JPH04331500A - Co-generation system - Google Patents

Co-generation system

Info

Publication number
JPH04331500A
JPH04331500A JP3098585A JP9858591A JPH04331500A JP H04331500 A JPH04331500 A JP H04331500A JP 3098585 A JP3098585 A JP 3098585A JP 9858591 A JP9858591 A JP 9858591A JP H04331500 A JPH04331500 A JP H04331500A
Authority
JP
Japan
Prior art keywords
received power
power
lower limit
time
demand
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3098585A
Other languages
Japanese (ja)
Inventor
Sadao Morita
森田 貞夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Original Assignee
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp, Meidensha Electric Manufacturing Co Ltd filed Critical Meidensha Corp
Priority to JP3098585A priority Critical patent/JPH04331500A/en
Publication of JPH04331500A publication Critical patent/JPH04331500A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/14Combined heat and power generation [CHP]

Landscapes

  • Control Of Eletrric Generators (AREA)
  • Supply And Distribution Of Alternating Current (AREA)

Abstract

PURPOSE:To enhance efficiency of co-generation system by operating the system while switching the lower of receiving power according to a power demand schedule thereby enhancing the operating rate of the system in night time band where power demand is low. CONSTITUTION:One day is sectioned into low and high demand time bands A and B based on a demand schedule. Furthermore, lower limits of receiving power PSA, PSB are set by means of setters VR1A, VR13 in load machine section. When the system is operated, a timer 6 identifies the time band and a relay control section 7 actuates relays RA, RB to select a lower limit of receiving power to be fed to a control section 4. Consequently, the system can be operated efficiently even during the low demand time band resulting in the enhancement of the operating rate of co-generation system.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】この発明は、自家発電および発電
の際の排熱回収による給熱を行う熱電併給装置(コ・ジ
ェネレーション・システム)に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a combined heat and power generation system (co-generation system) for supplying heat by in-house power generation and exhaust heat recovery during power generation.

【0002】0002

【従来の技術】コ・ジェネレーション・システムは、自
家発電の際に原動機の排熱を回収して給熱を行うことに
より、エネルギーの効率的・経済的利用を図るシステム
であり、通常、電力需要と熱需要の両方がある病院等の
施設に導入される。
[Prior Art] A cogeneration system is a system that aims to use energy efficiently and economically by recovering exhaust heat from the prime mover and supplying heat during private power generation. It will be introduced in facilities such as hospitals that have both heat demand and heat demand.

【0003】一般に、コ・ジェネレーション・システム
により系統連系運転を行う場合、逆潮流送電は認められ
ておらず、瞬時の逆潮流現象であってもこれを回避しな
ければならない。このため従来は、受電電力量を一定値
以上に維持しつつ運転する手法がとられていた(特開昭
58−46900号公報参照)。
[0003] Generally, when grid-connected operation is performed using a cogeneration system, reverse power flow transmission is not permitted, and even an instantaneous reverse power flow phenomenon must be avoided. For this reason, in the past, a method has been used to operate while maintaining the amount of received power above a certain value (see Japanese Patent Laid-Open No. 58-46900).

【0004】図3は、従来のコ・ジェネレーション・シ
ステムの概要を示す。商用電源は、取引用変成器MOF
と母線連絡遮断器CB1を介して母線1に供給される。 一方、発電機Gにより発電した電力は、発電機遮断器C
B2を介して母線1に供給される。
FIG. 3 shows an overview of a conventional cogeneration system. The commercial power supply is a commercial transformer MOF
and is supplied to the bus bar 1 via the bus bar connection breaker CB1. On the other hand, the electric power generated by generator G is transferred to generator circuit breaker C.
It is supplied to bus 1 via B2.

【0005】電力検出部2は、変成器PT1と変成器C
T1により母線電圧Vと受電電流Iを取り込んで受電電
力Pを検出する。電力検出部3は同様に、変成器PT2
,変流器CT2からの母線電圧V,発電機電流IGによ
って発電機出力PGを検出する。
[0005] The power detection unit 2 includes a transformer PT1 and a transformer C.
The received power P is detected by taking in the bus voltage V and the received current I by T1. Similarly, the power detection unit 3 is connected to the transformer PT2.
, the bus voltage V from the current transformer CT2, and the generator current IG to detect the generator output PG.

