JPH04331858A - Compressor equipped with transmission for air-conditioning automobile - Google Patents

Compressor equipped with transmission for air-conditioning automobile

Info

Publication number
JPH04331858A
JPH04331858A JP10148891A JP10148891A JPH04331858A JP H04331858 A JPH04331858 A JP H04331858A JP 10148891 A JP10148891 A JP 10148891A JP 10148891 A JP10148891 A JP 10148891A JP H04331858 A JPH04331858 A JP H04331858A
Authority
JP
Japan
Prior art keywords
compressor
oil
transmission
temperature
continuously variable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10148891A
Other languages
Japanese (ja)
Inventor
Akio Matsuoka
彰夫 松岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
NipponDenso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NipponDenso Co Ltd filed Critical NipponDenso Co Ltd
Priority to JP10148891A priority Critical patent/JPH04331858A/en
Publication of JPH04331858A publication Critical patent/JPH04331858A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H57/00General details of gearing
    • F16H57/04Features relating to lubrication or cooling or heating
    • F16H57/0412Cooling or heating; Control of temperature
    • F16H57/0413Controlled cooling or heating of lubricant; Temperature control therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H57/00General details of gearing
    • F16H57/04Features relating to lubrication or cooling or heating
    • F16H57/0434Features relating to lubrication or cooling or heating relating to lubrication supply, e.g. pumps ; Pressure control

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Details Of Gearings (AREA)
  • Friction Gearing (AREA)

Abstract

PURPOSE:To control the temperature of the lubricating oil in a transmission to an optimum value so that the power transmission efficiency of a frictional type continuously variable transmission for driving the coolant compressor for an air conditioner of an automobile becomes max. CONSTITUTION:A frictional type continuously variable transmission 2 driven by the engine 9 of an automobile is controlled by a controller 14, and a coolant compressor 1 is driven at the number of revolution corresponding to the coolant flow rate for generating the cooling faculty necessary at that time. As for the temperature of the lubricating oil for lubricating and cooling the engagement surface of a frictional wheel made of metal in the transmission 2, the power transmission efficiency is reduced at the higher or lower temperature than a specific optimum temperature, and the lubricating oil is allowed to flow from an oil pump 17 to a cooling circuit 16 having an oil cooler 18, and each number of revolution of the oil pump 17 and a fan motor 20 is controlled so that an oil temperature sensor 19 detects the optimum temperature.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、自動車用空調装置の冷
媒圧縮機として実施するのに好適な、摩擦式無段変速機
によって変速駆動される冷媒用圧縮機に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a refrigerant compressor driven by a friction type continuously variable transmission and suitable for use as a refrigerant compressor for an automobile air conditioner.

【0002】0002

【従来の技術】自動車用空調装置の特有の問題として、
空調装置が自動車走行用のエンジンによって駆動されて
おり、自動車の走行状態に応じてエンジンの回転数が広
範囲に変化するので、もし、空調装置の冷媒圧縮機をエ
ンジン直結で駆動すると、車室内の温度が自動車の走行
状態に左右されることになるから、走行状態と無関係に
車室内の温度を一定に保つために、普通は冷媒圧縮機と
エンジンの出力軸との間に電磁クラッチを挿入し、圧縮
機を断続駆動することによって略一定の車室温度を維持
するようにしている。
[Prior Art] As a problem peculiar to automobile air conditioners,
The air conditioner is driven by the car's engine, and the engine speed changes over a wide range depending on the car's driving conditions. Therefore, if the air conditioner's refrigerant compressor is directly connected to the engine, Since the temperature depends on the driving conditions of the car, an electromagnetic clutch is usually inserted between the refrigerant compressor and the output shaft of the engine in order to keep the temperature inside the vehicle constant regardless of the driving conditions. The compressor is driven intermittently to maintain a substantially constant cabin temperature.

【0003】このような従来技術における、圧縮機の断
続駆動による制御は、車室内の温度を間欠的に引き下げ
ることによって、温度が上下を繰り返しながら目標の温
度を大体において維持するものであるから、厳密には一
定の温度を保持することができず、また微妙な温度調節
もこのような方法では不可能である。そこでエンジンと
冷媒用圧縮機との間に無段変速機を介設し、圧縮機の回
転数を無段階に制御可能とすることにより、エンジンの
回転数変化に対応して変速比を変化させ、圧縮機の回転
数がその時に必要な冷房能力をもたらす値になるように
調整し、併せて消費動力の節約をも図ることが考えられ
た。特開昭60−245868号公報及び実開昭61−
97658号公報には、このような目的に使用可能な、
数個の円錐形摩擦車とリング等からなる遊星型の摩擦式
無段変速機が記載されている。
[0003] In such conventional technology, control by intermittent drive of the compressor is to intermittently lower the temperature in the vehicle interior, thereby maintaining the target temperature while the temperature repeats ups and downs. Strictly speaking, it is not possible to maintain a constant temperature, and delicate temperature control is also not possible with this method. Therefore, by interposing a continuously variable transmission between the engine and the refrigerant compressor and making it possible to control the rotation speed of the compressor steplessly, the gear ratio can be changed in response to changes in the engine rotation speed. One idea was to adjust the rotation speed of the compressor to a value that would provide the required cooling capacity at that time, and also to save power consumption. JP-A No. 60-245868 and Utility Model Application No. 61-
97658, which can be used for such purposes,
A planetary friction type continuously variable transmission consisting of several conical friction wheels, rings, etc. is described.

