてなされたも
のであって、純水洗浄後の基板を表面の変質をできるだ
け少なく抑え,かつ,表面品質にばらつきが発生しない
ように乾燥する方法を提供することを解決しようとする
課題とする。
The present invention has been made in view of the above points, and provides a method for drying a substrate after cleaning with pure water in a manner that minimizes surface deterioration and prevents variations in surface quality. Make providing the problem the problem you are trying to solve.

【0009】[0009]

【課題を解決するための手段】上記の課題は、この発明
によれば、基板を常温の純水で洗浄後、三重点以下の温
度にまで急速に冷却して基板表面の残存純水を凍結させ
、続いて固相(氷)領域内で三重点以下の圧力にまで減
圧し、続いて気相(水蒸気)領域内で常温以下の温度に
まで加熱して前記残存純水を昇華させて乾燥することに
より解決される。また、基板を常温の純水で洗浄後、三
重点以下の温度にまで急速に冷却して基板表面の残存純
水を凍結させ、続いて気相(水蒸気)領域内にまで減圧
して前記残存純水を昇華させて乾燥することによっても
解決される。
[Means for Solving the Problem] According to the present invention, the above problem is solved by cleaning the substrate with pure water at room temperature and then rapidly cooling it to a temperature below the triple point to freeze the remaining pure water on the surface of the substrate. Then, the pressure is reduced to below the triple point in the solid phase (ice) region, and then heated to a temperature below room temperature in the gas phase (steam) region to sublimate and dry the remaining pure water. This is solved by In addition, after washing the substrate with pure water at room temperature, it is rapidly cooled to a temperature below the triple point to freeze the remaining pure water on the substrate surface, and then the pressure is reduced to the gas phase (water vapor) region to remove the residual pure water. This problem can also be solved by sublimating pure water and drying it.

【0010】0010

【作用】上述のように、基板を常温の純水で洗浄後、三
重点以下の温度にまで急速に冷却して基板表面の残存純
水を凍結させ、減圧下,常温以下で昇華させて乾燥する
方法,いわゆる凍結乾燥法で乾燥することにより、基板
をむらなく乾燥することができ、アルミニウムまたはア
ルミニウム合金からなる基板の場合でも表面の変質(酸
化)を少なく抑え,かつ,表面を不均一に変質させるこ
となく乾燥することが可能となる。
[Operation] As mentioned above, after cleaning the substrate with pure water at room temperature, it is rapidly cooled to a temperature below the triple point to freeze the remaining pure water on the surface of the substrate, and then sublimated and dried under reduced pressure at below room temperature. By drying using the so-called freeze-drying method, the substrate can be dried evenly, and even in the case of substrates made of aluminum or aluminum alloy, surface deterioration (oxidation) can be kept to a minimum, and the surface can be dried evenly. It becomes possible to dry without deteriorating the quality.

【0011】[0011]

【実施例】図1は水の状態図によるこの発明の乾燥方法
の一例の説明図である。図1において、Tは三重点を示
し、線ATは昇華曲線,線TBCは蒸発曲線,線TDは
融解曲線を示し、これらの線により固相(氷),液相(
水),気相(水蒸気)の各領域が分けられている。Bは
沸点,Cは臨界点である。まず、常温の純水から引き上
げられ基板表面に水の付着している状態は液相領域内の
a点である。この基板を急速に冷却して固相領域内のb
点まで温度を下げて表面の水を凍らせる。次に温度を一
定に保ったまま同じ固相領域内のc点まで減圧し、続い
て圧力を一定に保ったまま気相領域内のd点にまで昇温
させると凍りついた水は直ちに気体となって昇華する。 最後に昇圧にしてa点に戻すことにより、乾燥した基板
が得られる。また、b点から温度を一定に保ったまま気
相領域内のc1 点まで減圧して凍りついた水を直ちに
昇華させ、その後昇温,昇圧してa点に戻すことによっ
ても乾燥した基板を得ることができる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 is an explanatory diagram of an example of the drying method of the present invention using a phase diagram of water. In Figure 1, T indicates the triple point, line AT indicates the sublimation curve, line TBC indicates the evaporation curve, and line TD indicates the melting curve.
The water phase (water) and gas phase (water vapor) are separated. B is the boiling point and C is the critical point. First, the state where water is pulled up from pure water at room temperature and adheres to the substrate surface is point a in the liquid phase region. This substrate is rapidly cooled to reduce b within the solid phase region.
The temperature is lowered to a point where the water on the surface freezes. Next, the pressure is reduced to point c in the same solid phase region while keeping the temperature constant, and then the temperature is raised to point d in the gas phase region while keeping the pressure constant.The frozen water immediately turns into gas. Become and sublimate. Finally, by increasing the pressure and returning to point a, a dry substrate can be obtained. A dry substrate can also be obtained by reducing the pressure from point b to point c1 in the gas phase region while keeping the temperature constant, immediately sublimating the frozen water, and then increasing the temperature and pressure to return to point a. be able to.