【0006】設定器VR1には、逆潮流を回避するため
の受電電力下限値PSがセットされている。この受電電
力下限値PSは、当該需要家内における需要電力の最大
急峻電力変化量をΔPLXとすると、PS≧ΔPLXの
関係から定められる。一方、設定器VR2には、発電機
Gや原動機Eの定格を考慮して定められる発電出力上限
値PGSがセットされている。
[0006] A received power lower limit value PS is set in the setting device VR1 to avoid reverse power flow. This received power lower limit value PS is determined from the relationship of PS≧ΔPLX, where ΔPLX is the maximum steep power change amount of the power demand within the consumer. On the other hand, a power generation output upper limit value PGS that is determined in consideration of the ratings of the generator G and the prime mover E is set in the setting device VR2.

【0007】制御部4は、受電電力Pが受電電力下限値
を下回らないように、受電電力一定制御により原動機E
を運転し、この結果、発電機出力PGが発電機出力上限
値PGSを超えることとなる場合は発電機出力一定制御
(PG=PGS)に切替えて運転する。この様子を図4
に示す。
The control unit 4 controls the prime mover E by constant receiving power control so that the received power P does not fall below the lower limit value of the received power.
As a result, if the generator output PG exceeds the generator output upper limit value PGS, the generator output constant control (PG=PGS) is operated. This situation is shown in Figure 4.
Shown below.

【0008】上記の制御方式の切替は、受電電力Pを監
視してその結果に基づいて行われる。すなわち、P≧P
Sであれば受電電力一定制御が選択され、P<PSであ
れば発電機出力一定制御が選択される。定常運転時は、
需要電力が大きくP≧PSであるので受電電力一定制御
により運転される。
[0008] The above-mentioned switching of the control method is performed based on the result of monitoring the received power P. That is, P≧P
If S, constant received power control is selected, and if P<PS, constant generator output control is selected. During steady operation,
Since the power demand is large and P≧PS, operation is performed by constant received power control.

【0009】[0009]

【発明が解決しようとする課題】コ・ジェネレーション
・システムが効率的に運用されるためには、電力需要と
熱需要のバランスがとれている必要がある。ところが、
たとえば病院では、昼間は大型医療機器が使用されるた
め需要電力が大きいが、夜間は大型医療機器が使用され
ないのが通常であるので、昼間と夜間で需要電力が大き
く異なる傾向がある。前述のように受電電力下限PSは
、需要家内最大急峻電力変化量ΔPLXとの関係で定め
られるため、昼間に使用される大型医療機器を基準とし
て定められている。このため、夜間において、発電機の
稼動率が低下して熱回収温度が低下してしまい、給熱温
度の保温にも支障をきたすなど、システムの信頼性・経
済性が阻害されてしまう問題があった。
[Problem to be Solved by the Invention] In order for a cogeneration system to operate efficiently, it is necessary to balance the demand for electricity and the demand for heat. However,
For example, in a hospital, large medical equipment is used during the day, so power demand is large, but large medical equipment is usually not used at night, so power demand tends to differ greatly between daytime and nighttime. As described above, the received power lower limit PS is determined in relation to the maximum steep power change amount ΔPLX within the consumer, and is therefore determined based on large medical equipment used during the day. As a result, during the night, the operating rate of the generator decreases, the heat recovery temperature decreases, and it becomes difficult to maintain the heat supply temperature, which hinders the reliability and economic efficiency of the system. there were.

【0010】この発明は、このような問題点に鑑み、需
要電力の変動に対応して効率的な熱電併給を行えるコ・
ジェネレーション・システムを提供することを目的とす
る。
[0010] In view of these problems, the present invention provides a cogeneration system that can efficiently combine heat and power in response to fluctuations in power demand.
The purpose is to provide a generation system.

【0011】[0011]

【課題を解決するための手段】この発明は、前記の目的
を達成するために、電源系統に並列接続された発電機と
、この発電機を駆動する原動機と、この原動機の排熱を
回収して外部に供給する排熱回収部と、受電電力を検出
する受電電力検出部と、受電電力が少くとも受電電力下
限値を保持するように原動機を運転する制御部とを備え
たコ・ジェネレーション・システムにおいて、次の手段
を設けたものである。
[Means for Solving the Problems] In order to achieve the above-mentioned object, the present invention includes a generator connected in parallel to a power supply system, a prime mover for driving the generator, and recovery of exhaust heat from the prime mover. A co-generation system equipped with an exhaust heat recovery unit that supplies the heat to the outside, a received power detection unit that detects received power, and a control unit that operates a prime mover so that the received power maintains at least a lower limit value of received power. The system is equipped with the following means.