【0004】0004

【発明が解決しようとする課題】金属製の摩擦車(リン
グを含む)同士を係合させた無段変速機においては、摩
擦係合面の磨耗やかじりを防止すると共に、摩擦車を冷
却し係合面の摩擦によって発生する熱を取り去るために
、比較的多量の潤滑油を摩擦係合面に供給するように構
成されているが、潤滑油が摩擦係合面を潤滑と同時に冷
却するものである以上、潤滑油が吸収した熱を外部へ放
出させる必要がある。前記従来技術においては、無段変
速機に冷却ファンを設け、それを入力軸や出力プーリに
よって駆動することにより潤滑油を冷却するようにして
いるが、このような変速機に使用される潤滑油は、単に
冷却すればよいというものではなく、潤滑油の冷却の程
度によっては、変速機自体の機械的特性が著しく変化す
るということが判明した。
[Problem to be solved by the invention] In a continuously variable transmission in which metal friction wheels (including rings) are engaged with each other, it is necessary to prevent wear and galling of the friction engagement surfaces and to cool the friction wheels. In order to remove the heat generated by the friction of the engagement surfaces, a relatively large amount of lubricating oil is supplied to the friction engagement surfaces, but the lubricating oil lubricates the friction engagement surfaces and cools them at the same time. Therefore, it is necessary to release the heat absorbed by the lubricating oil to the outside. In the above-mentioned conventional technology, a cooling fan is provided in the continuously variable transmission, and the lubricating oil is cooled by driving the cooling fan with an input shaft or an output pulley. However, it has been found that the mechanical characteristics of the transmission itself change significantly depending on the degree of cooling of the lubricating oil.

【0005】図2は、数個の円錐形摩擦車とリング等か
らなる遊星型の摩擦式無段変速機についての試験結果に
基づき、横軸に潤滑油の温度をとり、縦軸に無段変速機
の動力伝達効率をとって、温度に対する伝達効率の変化
を示したものである。この試験結果によって明らかにな
ったことは、無段変速機の動力伝達効率と潤滑油温度の
間には明確な関数関係があること、伝達効率には極大値
があり、その極大値を示す状態の油温をTO とすると
、油温がTO より高くてもまた逆に低くても伝達効率
が低下すること、また、油温がTmax として示した
温度を越えるとグロススリップ(スリップ率100%)
の状態となり、全く動力伝達ができなくなるということ
である。
FIG. 2 shows the temperature of the lubricating oil on the horizontal axis and the continuously variable transmission on the vertical axis, based on test results for a planetary friction type continuously variable transmission consisting of several conical friction wheels, rings, etc. This figure shows the change in transmission efficiency with respect to temperature, taking the power transmission efficiency of the transmission. The test results revealed that there is a clear functional relationship between the power transmission efficiency of continuously variable transmissions and lubricant temperature, and that there is a maximum value for transmission efficiency, and the state in which the maximum value is reached. If the oil temperature is TO, the transmission efficiency will decrease whether the oil temperature is higher or lower than TO, and if the oil temperature exceeds the temperature shown as Tmax, gross slip (slip ratio 100%) will occur.
This means that no power can be transmitted at all.

【0006】油温が低い領域で伝達効率が低下するのは
、温度の低下と共に潤滑油の粘度が高くなる結果、流体
摩擦(粘性抵抗)の増加により動力損失が大きくなるた
めと考えられる。反対に、油温が高い領域でも伝達効率
の低下が見られるのは、油温の上昇と共に粘度が低下す
るため、摩擦伝動面間に存在するオイルのせん断強度が
低下し、滑り速度が大きくなることによって、伝達効率
が低下の方向に転じ、さらに、Tmax 以上の領域で
は完全な滑り状態になって、動力を伝達することができ
なくなるものと考えられる。
The reason why the transmission efficiency decreases in a region where the oil temperature is low is considered to be that as the temperature decreases, the viscosity of the lubricating oil increases, resulting in an increase in fluid friction (viscous resistance) and a large power loss. On the other hand, a decrease in transmission efficiency is observed even in areas where the oil temperature is high.As the viscosity decreases as the oil temperature increases, the shear strength of the oil that exists between the friction transmission surfaces decreases, and the sliding speed increases. As a result, the transmission efficiency tends to decrease, and furthermore, in a region exceeding Tmax, it is considered that a complete slipping state occurs, making it impossible to transmit power.

【0007】本発明は、このような観点から、自動車空
調用の圧縮機を駆動する摩擦式無段変速機に対して、そ
の潤滑油の温度を図2に示すTO のような最適値に維
持する手段を設けることによって、無段変速機が常に最
も高い伝達効率で圧縮機を駆動することができるように
することを発明の目的とするものである。
From this point of view, the present invention aims to maintain the temperature of lubricating oil at an optimum value such as TO shown in FIG. 2 for a friction type continuously variable transmission that drives a compressor for automobile air conditioning. An object of the invention is to enable the continuously variable transmission to always drive the compressor with the highest transmission efficiency by providing a means for doing so.

【0008】[0008]

【課題を解決するための手段】本発明は前記の課題を解
決する手段として、自動車用空調装置の冷媒を圧縮する
圧縮機と、前記圧縮機を自動車の走行用エンジンによっ
て駆動するために前記圧縮機と前記エンジンとの間に介
設され前記圧縮機の駆動回転数を制御する摩擦式無段変
速機と、前記摩擦式無段変速機の摩擦係合面を潤滑する
潤滑油を冷却するために前記摩擦式無段変速機の変速機
室に接続して設けられる冷却回路と、前記冷却回路に挿
入して設けられるオイルクーラと、前記冷却回路と直列
に前記冷却回路に設けられるオイルポンプと、前記変速
機室から前記オイルクーラに到る冷却回路において潤滑
油の温度を検出する油温センサと、前記油温センサの検
出信号が入力されることによって潤滑油の温度を所定の
値に保つために前記オイルクーラにおける潤滑油の冷却
能力を変化させる制御装置とを備えていることを特徴と
する自動車空調用の変速機付き圧縮機を提供する。
[Means for Solving the Problems] The present invention provides a compressor for compressing refrigerant in an automobile air conditioner, and a compressor for driving the compressor by the engine for driving the automobile. a friction type continuously variable transmission that is interposed between the compressor and the engine and controls the driving rotation speed of the compressor; and a lubricating oil that lubricates the frictional engagement surfaces of the friction type continuously variable transmission. a cooling circuit connected to the transmission chamber of the friction type continuously variable transmission; an oil cooler inserted into the cooling circuit; and an oil pump installed in the cooling circuit in series with the cooling circuit. , an oil temperature sensor that detects the temperature of lubricating oil in a cooling circuit extending from the transmission room to the oil cooler, and maintaining the temperature of the lubricating oil at a predetermined value by inputting a detection signal from the oil temperature sensor. The present invention provides a compressor with a transmission for automobile air conditioning, characterized in that the compressor is equipped with a control device for changing the cooling capacity of lubricating oil in the oil cooler.