【0012】上述の例では、b点とc点とは同一温度と
したが、その必要はなく、c点は固相領域内であれば良
い。また、c点とd点とは同一圧力としたが、その必要
はなく、d点は気相領域内であれば良い。
[0012] In the above example, point b and point c are at the same temperature, but this is not necessary as long as point c is within the solid phase region. Further, although the pressure at point c and point d is the same, it is not necessary as long as point d is within the gas phase region.

【0013】実施例1 アルミニウム合金からなり所要の機械加工の施された円
筒状基板を、中性洗剤に約5分間浸漬した後、大気圧下
で温度23℃の純水によりすすぎ洗浄した(a点)。続
いて、大気圧下で−20℃まで急速に冷却して表面の残
存純水を凍らせた(b点)。次に、その温度で圧力3T
orrにまで減圧し(c点)、同じ圧力下で温度23℃
にまで加熱して(d点)、表面の残存純水を昇華させた
後、大気圧に戻して(a点)乾燥した基板を得た。
Example 1 A cylindrical substrate made of aluminum alloy and subjected to required machining was immersed in a neutral detergent for about 5 minutes, and then rinsed with pure water at a temperature of 23° C. under atmospheric pressure (a point). Subsequently, it was rapidly cooled to −20° C. under atmospheric pressure to freeze the remaining pure water on the surface (point b). Next, at that temperature, the pressure is 3T.
The pressure was reduced to orr (point c), and the temperature was 23°C under the same pressure.
(point d) to sublimate residual pure water on the surface, and then returned to atmospheric pressure (point a) to obtain a dry substrate.

【0014】比較例1 アルミニウム合金からなり所要の機械加工の施された円
筒状基板を、中性洗剤に約5分間浸漬した後、大気圧下
で温度23℃の純水によりすすぎ洗浄し、続いて温度7
0℃以上の純水に浸漬した後引き上げるという従来の方
法により乾燥した基板を作製した。
Comparative Example 1 A cylindrical substrate made of an aluminum alloy and subjected to the required machining was immersed in a neutral detergent for about 5 minutes, and then rinsed with pure water at a temperature of 23° C. under atmospheric pressure. Temperature 7
A dried substrate was prepared by the conventional method of immersing it in pure water at 0° C. or higher and then pulling it up.

【0015】これらの基板上に、セレン/ひ素合金をそ
れぞれ真空蒸着して感光層を形成して、実施例1および
比較例1の電子写真感光体を作製した。
Electrophotographic photoreceptors of Example 1 and Comparative Example 1 were prepared by vacuum-depositing a selenium/arsenic alloy on each of these substrates to form a photosensitive layer.

【0016】アルミニウム合金からなる基板を用いた電
子写真感光体においては、基板表面が酸化されている程
露光後の表面電位,いわゆる残留電位が大きいことが知
られている。上述のようにして得られた感光体について
残留電位を測定したところ、図2に示す結果が得られた
。図2において実線は実施例の感光体,一点鎖線は比較
例の感光体についての結果を示す。図2より実施例の感
光体のほうが比較例の感光体よりも残留電位が少なく、
基板の表面の酸化(表面変質)が低く抑えられているこ
とが判り、実施例の乾燥方法が優れていることは明らか
である。
It is known that in an electrophotographic photoreceptor using a substrate made of an aluminum alloy, the more the substrate surface is oxidized, the higher the surface potential after exposure, so-called residual potential. When the residual potential of the photoreceptor obtained as described above was measured, the results shown in FIG. 2 were obtained. In FIG. 2, the solid line shows the results for the photoreceptor of the example, and the dashed line shows the results for the photoreceptor of the comparative example. From FIG. 2, the photoreceptor of the example has a lower residual potential than the photoreceptor of the comparative example.
It was found that oxidation (surface alteration) on the surface of the substrate was suppressed to a low level, and it is clear that the drying method of the example is superior.