【0012】(1)運転時間を分割して設定される複数
の時間帯を記憶する時間帯設定記憶部。
(1) A time zone setting storage unit that stores a plurality of time zones that are set by dividing the driving time.

【0013】(2)現在時刻がいずれの時間帯に属する
かを識別するタイマ。
(2) A timer that identifies to which time zone the current time belongs.

【0014】(3)複数の時間帯のそれぞれに対応して
設定される複数の受電電力下限値を記憶する受電電力設
定記憶部。
(3) A received power setting storage unit that stores a plurality of received power lower limit values set corresponding to each of a plurality of time periods.

【0015】(4)タイマ出力に基づいて前記複数の受
電電力下限値の中から現在時刻に対応する値を選択して
前記制御部に出力する受電電力下限値選択部。
(4) A received power lower limit selection section that selects a value corresponding to the current time from among the plurality of received power lower limit values based on a timer output, and outputs the selected value to the control section.

【0016】[0016]

【作用】この発明によれば、需要家内の需要電力の変動
に基づいて、たとえば高需要電力時間帯と低需要電力時
間帯に1日を区分し、時間帯設定部によりそれらの時間
帯を設定し、各時間帯の最大急峻電力量に基づいて高需
要電力時の受電電力下限値と低需要電力時の受電電力下
限値を受電電力設定記憶部により設定しておく。システ
ムの動作にあたっては、タイマにより現在どちらの時間
帯であるかを識別し、受電電力下限値選択部により現在
時刻に対応する受電電力下限値を選択し、選択された受
電電力下限値に基づいてシステムの運転制御が行われる
。このことにより需要電力が小さい時間帯であっても、
システムの効率的稼動が可能となる。
[Operation] According to the present invention, a day is divided into, for example, a high power demand time period and a low power demand time period based on fluctuations in power demand within a consumer, and the time period setting section sets these time periods. The lower limit value of received power during high demand power and the lower limit value of received power during low power demand are set in the received power setting storage unit based on the maximum steep power amount in each time period. When the system operates, a timer identifies which time zone it is currently in, a received power lower limit value selection section selects the received power lower limit value corresponding to the current time, and the received power lower limit value is selected based on the selected received power lower limit value. System operation control is performed. As a result, even during times when power demand is low,
This enables efficient system operation.

【0017】[0017]

【実施例】以下図1および図2を用いてこの発明の一実
施例に係るコ・ジェネレーション・システムを説明する
。図1は、実施例に係るコ・ジェネレーション・システ
ムの要部を示す。図1において、図3と同じまたは相当
する部分には同一の符号を付している。このシステムで
は、需要家の需要計画に基づいて1日を低需要電力時間
帯(正確には大負荷機器不使用時間帯)Aと高需要電力
時間帯(大負荷機器使用時間帯)Bに区分することにし
ている。各時間帯の設定は、時刻設定部5により切替時
刻を入力することにより行われる。さらに、時間帯A,
Bに使用される負荷機器群A,Bの定格から最大急峻電
力量ΔPLXA,ΔPLXBを求め、各時間帯における
受電電力下限値PSA,PSBを設定器VR1A,VR
1Bにセットする。
DESCRIPTION OF THE PREFERRED EMBODIMENTS A cogeneration system according to an embodiment of the present invention will be described below with reference to FIGS. 1 and 2. FIG. 1 shows the main parts of a cogeneration system according to an embodiment. In FIG. 1, the same or corresponding parts as in FIG. 3 are given the same reference numerals. In this system, the day is divided into low demand time period A (more precisely, time period when heavy load equipment is not used) and high demand power time period B (time period when heavy load equipment is used) based on the demand plan of the consumer. I am planning to do so. Setting of each time zone is performed by inputting a switching time using the time setting section 5. Furthermore, time period A,
Calculate the maximum steep power consumption ΔPLXA, ΔPLXB from the ratings of the load equipment groups A and B used in B, and set the lower limit values of received power PSA and PSB for each time period using the setting devices VR1A and VR.
Set it to 1B.