【0009】本発明は、また、前記の手段における前記
油温センサの検出信号に加えて、前記圧縮機の回転数信
号や圧縮機を駆動するエンジンの回転数信号を前記制御
装置に入力して、前記オイルクーラにおける潤滑油の冷
却能力を補正し、回転数が高い程、前記油温センサの検
出する潤滑油の温度が低くなるように構成したことを特
徴とする前記請求項1記載の自動車空調用の変速機付き
圧縮機をも提供する。
In addition to the detection signal of the oil temperature sensor in the above-mentioned means, the present invention also includes inputting a rotation speed signal of the compressor and a rotation speed signal of an engine that drives the compressor to the control device. 2. The vehicle according to claim 1, wherein the lubricating oil cooling capacity of the oil cooler is corrected so that the higher the rotation speed, the lower the temperature of the lubricating oil detected by the oil temperature sensor. The Company also provides compressors with variable speeds for air conditioning.

【0010】0010

【作用】自動車用空調装置の冷媒圧縮機が自動車の走行
用エンジンによって駆動されるとき、走行状態に応じて
変化するエンジンの回転数によって冷房能力が変動する
が、圧縮機とエンジンの間に介設した摩擦式無段変速機
の変速比を、エンジンの回転数の変化に応じて変化させ
て、圧縮機の回転数をその時に必要な冷房能力をもたら
す冷媒流量に見合う値に調整すれば、常に過不足のない
空調効果が得られる。しかしながら、摩擦式無段変速機
の金属製摩擦車の係合面を潤滑、冷却するために供給さ
れる潤滑油の温度によって、摩擦式無段変速機の伝達効
率に大きな影響が現れることが確認され、伝達効率は特
定の最適温度よりも低くても、また高くても低下するこ
と、更に特定の温度を越えるとグロススリップの状態に
陥ることが判明したので、本発明においては、摩擦式無
段変速機の変速機室から潤滑油をオイルポンプによって
冷却回路のオイルクーラに送り、油温センサが検出する
潤滑油温度が前記最適温度を維持するように、制御装置
によってオイルクーラの潤滑油冷却能力を調整する。
[Function] When the refrigerant compressor of an automobile air conditioner is driven by the automobile's engine, the cooling capacity fluctuates depending on the engine speed, which changes depending on the driving condition. By changing the gear ratio of the installed friction-type continuously variable transmission in response to changes in engine speed, the compressor speed can be adjusted to a value commensurate with the refrigerant flow rate that provides the required cooling capacity at that time. You can always get just the right air conditioning effect. However, it has been confirmed that the transmission efficiency of friction-type continuously variable transmissions is significantly affected by the temperature of the lubricating oil supplied to lubricate and cool the engagement surfaces of the metal friction wheels of friction-type continuously variable transmissions. It was found that the transmission efficiency decreases even if the temperature is lower or higher than a specific optimum temperature, and that a gross slip condition occurs when the temperature exceeds a specific temperature. The oil pump sends lubricating oil from the transmission chamber of the gearbox to the oil cooler in the cooling circuit, and the control device cools the lubricating oil in the oil cooler so that the lubricating oil temperature detected by the oil temperature sensor maintains the optimum temperature. Adjust your abilities.

【0011】摩擦式無段変速機の負荷が変化するとき、
摩擦車の係合面における潤滑油の温度は油温センサの検
出値と一時的に異なる値を示すことがあるので、本発明
の第2の手段によれば、油温センサの検出値に加えて、
圧縮機の回転数、すなわち、摩擦式無段変速機の出力回
転数を検知して制御装置に入力し、圧縮機の回転数が高
い程、油温センサの検出する潤滑油の温度が低くなるよ
うに制御することによって、摩擦車の係合面における潤
滑油の温度を正確に前記最適温度に維持することが可能
になる。
[0011] When the load of the friction type continuously variable transmission changes,
Since the temperature of the lubricating oil on the engagement surface of the friction wheel may temporarily show a value different from the value detected by the oil temperature sensor, according to the second means of the present invention, in addition to the value detected by the oil temperature sensor, hand,
The rotation speed of the compressor, that is, the output rotation speed of the friction type continuously variable transmission, is detected and input to the control device.The higher the rotation speed of the compressor, the lower the temperature of the lubricating oil detected by the oil temperature sensor. By controlling as described above, it becomes possible to accurately maintain the temperature of the lubricating oil at the engagement surface of the friction wheel at the optimum temperature.

【0012】0012

【実施例】図1は本発明の圧縮機を備えた自動車空調装
置のシステム全体を例示したもので、1は摩擦式無段変
速機2と一体化された冷媒圧縮機、3は凝縮器、4は受
液器、5は膨張弁、6は蒸発器、7はそのための送風フ
ァン、8は吹き出し空気温度を検出する温度センサ、9
は車両走行用エンジン、10はクランクプーリ、11は
伝動用ベルト、12は変速機駆動用プーリ、13はエン
ジン9の回転数を検出する回転数センサをそれぞれ示し
ている。14は例えば電子式制御装置のような自動制御
装置で、操作部15からの信号や、温度センサ8、回転
数センサ13等が検出する信号のほか後述の信号が入力
される。
DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 shows an example of the entire system of an automobile air conditioner equipped with a compressor according to the present invention, in which 1 is a refrigerant compressor integrated with a friction-type continuously variable transmission 2, 3 is a condenser, 4 is a liquid receiver, 5 is an expansion valve, 6 is an evaporator, 7 is a blower fan therefor, 8 is a temperature sensor that detects the temperature of the blown air, 9
10 is a crank pulley, 11 is a transmission belt, 12 is a transmission drive pulley, and 13 is a rotational speed sensor for detecting the rotational speed of the engine 9. Reference numeral 14 denotes an automatic control device such as an electronic control device, into which signals from the operating section 15, signals detected by the temperature sensor 8, the rotational speed sensor 13, and the like, as well as signals described below are input.

