JPH04331838A - Dynamic vibration absorber - Google Patents

Dynamic vibration absorber

Info

Publication number
JPH04331838A
JPH04331838A JP10111991A JP10111991A JPH04331838A JP H04331838 A JPH04331838 A JP H04331838A JP 10111991 A JP10111991 A JP 10111991A JP 10111991 A JP10111991 A JP 10111991A JP H04331838 A JPH04331838 A JP H04331838A
Authority
JP
Japan
Prior art keywords
permanent magnet
electromagnets
vibration
dynamic vibration
electromagnet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10111991A
Other languages
Japanese (ja)
Inventor
Yukihiko Kazao
幸彦 風尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=14292191&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JPH04331838(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP10111991A priority Critical patent/JPH04331838A/en
Publication of JPH04331838A publication Critical patent/JPH04331838A/en
Pending legal-status Critical Current

Links

Landscapes

  • Vibration Prevention Devices (AREA)

Abstract

PURPOSE:To permit the use of a dynamic vibration absorber (dynamic damper) installed for absorbing the vibration having a frequency component, even in a system in which the characteristic frequency of the system varies or the excitation frequency varies. CONSTITUTION:Electromagnets 8 and 9 are arranged, keeping a certain internal from the magnetic pole of a permanent magnet 5, and either the permanent magnet 5 or the electromagnets 8 and 9 is fixed on a vibration suppressed body 13, and the other can be shifted in the direction for varying the interval between the magnetic poles. The shift of the vibration suppress body 13 and the relative shift between the electromagnets 8 and 9 and the permanent magnet 5 are detected by the displacement meters 14 and 7. These detection signals are inputted into a control circuit 29 through a signal amplifier 15, and the optimum excitation current is allowed to flow in the electromagnets 8 and 9 through an amplifier 16 by the control circuit 29.

Description

【発明の詳細な説明】[Detailed description of the invention]

[発明の目的] [Purpose of the invention]

【0001】0001

【産業上の利用分野】本発明は動吸振器(ダイナミック
ダンパ)に係り、特に磁気反発型動吸振器の改良に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to dynamic vibration absorbers (dynamic dampers), and more particularly to improvements in magnetic repulsion type dynamic vibration absorbers.

【0002】0002

【従来の技術】動吸振器は従来、特定の周波数成分を有
する振動を吸収するために設けられるもので、その基本
的な構成はおよそ図6に示す通りである。
2. Description of the Related Art Dynamic vibration absorbers have conventionally been provided to absorb vibrations having specific frequency components, and their basic configuration is approximately as shown in FIG.

【0003】図において、剛体1は質量mの振動体、ば
ね2は剛体を支持するばね定数kの線形ばねである。一
方剛体3は質量md で、ばね定数kd のばね4にて
剛体1上に支持されている。いま、剛体1に周期的な外
力Po sinωt(Po :力の振幅、ω:角速度、
t:時間)が作用するものと考えると、剛体1の変位を
X、剛体2の変位をXd として、
In the figure, a rigid body 1 is a vibrating body with a mass m, and a spring 2 is a linear spring with a spring constant k that supports the rigid body. On the other hand, the rigid body 3 has a mass md and is supported on the rigid body 1 by a spring 4 having a spring constant kd. Now, a periodic external force Po sinωt is applied to the rigid body 1 (Po: force amplitude, ω: angular velocity,
t: time), the displacement of rigid body 1 is X, the displacement of rigid body 2 is Xd,

【0004】0004

【数1】 なる運動方程式を得る。上式は容易に解けてその解は下
記のように書き表わせる。
[Equation 1] Obtain the equation of motion. The above equation can be easily solved and the solution can be written as follows.

【0005】いま、Xo =Po /kとおくと、振幅
比|X/Xo |および|Xd /Xo |は、上式よ
り図7に示す特徴がある。ただしΩ−(m/k)1/2
 、Ωd=(md /kd )1/2 、γ=ω/Ωと
する。
Now, assuming that Xo = Po /k, the amplitude ratios |X/Xo | and |Xd /Xo | have the characteristics shown in FIG. 7 from the above equation. However, Ω-(m/k)1/2
, Ωd=(md/kd)1/2, and γ=ω/Ω.