【0018】システム運転の際は、前述のように、基本
的に受電電力最低保持制御により運転が行われるが、そ
の基準となる受電電力下限値はリレー接点RA,RBが
択一的に閉路することにより選択される。すなわちタイ
マ6により現在時刻がどちらの時間帯に属するかを識別
し、その結果に基づいてリレー制御部7がリレーRA,
RBを択一的に動作させることにより、制御部4に入力
される受電電力下限値が選択される。
When the system is operated, as described above, the operation is basically carried out under the received power minimum holding control, but the lower limit value of the received power, which is the standard, is such that the relay contacts RA and RB are alternatively closed. It is selected by That is, the timer 6 identifies which time zone the current time belongs to, and based on the result, the relay control unit 7 controls the relays RA,
By selectively operating RB, the lower limit value of the received power input to the control unit 4 is selected.

【0019】このシステムの稼動の様子を図2に示す。 時間帯Aでは大負荷機器を使用しないため、受電電力下
限値PSAはPSBより小さく設定できる。たとえば需
要家が放射線医療機器等を備えた病院である場合、PS
A=50KW,PSB=200KWというように設定で
きる。したがって図2と図4を比較すれば判るように、
全体需要電力量(A)に対する発電出力量(B)の割合
を高め、システム稼動率を向上させることが可能となっ
た。さらに夜間の稼動率が高まったことにより、熱回収
温度を確実に保温することが可能となり、熱供給の信頼
性が向上した。
FIG. 2 shows how this system operates. Since heavy-load equipment is not used in time period A, the received power lower limit value PSA can be set smaller than PSB. For example, if the consumer is a hospital equipped with radiation medical equipment, etc., the PS
It can be set as A=50KW and PSB=200KW. Therefore, as can be seen by comparing Figures 2 and 4,
It has become possible to increase the ratio of the power generation output (B) to the total power demand (A) and improve the system operating rate. Furthermore, by increasing the operating rate at night, it has become possible to reliably maintain the heat recovery temperature, improving the reliability of heat supply.

【0020】[0020]

【発明の効果】以上説明したようにこの発明によれば、
電力の需要計画に従って受電電力下限値を切替えてシス
テム運転を行えるので、夜間等,需要電力が低い時間帯
におけるシステム稼動率を高めることが可能となり、コ
・ジェネレーション・システムの要点である効率性・経
済性が向上する。しかも低需要電力時間帯における稼動
率が高まることにより、給熱温度の保温の確実性も高ま
り、給熱の面でも信頼性が向上する。
[Effects of the Invention] As explained above, according to the present invention,
Since the system can be operated by switching the lower limit of received power according to the power demand plan, it is possible to increase the system operation rate during times when power demand is low, such as at night, and improve efficiency and efficiency, which are the key points of cogeneration systems. Economic efficiency improves. In addition, by increasing the operating rate during low power demand hours, the reliability of maintaining the heat supply temperature increases, and the reliability of heat supply also improves.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】この発明の一実施例に係るコ・ジェネレーショ
ン・システムの要部を示すブロック図。
FIG. 1 is a block diagram showing main parts of a cogeneration system according to an embodiment of the present invention.

【図2】実施例のシステムの動作を示すグラフ。FIG. 2 is a graph showing the operation of the system of the embodiment.

【図3】従来のコ・ジェネレーション・システムの要部
を示すブロック図。
FIG. 3 is a block diagram showing the main parts of a conventional cogeneration system.

【図4】従来システムの動作を示すグラフ。FIG. 4 is a graph showing the operation of the conventional system.

【符号の説明】[Explanation of symbols]

1…母線 2…受電電力を検出する電力検出部 3…発電機出力を検出する電力検出部 4…制御部 5…時刻設定部 6…タイマ 7…リレー制御部 G…発電機 E…原動機 VR1A…高需要電力時間帯の受電電力下限値の設定器
VR1B…低需要電力時間帯の受電電力下限値の設定器
RA,RB…リレー
1... Bus bar 2... Power detection section 3 that detects received power... Power detection section 4 that detects generator output... Control section 5... Time setting section 6... Timer 7... Relay control section G... Generator E... Prime mover VR1A... Setter for lower limit value of received power during high demand power hours VR1B...Setter for lower limit value of received power during low demand hours RA, RB...Relay