【0013】本発明による自動車空調用の摩擦式無段変
速機付き圧縮機の本体部分のみの実施例を図4に示す。 図中、100は図1における圧縮機1の一例としてのベ
ーン型圧縮機を示し、200は、同じく図1における摩
擦式無段変速機2の一例としての、数個の遊星摩擦車2
02を1個のリング204と各1個の入力摩擦車206
及び出力摩擦車208に係合させた形式の摩擦式無段変
速機を示している。これらのベーン型圧縮機100、お
よび遊星摩擦車を有する無段変速機200の基本構成自
体は従来から知られているが、ここではまず、それらの
基本構成から説明することとする。
FIG. 4 shows an embodiment of only the main body portion of a compressor with a friction type continuously variable transmission for automobile air conditioning according to the present invention. In the figure, 100 indicates a vane type compressor as an example of the compressor 1 in FIG. 1, and 200 indicates several planetary friction wheels 2 as an example of the friction type continuously variable transmission 2 in FIG.
02 with one ring 204 and one input friction wheel 206 each
and a friction type continuously variable transmission engaged with an output friction wheel 208. Although the basic configurations of the vane compressor 100 and the continuously variable transmission 200 having a planetary friction wheel have been known, the basic configurations thereof will first be explained here.

【0014】無段変速機付き圧縮機100のフロントハ
ウジング150内に形成された空間102は、隔壁24
0によって、吸入室104と変速機室230に区画され
、変速機室230内には後述のような摩擦式無段変速機
構が構成されると共に、変速機用の潤滑油を所定のレベ
ルまで収容している。圧縮機100の吸入室104には
前述の蒸発器6から低温低圧の冷媒を受け入れ、吸気通
路114から圧縮機100の作動室を形成するベーン1
12の間へ吸入させると共に、吐出側の高圧室106に
は吐出通路108が設けられて、前述の凝縮器3へ高温
高圧の冷媒を送り出すようになっている。高圧室106
の下部領域はオイル分離室110を形成していて、吐出
された高温高圧の冷媒から比重の差等によって分離され
た冷凍機油が底部に溜まるようになっている。
A space 102 formed in the front housing 150 of the compressor 100 with a continuously variable transmission is connected to the partition wall 24.
0, it is divided into a suction chamber 104 and a transmission chamber 230, and the transmission chamber 230 is configured with a friction-type continuously variable transmission mechanism as described below, and also contains lubricating oil for the transmission up to a predetermined level. are doing. The suction chamber 104 of the compressor 100 receives low-temperature, low-pressure refrigerant from the evaporator 6 described above, and the vane 1 forming the working chamber of the compressor 100 enters the intake passage 114.
A discharge passage 108 is provided in the high-pressure chamber 106 on the discharge side, and the high-temperature and high-pressure refrigerant is sent to the condenser 3 described above. Hyperbaric chamber 106
The lower region of the oil separation chamber 110 forms an oil separation chamber 110, in which refrigerating machine oil separated from the discharged high-temperature, high-pressure refrigerant due to differences in specific gravity, etc., is collected at the bottom.

【0015】オイル分離室110に溜まった冷凍機油は
加圧された冷媒の吐出圧を帯びているから、吸入側との
差圧を利用すれば、特別のオイルポンプを設けなくても
冷凍機油をベーンの摺動面や軸受等へ循環させることが
できる。その一つとして、圧縮機100のセンターハウ
ジング140等に設けられた一連の連通孔120は、オ
イル分離室110からボス部142の軸受242へ冷凍
機油を送る通路を例示したものである。なお、図4にお
ける132は、冷凍機油が変速機室230へ洩れないよ
うにするためのシャフトシールを示してしる。
Since the refrigerating machine oil accumulated in the oil separation chamber 110 has the discharge pressure of the pressurized refrigerant, if the differential pressure with the suction side is used, the refrigerating machine oil can be removed without installing a special oil pump. It can be circulated to vane sliding surfaces, bearings, etc. As one example, a series of communication holes 120 provided in the center housing 140 and the like of the compressor 100 is an example of a path for sending refrigerating machine oil from the oil separation chamber 110 to the bearing 242 of the boss portion 142. Note that 132 in FIG. 4 indicates a shaft seal for preventing refrigerating machine oil from leaking into the transmission chamber 230.

【0016】摩擦式無段変速機200は、その中心に前
述のように自動車のエンジンからベルトを介して回転駆
動されるプーリ214(図1のプーリ12に相当する)
を取り付けられた入力軸216を有し、入力軸216は
軸受218によって支持されると共に、変速機室230
の内部において、入力軸216に固着した円板状の入力
摩擦車206と螺着されている。また、入力摩擦車20
6のハブ上には、ラジアル軸受222及びスラスト軸受
220によってカムディスク250が軸承される。カム
ディスク250の右端面には、出力回転検出用リング2
52を挟んで、スプライン134によって圧縮機100
のシャフト130に取りつけられたディスク210がボ
ルト254によって連結されている。
At the center of the friction type continuously variable transmission 200 is a pulley 214 (corresponding to the pulley 12 in FIG. 1) which is rotationally driven from the automobile engine via a belt as described above.
The input shaft 216 is supported by a bearing 218 and is connected to a transmission chamber 230.
Inside, it is screwed to a disc-shaped input friction wheel 206 fixed to the input shaft 216. In addition, the input friction wheel 20
A cam disk 250 is supported on the hub of No. 6 by a radial bearing 222 and a thrust bearing 220. On the right end surface of the cam disc 250, there is an output rotation detection ring 2.
52, the compressor 100 is connected by splines 134.
A disk 210 is attached to the shaft 130 of the disk 210 and connected by a bolt 254.