【0006】ここで図6における剛体3、ばね4の組み
合わせを動吸振器と称する。この動吸振器を有しない場
合(例えば式(2)においてmd =0とすると)、剛
体1の振幅Xはγ=1(ω=Ω(m/k)1/2 の場
合無限大となる。
[0006] Here, the combination of the rigid body 3 and spring 4 shown in FIG. 6 is called a dynamic vibration absorber. If this dynamic vibration absorber is not provided (for example, if md = 0 in equation (2)), the amplitude X of the rigid body 1 becomes infinite when γ = 1 (ω = Ω (m/k) 1/2).

【0007】これは外部の励振周波数が系の固有振動数
に一致したためで、いわゆる共振が生じたためである。 しかしながら動吸振器により、図7に示す如く、γ=1
となっても剛体1の振幅(|X/Xo |)は理想的に
はゼロとなる。
This is because the external excitation frequency coincides with the natural frequency of the system, resulting in so-called resonance. However, due to the dynamic vibration absorber, as shown in Fig. 7, γ=1
Even so, the amplitude (|X/Xo |) of the rigid body 1 is ideally zero.

【0008】すなわち動吸振器を取り付けたことにより
、γ=1で無限に大きな振幅で振動していた系の振幅を
押えることができる。ただし図7の通り、γ=1の両側
(例えばγがほぼ0.78と1.26に等しい場合)で
は、振幅が増大しているため、一般に動吸振器は外部よ
りの励振周波数が一定の振動体にしか適用できないので
ある。
That is, by installing a dynamic vibration reducer, it is possible to suppress the amplitude of the system that was vibrating with an infinitely large amplitude when γ=1. However, as shown in Figure 7, the amplitude increases on both sides of γ = 1 (for example, when γ is approximately equal to 0.78 and 1.26), so dynamic vibration absorbers generally have a constant excitation frequency from the outside. It can only be applied to vibrating bodies.

【0009】またこの様に小さな動吸振器で最大の効果
を上げるためには、md とkd の組み合わせに制約
があり、図8に示す通りΩd /Ωが1に近いほど高い
効果が得られる。なお上記の説明では簡単のため系の減
衰を無視しているが、この減衰が極端に大きくならない
限りこの傾向は同じである。
Furthermore, in order to maximize the effect with such a small dynamic vibration absorber, there are restrictions on the combination of md and kd, and as shown in FIG. 8, the closer Ωd/Ω is to 1, the higher the effect can be obtained. Note that in the above explanation, the damping of the system is ignored for simplicity, but this tendency remains the same unless the damping becomes extremely large.

【0010】0010

【発明が解決しようとする課題】たとえばロボットの腕
のように、複雑なリンク機構を有する機械では、腕の伸
縮によって系(腕部)の固有振動数が変化する。このた
め上式ではΩが任意に変化するため、最適な動吸振器を
得るためのΩd が定まらない。また回転機械を含む系
ではその回転数によって励振される周波数が変化するた
め、γ=ω/Ωが変化して同様に最適な動吸振器が定ま
らない。すなわち系の固有振動数が変化したり、励振周
波数が変化したりするような系については動吸振器は適
用できなかった。上記問題点に鑑み本発明においては系
の固有振動数や励振周波数が変化するような系において
も、効果を発揮する動吸振器を提供することを目的とす
る。 [発明の構成]
For example, in a machine having a complicated link mechanism, such as a robot arm, the natural frequency of the system (arm part) changes as the arm expands and contracts. Therefore, in the above equation, Ω changes arbitrarily, so Ωd to obtain an optimal dynamic vibration absorber cannot be determined. Furthermore, in a system including a rotating machine, the frequency of excitation changes depending on the rotational speed of the machine, so that γ=ω/Ω changes, making it impossible to determine the optimal dynamic vibration absorber. In other words, dynamic vibration reducers cannot be applied to systems where the natural frequency of the system changes or the excitation frequency changes. In view of the above problems, an object of the present invention is to provide a dynamic vibration absorber that is effective even in a system where the natural frequency and excitation frequency of the system change. [Structure of the invention]

【0011】[0011]