【0017】[0017]

【発明の効果】この発明によれば、電子写真感光体,磁
気記録媒体あるいは半導体製品に用いられる基板を常温
の純水で洗浄後、三重点以下の温度にまで急速に冷却し
て基板表面の残存純水を凍結させ、減圧下,常温以下で
昇華させて乾燥する方法,いわゆる凍結乾燥法で乾燥す
る。このような乾燥方法を採ることにより、基板の脱脂
,洗浄に塩素系溶剤の替わりに洗剤などの水溶性界面活
性剤を用いても基板をむらなく乾燥することができ、ア
ルミニウムまたはアルミニウム合金からなる基板の場合
でも表面の変質(酸化)を少なく抑え,かつ,表面を不
均一に変質させることなく乾燥することが可能となり、
環境汚染を避けることが可能となる。
According to the present invention, after cleaning a substrate used for an electrophotographic photoreceptor, magnetic recording medium, or semiconductor product with pure water at room temperature, the substrate surface is rapidly cooled to a temperature below the triple point. The residual pure water is frozen and dried by a so-called freeze-drying method, in which it is sublimated and dried under reduced pressure at room temperature or below. By adopting such a drying method, it is possible to dry the substrate evenly even if a water-soluble surfactant such as a detergent is used instead of a chlorine-based solvent for degreasing or cleaning the substrate. Even in the case of substrates, it is possible to minimize surface deterioration (oxidation) and dry without unevenly deteriorating the surface.
It becomes possible to avoid environmental pollution.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】水の状態図によるこの発明の乾燥方法の一例の
説明図
[Fig. 1] An explanatory diagram of an example of the drying method of the present invention using a state diagram of water.

【図2】実施例および比較例の感光体の残留電位を示す
線図
[Figure 2] Diagram showing the residual potential of photoreceptors in Examples and Comparative Examples

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】基板を常温の純水で洗浄後三重点以下の温
度にまで急速に冷却して基板表面の残存純水を凍結させ
、続いて固相(氷)領域内で三重点以下の圧力にまで減
圧し、続いて気相(水蒸気)領域内で常温以下の温度に
まで加熱して前記残存純水を昇華させて乾燥することを
特徴とする基板乾燥方法。
Claim 1: After washing the substrate with pure water at room temperature, the remaining pure water on the surface of the substrate is frozen by rapidly cooling it to a temperature below the triple point, and then the pure water remaining on the substrate surface is frozen in the solid phase (ice) region. A method for drying a substrate, comprising: reducing the pressure to a certain pressure, and then heating the remaining pure water to a temperature below room temperature in a gas phase (steam) region to sublimate and dry the remaining pure water.
【請求項2】基板を常温の純水で洗浄後三重点以下の温
度にまで急速に冷却して基板表面の残存純水を凍結させ
、続いて気相(水蒸気)領域内にまで減圧して前記残存
純水を昇華させて乾燥することを特徴とする基板乾燥方
法。
Claim 2: After washing the substrate with pure water at room temperature, it is rapidly cooled to a temperature below the triple point to freeze the remaining pure water on the surface of the substrate, and then the pressure is reduced to the gas phase (water vapor) region. A method for drying a substrate, characterized in that the residual pure water is sublimated and dried.
【請求項3】基板がアルミニウムまたはアルミニウム合
金からなることを特徴とする請求項1または2記載の基
板乾燥方法。
3. The method for drying a substrate according to claim 1, wherein the substrate is made of aluminum or an aluminum alloy.
JP10106791A 1991-05-07 1991-05-07 Substrate drying method Pending JPH04331956A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10106791A JPH04331956A (en) 1991-05-07 1991-05-07 Substrate drying method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10106791A JPH04331956A (en) 1991-05-07 1991-05-07 Substrate drying method