【0017】また、カムディスク250は、公知の推力
発生用カム機構256を介して出力摩擦車208を後方
から支持している。出力摩擦車208はカムディスク2
50の円筒形部分の上に相対回転可能に遊嵌されており
、カムディスク250に対する相対回転角度が大きくな
るにつれて、推力発生用カム機構256により軸方向前
方に向かって強く押しやられ、各遊星摩擦車202に対
する出力摩擦車208の摩擦圧接力はもとより、入力摩
擦車206やリング204のそれをも増加させる作用を
する。
Further, the cam disk 250 supports the output friction wheel 208 from behind via a known thrust generating cam mechanism 256. The output friction wheel 208 is the cam disc 2
It is loosely fitted onto the cylindrical portion of the cam disk 250 so as to be relatively rotatable, and as the relative rotation angle with respect to the cam disk 250 increases, it is strongly pushed forward in the axial direction by the thrust generating cam mechanism 256, and each planetary friction It acts to increase not only the frictional contact force of the output friction wheel 208 with respect to the wheel 202 but also that of the input friction wheel 206 and the ring 204.

【0018】入力摩擦車206と出力摩擦車208との
間で自由に回転することができるキャリヤ258によっ
て、数個の遊星摩擦車202の回転軸が同じ円周上に等
間隔に、且つ入力軸216に対して同じ角度をなすよう
に軸承されており、これらの遊星摩擦車202の各円錐
形摩擦面には、共通のリング204が摩擦係合している
。リング204は、回動は阻止されているが変速操作機
構260によって軸方向に移動調節されることができ、
それによって各遊星摩擦車202の円錐形摩擦面におけ
るリング204との係合点の有効半径が一斉に変化する
ようになっている。そして、各遊星摩擦車202の基部
に形成された筒形摩擦面には入力摩擦車206が同時に
摩擦係合すると共に、円錐形の底部に相当する円板形摩
擦面には出力摩擦車208が同時に摩擦係合することに
よって、遊星型の摩擦式無段変速機200が構成されて
いる。
The carrier 258, which can freely rotate between the input friction wheel 206 and the output friction wheel 208, allows the rotation axes of several planetary friction wheels 202 to be arranged on the same circumference at equal intervals, and the input shaft 216, and a common ring 204 is frictionally engaged with each conical friction surface of these planetary friction wheels 202. Although the ring 204 is prevented from rotating, it can be moved and adjusted in the axial direction by the speed change operating mechanism 260.
As a result, the effective radius of the engagement point with the ring 204 on the conical friction surface of each planetary friction wheel 202 changes simultaneously. The input friction wheel 206 is simultaneously frictionally engaged with the cylindrical friction surface formed at the base of each planetary friction wheel 202, and the output friction wheel 208 is simultaneously engaged with the disc-shaped friction surface corresponding to the conical bottom. By simultaneously engaging in friction, a planetary friction type continuously variable transmission 200 is constructed.

【0019】作動状態において、エンジン9によりプー
リ214が回転駆動されると、入力軸216と一体の入
力摩擦車206が回転し、静止しているリング204に
沿って遊星摩擦車202を転動させることにより出力摩
擦車208に回転が取り出される。入力摩擦車206の
回転数が一定であるとき、出力摩擦車208の回転数は
、変速操作機構260によって位置決めされるリング2
04の軸方向位置によって決まる。したがって、変速操
作機構260によってリング204を軸方向に移動させ
れば、出力摩擦車208の回転数は無段階に変化する。 逆に、エンジン9や入力軸216と共に入力摩擦車20
6の回転数が変化するときでも、この摩擦式無段変速機
200をその変化に合わせて変速操作すれば、圧縮機1
00のシャフト130の回転数をほぼ一定に維持するこ
とが可能になる。この作用によって、変速機付き圧縮機
は、エンジンの回転数が変動しても常に必要な流量の冷
媒を圧縮して吐出するので、冷房能力を理想的に制御す
ることが可能になる。
In the operating state, when the pulley 214 is rotationally driven by the engine 9, the input friction wheel 206 integrated with the input shaft 216 rotates, causing the planetary friction wheel 202 to roll along the stationary ring 204. As a result, rotation is extracted to the output friction wheel 208. When the rotation speed of the input friction wheel 206 is constant, the rotation speed of the output friction wheel 208 is determined by the rotation speed of the ring 2 positioned by the speed change operation mechanism 260.
It is determined by the axial position of 04. Therefore, when the ring 204 is moved in the axial direction by the speed change operation mechanism 260, the rotation speed of the output friction wheel 208 changes steplessly. Conversely, the input friction wheel 20 along with the engine 9 and the input shaft 216
Even when the rotation speed of the compressor 1 changes, if the friction type continuously variable transmission 200 is operated to change the speed according to the change, the rotation speed of the compressor 1 changes.
It becomes possible to maintain the rotational speed of the 00 shaft 130 almost constant. Due to this action, the compressor with a variable transmission always compresses and discharges the required flow rate of refrigerant even if the engine speed fluctuates, making it possible to ideally control the cooling capacity.