【課題を解決するための手段】上記目的を達成するため
本発明においては、永久磁石と、この永久磁石のそれぞ
れの磁極と所定の間隔をおいて配置した2個の電磁石を
有し、前記永久磁石あるいは電磁石の一方を被制振体に
固定し、他の一方をそれぞれ磁極間の間隔が変化する方
向に変動可能に構成するとともに、被制振体の変位およ
び電磁石と永久磁石の相対変位を変位計にて検出し、こ
れらの検出信号に基いて電磁石の励磁電流を制御し、永
久磁石と電磁石間に常に磁気反発力を発生させるよう構
成する。すなわち、前記Ωの変化に伴いΩd もΩとほ
ぼ等しくなるよう変化させ、また外部の励振周波数ωが
変化しても同様にΩd を変化させるために動吸振器の
ばね定数を電磁力を応用して変化させ常に最適なΩd 
を得るように構成する。
[Means for Solving the Problems] In order to achieve the above object, the present invention includes a permanent magnet and two electromagnets arranged at a predetermined distance from each magnetic pole of the permanent magnet, One of the magnets or electromagnets is fixed to the object to be damped, and the other is configured to be movable in the direction in which the distance between the magnetic poles changes, and the displacement of the object to be damped and the relative displacement between the electromagnet and the permanent magnet are controlled. The magnetic repulsion is detected by a displacement meter, and the excitation current of the electromagnet is controlled based on these detection signals to constantly generate magnetic repulsion between the permanent magnet and the electromagnet. In other words, as Ω changes, Ωd is changed to be approximately equal to Ω, and even if the external excitation frequency ω changes, Ωd is also changed by applying electromagnetic force to the spring constant of the dynamic vibration absorber. Always change the optimum Ωd.
Configure it to get .

【0012】0012

【作用】本発明は上記のように構成されており、たとえ
ば被制御系の固有振動数Ωが変化した場合、あるいは外
部よりの励振周波数ωが変化した場合に対し、Ωd =
(kd /md )1/2 のうちkd を最適に制御
することにより、常に理想的な動吸振器を得ることがで
きる。
[Operation] The present invention is constructed as described above. For example, when the natural frequency Ω of the controlled system changes, or when the excitation frequency ω from the outside changes, Ωd =
By optimally controlling kd out of (kd/md)1/2, an ideal dynamic vibration absorber can always be obtained.

【0013】[0013]

【実施例】以下、本発明の一実施例について図を用いて
説明する。図1は本発明に係る動吸振器の一実施例の概
略構成を示すもので、被制振体は省略してある。
[Embodiment] An embodiment of the present invention will be described below with reference to the drawings. FIG. 1 shows a schematic configuration of an embodiment of a dynamic vibration absorber according to the present invention, and the damped body is omitted.

【0014】さて図1において図の中央付近には永久磁
石5が支え28に取付けた板ばね6によって上下方向に
揺動可能として支持され、ここでは上部をN極、下部を
S極としてある。この板ばね6の揺動方向には非接触型
の変位計7が配置されている。この変位計7は、本図で
は非接触変位計をモデルに描いてあるが、基本的に永久
磁石の変位に応じた電気信号の取り出せるものなら特に
限定しない。
In FIG. 1, near the center of the figure, a permanent magnet 5 is supported by a leaf spring 6 attached to a support 28 so as to be able to swing vertically, with the upper part serving as the north pole and the lower part serving as the south pole. A non-contact type displacement meter 7 is disposed in the direction in which the leaf spring 6 swings. Although this displacement meter 7 is modeled as a non-contact displacement meter in this figure, it is not particularly limited as long as it can basically extract an electric signal according to the displacement of a permanent magnet.

【0015】さて永久磁石5の上下には、所定の間隔を
あけてそれぞれ電磁石8,9が支え10,11を介して
フレーム12に支持固定されている。これらの電磁石8
,9は、それぞれの磁極が永久磁石5の磁極に対向して
設けられ、かつ永久磁石5と電磁石8,9の磁極同士は
同極同士が対向するものとし、互いに反発力が生じる構
成とする。
Above and below the permanent magnet 5, electromagnets 8 and 9 are supported and fixed to a frame 12 via supports 10 and 11, respectively, at a predetermined interval. These electromagnets 8
, 9 are provided with their respective magnetic poles facing the magnetic poles of the permanent magnet 5, and the magnetic poles of the permanent magnet 5 and the electromagnets 8 and 9 have the same polarity facing each other, so that a repulsive force is generated between them. .

【0016】また図の8a,9aで示す部分は電磁石コ
イル群の横断面を示す。電磁石8,9の磁界の強さはコ
イル8a,9aを流れる電流の強弱によって任意に可変
で、図2に示す制御系により制御するものとする。
Further, portions 8a and 9a in the figure show cross sections of the electromagnetic coil group. The strength of the magnetic fields of the electromagnets 8 and 9 is arbitrarily variable depending on the strength of the current flowing through the coils 8a and 9a, and is controlled by the control system shown in FIG.