Publications (1)

Publication Number Publication Date
JPH04331956A true JPH04331956A (en) 1992-11-19

Family

ID=14290763

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10106791A Pending JPH04331956A (en) 1991-05-07 1991-05-07 Substrate drying method

Country Status (1)

Country Link
JP (1) JPH04331956A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07218124A (en) * 1994-01-28 1995-08-18 Hideaki Nakajima Thermal low-pressure drying
WO2007111269A1 (en) * 2006-03-24 2007-10-04 Central Research Institute Of Electric Power Industry Method of removing ice from ice-containing material with use of liquefied substance
JP2012074564A (en) * 2010-09-29 2012-04-12 Dainippon Screen Mfg Co Ltd Substrate processing apparatus and substrate processing method
JP2013201302A (en) * 2012-03-26 2013-10-03 Dainippon Screen Mfg Co Ltd Substrate processing apparatus and substrate processing method
JP2016102606A (en) * 2014-11-27 2016-06-02 エリーパワー株式会社 Vacuum drying equipment, vacuum drying method and producing method of battery electrode

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07218124A (en) * 1994-01-28 1995-08-18 Hideaki Nakajima Thermal low-pressure drying
WO2007111269A1 (en) * 2006-03-24 2007-10-04 Central Research Institute Of Electric Power Industry Method of removing ice from ice-containing material with use of liquefied substance
JP4734406B2 (en) * 2006-03-24 2011-07-27 財団法人電力中央研究所 Method for removing ice from ice-containing material using liquefied material
JP2012074564A (en) * 2010-09-29 2012-04-12 Dainippon Screen Mfg Co Ltd Substrate processing apparatus and substrate processing method
KR101227760B1 (en) * 2010-09-29 2013-01-29 다이닛뽕스크린 세이조오 가부시키가이샤 Apparatus for and Method of Processing Substrate
US20150255315A1 (en) * 2010-09-29 2015-09-10 Dainippon Screen Mfg. Co., Ltd. Apparatus for and method of processing substrate
US9922848B2 (en) 2010-09-29 2018-03-20 SCREEN Holdings Co., Ltd. Apparatus for and method of processing substrate
JP2013201302A (en) * 2012-03-26 2013-10-03 Dainippon Screen Mfg Co Ltd Substrate processing apparatus and substrate processing method
JP2016102606A (en) * 2014-11-27 2016-06-02 エリーパワー株式会社 Vacuum drying equipment, vacuum drying method and producing method of battery electrode

Similar Documents

Publication Publication Date Title
JPH08250464A (en) Micromechanism constituent part drying method
JPH04331956A (en) Substrate drying method
KR102338509B1 (en) Substrate treating liquid
US4312935A (en) Class of E-beam resists based on conducting organic charge transfer salts
CN109065581A (en) A kind of flexible base board and preparation method thereof, array substrate
JPH01130159A (en) Manufacture of photosensitive body
KR100354600B1 (en) Process for treating a semiconductor substrate
JPH0754795B2 (en) Resist development method
Barth et al. Optimization of YBa2Cu3O7− δ submicrometer structure fabrication
JP2007260624A (en) Vacuum vessel for use in vacuum apparatus, and method for manufacturing the same
US4312936A (en) Class of E-beam resists based on conducting organic charge transfer salts
Sasaki et al. Breakthrough of sublimation drying by liquid phase deposition
Latef et al. Characterization of 9, 10 anthraquinone thin films
US4338392A (en) Class of E-beam resists based on conducting organic charge transfer salts
US3532540A (en) Differential adhesion process for making high resolution thin film patterns
CN113471058B (en) Surface processing method of silicon carbide wafer
JPH07142333A (en) Method and device for developing and rinsing of resist
KR970011141B1 (en) Method of manufacturing high temperature superconductor thin films
JP3223533B2 (en) Method for manufacturing semiconductor device
JPH01283887A (en) Forming method for pattern of oxide superconductor
Kornblit et al. Linewidth control in trilevel etching
US20230374669A1 (en) Wet Etching Method
JP7164773B2 (en) How to transfer the pattern to the layer
JPH0572006B2 (en)
GB2271467A (en) Manufacturing method of a semiconductor device