【0020】図1に示した本発明の実施例である摩擦式
無段変速機2には、制御装置14の制御信号によって駆
動されるステッピングモータのような作動装置23が設
けられおり、摩擦式無段変速機2が具体的に図4に示す
ような遊星摩擦車202とリング204を有する無段変
速機200である場合には、作動装置23によって変速
操作機構260がリング204を軸方向に動かすように
なっている。したがって、車両走行用エンジンの回転数
が走行条件に応じて変動するとき、その変動を補うよう
に制御装置14が変速機2の変速比を変化させ、圧縮機
1が必要な冷房能力をもたらすだけの冷媒流量を発生さ
せ得る回転数(制御装置14によって計算される)にな
るように調整される。
The friction type continuously variable transmission 2 which is an embodiment of the present invention shown in FIG. When the continuously variable transmission 2 is specifically a continuously variable transmission 200 having a planetary friction wheel 202 and a ring 204 as shown in FIG. It is designed to move. Therefore, when the rotational speed of the vehicle running engine fluctuates depending on the driving conditions, the control device 14 changes the gear ratio of the transmission 2 to compensate for the fluctuation, and the compressor 1 only provides the necessary cooling capacity. The rotational speed is adjusted to a rotation speed (calculated by the control device 14) that can generate a refrigerant flow rate of .

【0021】このように、遊星摩擦車を有する無段変速
機によって駆動される圧縮機100を、車両用空調装置
の冷媒圧縮機として利用することは従来技術に属するが
、本発明の図1および図4の実施例においては、これま
でに説明した構成に加えて、本発明の特徴に対応して変
速機室230にある潤滑油を冷却する特別の手段と、そ
の冷却の程度を調整する制御手段とを備えている。すな
わち、変速機室230には潤滑油の冷却回路16が接続
して設けられ、冷却回路16にはオイルポンプ17と熱
交換器としてのオイルクーラ18が直列に配置される。 摩擦式無段変速機2からオイルクーラ18に到る冷却回
路16の一部に油温センサ19が設けられ、変速機室2
30からオイルクーラ18に送られる潤滑油の温度を検
出し、その信号を制御装置14に入力する。図4の例で
は変速機室230内に油温センサ270を挿入螺着して
設けている。オイルクーラ18はモータ20によって駆
動される冷却ファン21によって冷却される。
As described above, the use of the compressor 100 driven by a continuously variable transmission having a planetary friction wheel as a refrigerant compressor for a vehicle air conditioner belongs to the prior art, but FIGS. In the embodiment of FIG. 4, in addition to the configuration described above, a special means for cooling the lubricating oil in the transmission chamber 230 and a control for adjusting the degree of cooling are provided in accordance with the features of the present invention. and means. That is, a lubricating oil cooling circuit 16 is connected to the transmission chamber 230, and an oil pump 17 and an oil cooler 18 as a heat exchanger are arranged in series in the cooling circuit 16. An oil temperature sensor 19 is provided in a part of the cooling circuit 16 from the friction type continuously variable transmission 2 to the oil cooler 18.
The temperature of lubricating oil sent from 30 to oil cooler 18 is detected and the signal is input to control device 14. In the example shown in FIG. 4, an oil temperature sensor 270 is inserted and screwed into the transmission chamber 230. The oil cooler 18 is cooled by a cooling fan 21 driven by a motor 20.

【0022】オイルポンプ17及びファンモータ20は
、それぞれ制御装置14が発する制御信号によって回転
数制御されている。したがって、変速機室230からオ
イルクーラ18へ送り込まれて冷却回路16を循環し、
冷却される潤滑油の流量や、冷却ファン21がオイルク
ーラ18へ送る冷却風量が制御装置14によって調整可
能であり、制御装置14はそれらの両者、或いは一方の
回転数を自動的に変化させることによって、変速機室2
30内の潤滑油の温度が図2に示したような、摩擦式無
段変速機2(この例では無段変速機200)が最大の動
力伝達効率をもたらす最適の温度TO になるように調
整される。
The rotation speed of the oil pump 17 and the fan motor 20 is controlled by control signals issued by the control device 14, respectively. Therefore, the oil is sent from the transmission chamber 230 to the oil cooler 18 and circulated through the cooling circuit 16.
The flow rate of the lubricating oil to be cooled and the amount of cooling air sent to the oil cooler 18 by the cooling fan 21 can be adjusted by the control device 14, and the control device 14 can automatically change the rotation speed of both or one of them. By, transmission room 2
The temperature of the lubricating oil in the friction type continuously variable transmission 2 (in this example, the continuously variable transmission 200) is adjusted so that it becomes the optimum temperature TO at which the friction type continuously variable transmission 2 (in this example, the continuously variable transmission 200) provides maximum power transmission efficiency, as shown in FIG. be done.

【0023】摩擦式無段変速機2の潤滑油を循環させて
冷却するオイルポンプ17又はファンモータ20の回転
数を調整して、オイルクーラ18の冷却能力を制御する
具体的制御手段としては、それらのモータに供給される
電力の電圧制御、電流制御、或いはヒステリシスをもっ
たON−OFF制御や、それらの中間にあたる段階的制
御等の調整方法をとるが、このような手段による回転数
制御そのものは公知の技術であるから、それらについて
の詳細な説明は省略する。
Specific control means for controlling the cooling capacity of the oil cooler 18 by adjusting the rotation speed of the oil pump 17 or fan motor 20 that circulates and cools the lubricating oil of the friction type continuously variable transmission 2 is as follows. Adjustment methods such as voltage control, current control, ON-OFF control with hysteresis, and stepwise control between these methods are used for the power supplied to these motors, but the rotation speed control itself by these means Since these are well-known techniques, detailed explanation thereof will be omitted.