【0017】すなわち、図2において、永久磁石5の変
化を変位計7および被制振体13の変位を変位計14に
て計測し、それぞれ信号増幅器15にて増幅して制御回
路29に送る。制御回路29ではそれぞれの信号を演算
処理(例えばアナログ回路では微分回路等を設け、デジ
タル回路ではA/D変換した後微分演算等の処理を行う
。)を行い、出力信号を増幅器16にて増幅し電流の大
きさを変化させ電磁石8,9の磁界の強さを制御する。 永久磁石5と電磁石8,9の間は常に磁気的反発力が作
用するが、磁界の強さが変化するためこの反発力も変化
する。
That is, in FIG. 2, changes in the permanent magnet 5 are measured by a displacement meter 7 and displacements of the damped body 13 are measured by a displacement meter 14, and each signal is amplified by a signal amplifier 15 and sent to a control circuit 29. The control circuit 29 performs arithmetic processing on each signal (for example, in an analog circuit, a differentiation circuit is provided, and in a digital circuit, processing such as differentiation is performed after A/D conversion), and the output signal is amplified by an amplifier 16. The strength of the magnetic field of the electromagnets 8 and 9 is controlled by changing the magnitude of the current. A magnetic repulsive force always acts between the permanent magnet 5 and the electromagnets 8 and 9, but as the strength of the magnetic field changes, this repulsive force also changes.

【0018】制御の目標は被制振体13の振動を低減す
ることであるから、被制振体13に板ばね6で可動に取
り付けられた永久磁石5に作用する電磁力、すなわちば
ねとダンピング効果を変化させて最適な動吸振器系が成
立するよう制御する。
Since the goal of control is to reduce the vibration of the damped body 13, the electromagnetic force acting on the permanent magnet 5 movably attached to the damped body 13 with a plate spring 6, that is, the spring and damping Control is performed to create an optimal dynamic vibration reducer system by changing the effect.

【0019】図3は上記の実施例の構成をもとに、シミ
ュレーション解析を行った結果であり、被制振体13に
周波数30Hzの加振力が作用し、その結果被制振体1
3が振幅約6mm(両振幅)で振動している様子を図3
(a)に示す。図3(a)は被制振体13に本発明に係
る動吸振体を取り付けていない場合の結果である。
FIG. 3 shows the results of a simulation analysis based on the configuration of the above embodiment.
Figure 3 shows how 3 is vibrating with an amplitude of about 6 mm (both amplitudes).
Shown in (a). FIG. 3(a) shows the results when the dynamic vibration absorber according to the present invention is not attached to the damped body 13.

【0020】次に図3(b)に本発明に係る動吸振器を
取り付け、かつ最適な制御を加えた状態における被制振
体13の振動振幅を示す。この結果から図3(a)に比
較して(b)では振動振幅が約1/3に低減されている
ことがわかる。この場合、振動のエネルギーを考えれば
約1/9に低減されたことになり、その制振の効果は極
めて大きいと言える。
Next, FIG. 3(b) shows the vibration amplitude of the damped body 13 when the dynamic vibration absorber according to the present invention is installed and optimal control is applied. From this result, it can be seen that the vibration amplitude in FIG. 3(b) is reduced to about 1/3 compared to FIG. 3(a). In this case, considering the vibration energy, it is reduced to about 1/9, and it can be said that the vibration damping effect is extremely large.

【0021】次に本発明の他の実施例について説明する
。永久磁石17を支え18により被制振体上に固定し、
この永久磁石をはさむように相対する2個の電磁石19
,20を可動台車21上に固定したもので、電磁力の作
用は同じであるが、電磁石19,20側が動くように構
成されたものである。なお電磁石19,20を固定した
台車の変位は変位計22にて計測され電磁石19,20
の制御に用いられる。制御方法は前述の通りである。
Next, another embodiment of the present invention will be described. A permanent magnet 17 is fixed on the vibration-damped body by a support 18,
Two electromagnets 19 facing each other sandwiching this permanent magnet
, 20 are fixed on a movable cart 21, and the electromagnets 19 and 20 have the same effect, but the electromagnets 19 and 20 are movable. Note that the displacement of the cart to which the electromagnets 19 and 20 are fixed is measured by a displacement meter 22, and
used for control. The control method is as described above.