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  電源系統に並列接続された発電機と、
この発電機を駆動する原動機と、この原動機の排熱を回
収して外部に供給する排熱回収部と、受電電力を検出す
る受電電力検出部と、受電電力が少くとも受電電力下限
値を保持するように原動機を運転する制御部とを備えた
熱電併給装置において、運転時間を分割して設定される
複数の時間帯を記憶する時間帯設定記憶部と、現在時刻
がいずれの時間帯に属するかを識別するタイマと、前記
複数の時間帯のそれぞれに対応して設定される複数の受
電電力下限値を記憶する受電電力設定記憶部と、タイマ
出力に基づいて前記複数の受電電力下限値の中から現在
時刻に対応する値を選択して前記制御部に出力する受電
電力下限値選択部とを備えたことを特徴とする熱電併給
装置。
[Claim 1] A generator connected in parallel to a power supply system;
A prime mover that drives this generator, an exhaust heat recovery unit that recovers the exhaust heat of this prime mover and supplies it to the outside, a received power detection unit that detects received power, and a received power that maintains at least the lower limit value of received power. In the combined heat and power generation system, the combined heat and power generation device includes a control unit that operates the prime mover so as to operate the prime mover, and a time zone setting storage unit that stores a plurality of time zones that are set by dividing the operating time, and a time zone setting storage unit that stores a plurality of time zones that are set by dividing the operating time, and a time zone to which the current time belongs. a received power setting storage unit that stores a plurality of received power lower limit values set corresponding to each of the plurality of time periods; A combined heat and power generation device comprising: a received power lower limit selection section that selects a value corresponding to the current time from among the received power lower limit values and outputs the selected value to the control section.
JP3098585A 1991-04-30 1991-04-30 Co-generation system Pending JPH04331500A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3098585A JPH04331500A (en) 1991-04-30 1991-04-30 Co-generation system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3098585A JPH04331500A (en) 1991-04-30 1991-04-30 Co-generation system

Publications (1)

Publication Number Publication Date
JPH04331500A true JPH04331500A (en) 1992-11-19

Family

ID=14223730

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3098585A Pending JPH04331500A (en) 1991-04-30 1991-04-30 Co-generation system

Country Status (1)

Country Link
JP (1) JPH04331500A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1023670A (en) * 1996-06-28 1998-01-23 Shinko Electric Co Ltd Method for controlling output of non-utility feeding device and output controlling device
JP2001258293A (en) * 2000-03-08 2001-09-21 Osaka Gas Co Ltd Power generating equipment

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1023670A (en) * 1996-06-28 1998-01-23 Shinko Electric Co Ltd Method for controlling output of non-utility feeding device and output controlling device
JP2001258293A (en) * 2000-03-08 2001-09-21 Osaka Gas Co Ltd Power generating equipment

Similar Documents

Publication Publication Date Title
US5536976A (en) Multiple service load solid state switching for controlled cogeneration system
US5917251A (en) Method and circuit arrangement to cover peak energy demands in electrical alternating or three-phase current networks
US6404075B1 (en) Uninterruptible power generation system
US20200059099A1 (en) Device for Optimizing Production, Consumption, and Storage of Electric Energy
JP2000232736A (en) Linked distributed power generation system
JP2004194485A (en) Energy system
JPH09130977A (en) System linkage system containing dispersed power supply
JP5013891B2 (en) Grid interconnection device and grid interconnection system
JPH04304126A (en) Device for supplying electric power from fuel cell
JPH08251827A (en) Combined cycle power generation system
JPH0951638A (en) Distributed power supply
JP2014121151A (en) Power storage system and power supply system
JPH04331500A (en) Co-generation system
CN115622020A (en) Virtual power plant system facing direct current load and operation method
JPH04222420A (en) Fuel cell power supply system
JPH1023670A (en) Method for controlling output of non-utility feeding device and output controlling device
JP3780808B2 (en) Private power generation facilities
JPH07123336B2 (en) Operation control device for private power generation equipment
JPH048122A (en) Dc power distribution equipment
Golshaeian et al. A Novel Approach for Frequency Control in Smart Grids Utilizing Thermal Equipment for Emergency Situations
JPH08182192A (en) System interconnection system for non-utility dc generator facility
JP6689124B2 (en) Power control device
JPH0197145A (en) Composite type optical power generation system
JPH0559656B2 (en)
JPH07234734A (en) Solar power generation system