【0024】この場合、油温センサ19の検出する平均
的な潤滑油温度が同じであっても、摩擦式無段変速機2
が伝達するその時の動力が大きいほど摩擦式無段変速機
2の負荷は大きく、変速機内部の動力伝達部分の発熱も
大きくなるので、最適の温度TO の値も負荷条件によ
って多少変化する。その変化に対応するため、油温セン
サ19(図4の例においては270)によって摩擦式無
段変速機2の潤滑油温度を検出するのに併せて、圧縮機
1に設けた回転数センサ22によって圧縮機1の回転数
も検出して制御装置14に入力し、図3に破線で示した
ように、圧縮機1の回転数が所定値より高いとき、即ち
摩擦式無段変速機2の負荷が所定値よりも大きい場合に
は、オイルクーラ18の冷却能力が大きくなるように補
正する。もっとも、摩擦式無段変速機2の回転数が所定
値よりも小か大かによって図3の実線をとるか破線をと
るかというような選択をするのでなく、より多段階の回
転数によってきめ細かに実線と破線の中間の領域にわた
る制御をするのが望ましいことは言うまでもない。
In this case, even if the average lubricating oil temperature detected by the oil temperature sensor 19 is the same, the friction type continuously variable transmission 2
The greater the power transmitted at that time, the greater the load on the friction type continuously variable transmission 2, and the greater the heat generation of the power transmission portion inside the transmission, so the value of the optimum temperature TO also changes somewhat depending on the load conditions. In order to cope with such changes, in addition to detecting the lubricating oil temperature of the friction type continuously variable transmission 2 by the oil temperature sensor 19 (270 in the example of FIG. 4), the rotation speed sensor 22 provided in the compressor 1 The rotation speed of the compressor 1 is also detected and inputted to the control device 14, and as shown by the broken line in FIG. When the load is larger than a predetermined value, the cooling capacity of the oil cooler 18 is corrected to be larger. However, rather than selecting whether to take the solid line or the broken line in FIG. 3 depending on whether the rotation speed of the friction type continuously variable transmission 2 is smaller or larger than a predetermined value, it is better to It goes without saying that it is desirable to perform control over a region between the solid line and the broken line.

【0025】また、伝達する動力が同じでも、変速比が
小さい場合には伝達効率が低下して発熱量が増加するた
め、エンジンの回転数が高く変速比を小さくする場合に
は、オイルクーラの冷却能力が大きくなるように補正す
る。
Furthermore, even if the power to be transmitted is the same, if the gear ratio is small, the transmission efficiency will decrease and the amount of heat generated will increase. Correct to increase cooling capacity.

【0026】以上の説明においては、図4に示したよう
なベーン型の容積式圧縮機100と遊星摩擦車を有する
無段変速機200とを組合せたものを具体的な実施例と
して取り上げているが、本発明においては圧縮機や摩擦
式無段変速機がこのような形式のものに限定される訳で
はなく、本発明の特徴から明らかなように、その他の形
式の冷媒圧縮機と摩擦式無段変速機との組合せに対して
も適用することができることは言うまでもない。
In the above description, a combination of a vane-type positive displacement compressor 100 and a continuously variable transmission 200 having a planetary friction wheel as shown in FIG. 4 is taken up as a specific example. However, in the present invention, the compressor and the friction type continuously variable transmission are not limited to these types, and as is clear from the characteristics of the present invention, other types of refrigerant compressors and friction type Needless to say, the invention can also be applied in combination with a continuously variable transmission.

【0027】[0027]

【発明の効果】本発明により、摩擦式無段変速機の動力
伝達効率が最大となる特定の潤滑油温度が維持されるた
め、摩擦式無段変速機は常に最も少ない動力によって、
スリップなしに自動車用空調装置の冷媒圧縮機を駆動す
る。そして、走行状態と無関係に、必要な回転数におい
て動力が摩擦式無段変速機から冷媒圧縮機に伝達され、
その時に必要な冷房能力に見合う冷媒流量が過不足なく
得られるので、自動車の車室内では快適な空調が行われ
ると共に、動力の無駄もなくなる。
Effects of the Invention According to the present invention, a specific lubricating oil temperature is maintained at which the power transmission efficiency of the friction type continuously variable transmission is maximized, so that the friction type continuously variable transmission always uses the least amount of power.
Drives the refrigerant compressor of an automobile air conditioner without slipping. Power is then transmitted from the friction type continuously variable transmission to the refrigerant compressor at the required rotational speed, regardless of the driving condition.
Since the refrigerant flow rate is just the right amount to match the cooling capacity required at that time, comfortable air conditioning is achieved in the interior of the vehicle, and no power is wasted.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】本発明の摩擦式無段変速機付き圧縮機を使用し
ている空調装置の全体構成を例示する概念図である。
FIG. 1 is a conceptual diagram illustrating the overall configuration of an air conditioner using a compressor with a friction type continuously variable transmission according to the present invention.

【図2】摩擦式無段変速機における油温と動力伝達効率
の関係を示す線図である。
FIG. 2 is a diagram showing the relationship between oil temperature and power transmission efficiency in a friction type continuously variable transmission.

【図3】本発明による制御の例を示す線図である。FIG. 3 is a diagram showing an example of control according to the invention.

【図4】本発明の圧縮機に使用される摩擦式無段変速機
の具体例を示す断面図である。
FIG. 4 is a sectional view showing a specific example of a friction type continuously variable transmission used in the compressor of the present invention.

【符号の説明】[Explanation of symbols]

1、100…圧縮機 2、200…摩擦式無段変速機 9…自動車用エンジン 14…制御装置 16…冷却回路 17…オイルポンプ 18…オイルクーラ 19、270…油温センサ 20…ファンモータ 21…冷却ファン 22…回転数センサ 23…作動装置 104…吸入室 202…遊星摩擦車 204…リング 206…入力摩擦車 208…出力摩擦車 230…変速機室 240…隔壁 260…変速操作機構 1,100...Compressor 2,200...Friction type continuously variable transmission 9...Automotive engine 14...Control device 16...Cooling circuit 17...Oil pump 18...Oil cooler 19, 270...Oil temperature sensor 20...Fan motor 21...Cooling fan 22...Rotation speed sensor 23... Actuation device 104...Suction chamber 202...Planetary friction wheel 204...Ring 206...Input friction wheel 208...Output friction wheel 230...Transmission room 240...Bulkhead 260...speed change operation mechanism