【0022】図5は被制振体の横方向の振動を低減する
ための動吸振器であり、図4と同じ様に電磁石24,2
5側が可動とした場合の例であり、図5(b)は縦断面
図、(a)はこれを頁上より見た図である。
FIG. 5 shows a dynamic vibration absorber for reducing the lateral vibration of the object to be damped, and as in FIG.
This is an example in which the fifth side is movable, and FIG. 5(b) is a longitudinal sectional view, and FIG. 5(a) is a view of this from above the page.

【0023】図5においては台車23の上に固定された
2組の電磁石24,25が永久磁石26をはさんで対向
しており、永久磁石26と電磁石24,25は互いに反
発力を生じるよう構成されている。台車の変位は変位計
27にて検出され、電磁石24,25の制御に用いられ
る。
In FIG. 5, two sets of electromagnets 24 and 25 fixed on a cart 23 face each other with a permanent magnet 26 in between, and the permanent magnet 26 and the electromagnets 24 and 25 are arranged so as to generate a repulsive force with each other. It is configured. The displacement of the truck is detected by a displacement meter 27 and used to control the electromagnets 24 and 25.

【0024】[0024]

【発明の効果】以上述べたように本発明によれば、系の
固有振動数が変化したり、あるいは励振周波数が変化す
ることがあっても、電磁石の磁界を最適な強さに制御で
きるので、常に安定した信頼性の高い動吸振器を提供す
ることができる。
[Effects of the Invention] As described above, according to the present invention, even if the natural frequency of the system changes or the excitation frequency changes, the magnetic field of the electromagnet can be controlled to the optimal strength. , it is possible to provide a dynamic vibration absorber that is always stable and reliable.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】本発明の動吸振器の一実施例の構成を示す概略
[Fig. 1] A schematic diagram showing the configuration of an embodiment of a dynamic vibration absorber of the present invention.

【図2】本発明の動吸振器の制御系を示す概略図[Fig. 2] Schematic diagram showing the control system of the dynamic vibration absorber of the present invention

【図3
】本発明の効果を示すシミュレーション結果の一例を示
す図
[Figure 3
] A diagram showing an example of simulation results showing the effects of the present invention

【図4】本発明の他の実施例を示す図FIG. 4 is a diagram showing another embodiment of the present invention.

【図5】本発明の他の実施例を示す図FIG. 5 is a diagram showing another embodiment of the present invention.

【図6】一般的な動吸振器の構成を示す概略図[Figure 6] Schematic diagram showing the configuration of a general dynamic vibration absorber

【図7】
図6に示す系の周波数応答を示すグラフ
[Figure 7]
Graph showing the frequency response of the system shown in Figure 6

【図8】系の固
有振動数Ωと動吸振器の固有振動数Ωd の比と、被制
振体の振幅比|X/Xo |の関係を示すグラフ
[Figure 8] Graph showing the relationship between the ratio of the system's natural frequency Ω to the dynamic vibration absorber's natural frequency Ωd and the amplitude ratio of the damped body |X/Xo |

【符号の説明】[Explanation of symbols]

1…剛体(被制振体)  2…ばね         
     3…剛体 4…ばね              5…永久磁石 
         6…板ばね 7…変位計            8…電磁石   
         9…電磁石 10…支え            11…支え   
         12…フレーム 13…被制振体        14…変位計    
      15…信号増幅器 16…信号増幅器      17…永久磁石    
    18…支え 19…電磁石          20…電磁石   
       21…可動台車 22…変位計          23…台車    
        24…電磁石 25…電磁石          26…永久磁石  
      27…変位計
1...Rigid body (damped body) 2...Spring
3...Rigid body 4...Spring 5...Permanent magnet
6... Leaf spring 7... Displacement meter 8... Electromagnet
9... Electromagnet 10... Support 11... Support
12... Frame 13... Vibration controlled body 14... Displacement meter
15...Signal amplifier 16...Signal amplifier 17...Permanent magnet
18... Support 19... Electromagnet 20... Electromagnet
21... Movable trolley 22... Displacement meter 23... Trolley
24...Electromagnet 25...Electromagnet 26...Permanent magnet
27...Displacement meter

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】  永久磁石と、この永久磁石のそれぞれ
の磁極と所定の間隔をおいて配置した2個の電磁石を有
し、前記永久磁石あるいは電磁石の一方を被制振体に固
定し他の一方をそれぞれの磁極間の間隔が変化する方向
に変動可能に構成するとともに、被制振体の変位および
電磁石と永久磁石の相対変位を変位計にて検出し、これ
らの検出信号に基いて電磁石の励磁電流を制御し永久磁
石と電磁石間に常に磁気反発力を発生させることを特徴
とする動吸振器。
Claim 1: A permanent magnet and two electromagnets arranged at a predetermined distance from each magnetic pole of the permanent magnet, one of the permanent magnets or electromagnets is fixed to a vibration-damped body, and the other is fixed to a vibration-controlled body. One side is configured to be able to vary in the direction in which the spacing between the respective magnetic poles changes, and a displacement meter detects the displacement of the damped object and the relative displacement between the electromagnet and the permanent magnet, and based on these detection signals, the electromagnet A dynamic vibration reducer characterized by controlling the excitation current of the magnet to constantly generate magnetic repulsion between a permanent magnet and an electromagnet.
【請求項2】  永久磁石と電磁石間の磁気反発力を、
被制振体の振動が最小となるよう2個の電磁石それぞれ
の磁界の強さをコイルを流れる電流の大きさによって制
御することを特徴とする請求項1に記載の動吸振器。
[Claim 2] The magnetic repulsion between the permanent magnet and the electromagnet is
2. The dynamic vibration reducer according to claim 1, wherein the strength of the magnetic field of each of the two electromagnets is controlled by the magnitude of the current flowing through the coil so that the vibration of the vibration damped body is minimized.
JP10111991A 1991-05-07 1991-05-07 Dynamic vibration absorber Pending JPH04331838A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10111991A JPH04331838A (en) 1991-05-07 1991-05-07 Dynamic vibration absorber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10111991A JPH04331838A (en) 1991-05-07 1991-05-07 Dynamic vibration absorber

Publications (1)

Publication Number Publication Date
JPH04331838A true JPH04331838A (en) 1992-11-19

Family

ID=14292191

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10111991A Pending JPH04331838A (en) 1991-05-07 1991-05-07 Dynamic vibration absorber

Country Status (1)

Country Link
JP (1) JPH04331838A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016061377A (en) * 2014-09-18 2016-04-25 本田技研工業株式会社 Dynamic damper control device
CN108155773A (en) * 2017-12-22 2018-06-12 华中科技大学 A kind of self-tuning two-freedom Electromagnet absorber

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016061377A (en) * 2014-09-18 2016-04-25 本田技研工業株式会社 Dynamic damper control device
CN108155773A (en) * 2017-12-22 2018-06-12 华中科技大学 A kind of self-tuning two-freedom Electromagnet absorber
CN108155773B (en) * 2017-12-22 2019-06-28 华中科技大学 A kind of self-tuning two-freedom Electromagnet absorber

Similar Documents

Publication Publication Date Title
US4710656A (en) Spring neutralized magnetic vibration isolator
US5291975A (en) System and method for damping narrow band axial vibrations of a rotating device
Hoque et al. Development of a three-axis active vibration isolator using zero-power control
CN102705431B (en) Angular-displacement-free active and passive combined vibration reduction system and method
Nagaya et al. A noncontact permanent magnet levitation table with electromagnetic control and its vibration isolation method using direct disturbance cancellation combining optimal regulators
Tu et al. A novel negative stiffness magnetic spring design for vehicle seat suspension system
CN103398138B (en) Damping-rigidness-controllable double-freedom-degree vibration active control platform
JPS63306183A (en) Vibration control equipment
GB2259158A (en) Control device for electromagnetic suspension system
Williams et al. Magnetic bearing stage for photolithography
JPH03194238A (en) Vibration controller using magnetic elastic body
JPH04331838A (en) Dynamic vibration absorber
Robertson Modelling and design of magnetic levitation systems for vibration isolation.
JP4427652B2 (en) Low frequency gain doubling control in magnetic support balance device
Mizuno et al. Flux-path control magnetic suspension system using voice coil motors
Robertson et al. Experimental results of a 1D passive magnetic spring approaching quasi-zero stiffness and using active skyhook damping
JP2000234646A (en) Vibration control device
JPH09112631A (en) Magnetic damper of leaf spring vibration type
Zhou et al. Suppression of the maglev vehicle-track coupled self-excited vibration using two gap sensors
Dushchenko et al. Application of magnetorheological elastomers for performance control of cushioning systems for wheeled vehicles
Hoque et al. A nonlinear compensator of zero-power magnetic suspension for zero-compliance to direct disturbance
CN105757155A (en) Quality-adjustable semi-active vibration absorption device
CN205745053U (en) A kind of quality adjustable half actively shock-absorbing means
Tao A novel kind of proportional electromagnetic dynamic vibration absorber
JP3604507B2 (en) Variable period vibrometer