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】  自動車用空調装置の冷媒を圧縮する圧
縮機と、前記圧縮機を自動車の走行用エンジンによって
駆動するために前記圧縮機と前記エンジンとの間に介設
され前記圧縮機の駆動回転数を制御する摩擦式無段変速
機と、前記摩擦式無段変速機の摩擦係合面を潤滑する潤
滑油を冷却するために前記摩擦式無段変速機の変速機室
に接続して設けられる冷却回路と、前記冷却回路に挿入
して設けられるオイルクーラと、前記冷却回路と直列に
前記冷却回路に設けられるオイルポンプと、前記変速機
室から前記オイルクーラに到る冷却回路において潤滑油
の温度を検出する油温センサと、前記油温センサの検出
信号が入力されることによって潤滑油の温度を所定の値
に保つために前記オイルクーラにおける潤滑油の冷却能
力を変化させる制御装置とを備えていることを特徴とす
る自動車空調用の変速機付き圧縮機。
1. A compressor for compressing refrigerant in an air conditioner for an automobile; and a compressor for driving the compressor, the compressor being interposed between the compressor and the engine for driving the compressor by the engine for driving the automobile. A friction type continuously variable transmission for controlling the number of revolutions, and a lubricating oil that lubricates the frictional engagement surfaces of the friction type continuously variable transmission. Lubricating in a cooling circuit provided, an oil cooler inserted into the cooling circuit, an oil pump provided in the cooling circuit in series with the cooling circuit, and a cooling circuit extending from the transmission room to the oil cooler. an oil temperature sensor that detects oil temperature; and a control device that changes the lubricating oil cooling capacity of the oil cooler in order to maintain the lubricating oil temperature at a predetermined value by receiving a detection signal from the oil temperature sensor. A compressor with a transmission for automotive air conditioning, characterized by comprising:
【請求項2】  前記油温センサの検出信号に加えて、
前記圧縮機の回転数信号及び前記走行用エンジンの回転
数信号のいずれか一方を前記制御装置に入力して、前記
オイルクーラにおける潤滑油の冷却能力を補正し、前記
圧縮機の回転数が高い程、前記油温センサの検出する潤
滑油の温度が低くなるように構成したことを特徴とする
前記請求項1記載の自動車空調用の変速機付き圧縮機。
2. In addition to the detection signal of the oil temperature sensor,
Either one of the rotation speed signal of the compressor and the rotation speed signal of the driving engine is input to the control device to correct the lubricating oil cooling capacity in the oil cooler, so that the rotation speed of the compressor is high. The compressor with a transmission for automobile air conditioning according to claim 1, characterized in that the temperature of the lubricating oil detected by the oil temperature sensor becomes lower as the temperature of the lubricating oil increases.
JP10148891A 1991-05-07 1991-05-07 Compressor equipped with transmission for air-conditioning automobile Pending JPH04331858A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10148891A JPH04331858A (en) 1991-05-07 1991-05-07 Compressor equipped with transmission for air-conditioning automobile

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10148891A JPH04331858A (en) 1991-05-07 1991-05-07 Compressor equipped with transmission for air-conditioning automobile

Publications (1)

Publication Number Publication Date
JPH04331858A true JPH04331858A (en) 1992-11-19

Family

ID=14302087

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10148891A Pending JPH04331858A (en) 1991-05-07 1991-05-07 Compressor equipped with transmission for air-conditioning automobile

Country Status (1)

Country Link
JP (1) JPH04331858A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008179290A (en) * 2007-01-25 2008-08-07 Toyota Motor Corp Power output device and its control method, and vehicle
US8439020B1 (en) 2009-02-25 2013-05-14 Accessible Technologies, Inc. CVT driven supercharger with selectively positionable speed multiplying gear set
US8439019B1 (en) 2009-02-25 2013-05-14 Accessible Technologies, Inc. Compressed air delivery system with integrated cooling of a continuous variable transmission

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008179290A (en) * 2007-01-25 2008-08-07 Toyota Motor Corp Power output device and its control method, and vehicle
US8439020B1 (en) 2009-02-25 2013-05-14 Accessible Technologies, Inc. CVT driven supercharger with selectively positionable speed multiplying gear set
US8439019B1 (en) 2009-02-25 2013-05-14 Accessible Technologies, Inc. Compressed air delivery system with integrated cooling of a continuous variable transmission

Similar Documents

Publication Publication Date Title
US6742350B2 (en) Hybrid compressor device
JP3855866B2 (en) Hybrid compressor device
JP3708499B2 (en) Combined auxiliary machine control device for vehicle
US6735962B2 (en) Composite auxiliary machine for vehicle and control unit thereof
JPH04331858A (en) Compressor equipped with transmission for air-conditioning automobile
JP4070701B2 (en) Hybrid compressor device
US3771318A (en) Automotive air conditioning apparatus
US5287708A (en) Car air conditioner with a hydraulically driven refrigerant compressor
CN113700770B (en) Control method for secondary speed change of engine accessory drive system
JPH0539777A (en) Compressor provided with transmission
JPH0634027A (en) Friction transmission with torque detecting function
JP2005127306A (en) On-vehicle rotary compressor
JPH04285360A (en) Compressor with speed change gear
JPH04255578A (en) Compressor with transmission
GB2314141A (en) Air conditioning equipment with a viscous coupling
JPH05141346A (en) Compressor with transmission
JPH05118276A (en) Compressor with speed changer for automobile air conditioning device
JPH05296148A (en) Compressor with speed change gear for automobile air conditioner
JPH05231313A (en) Compressor with transmission of air conditioner for car
JP3895257B2 (en) Hybrid compressor device
JPH0446820A (en) Compressor with transmission gear for automobile air conditioning
JP3848609B2 (en) Hybrid compressor device
JPH05126041A (en) Compressor with speed change gear of air-conditioner for automobile
US3981157A (en) Automotive air conditioning system with variable speed traction drive transmission
JP4192712B2 (en) Hybrid compressor device