JPH0433146B2 - - Google Patents

Info

Publication number
JPH0433146B2
JPH0433146B2 JP59057992A JP5799284A JPH0433146B2 JP H0433146 B2 JPH0433146 B2 JP H0433146B2 JP 59057992 A JP59057992 A JP 59057992A JP 5799284 A JP5799284 A JP 5799284A JP H0433146 B2 JPH0433146 B2 JP H0433146B2
Authority
JP
Japan
Prior art keywords
film
solar cell
moisture
heat
proof
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59057992A
Other languages
Japanese (ja)
Other versions
JPS60201652A (en
Inventor
Yutaka Iwasaki
Takeo Oohira
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toppan Inc
Original Assignee
Toppan Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toppan Printing Co Ltd filed Critical Toppan Printing Co Ltd
Priority to JP59057992A priority Critical patent/JPS60201652A/en
Publication of JPS60201652A publication Critical patent/JPS60201652A/en
Publication of JPH0433146B2 publication Critical patent/JPH0433146B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/048Encapsulation of modules
    • H01L31/049Protective back sheets
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Photovoltaic Devices (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) 本発明は、太陽電池モジユールの裏面保護シー
トとして使用される積層材料に関するものであ
る。 (従来技術の構成とその問題点) 太陽電池モジユールの基本的な機能は、太陽の
幅射エネルギー効率良く太陽電池素子へ導くと共
に、太陽電池素子及び内部配線を長期にわたつて
過酷な自然環境に耐え得るように保護することに
ある。従来一般に太陽電池モジユールは第1図に
示す如く上部透明材料9がモジユール全体の構造
的支持体となつたもので、例えばガラス板等の上
部透明材料9と、塗装鋼板、あるいはAl箔をサ
ンドイツチしたフツ化ビニルシート等の裏面保護
シート11の間に、相互に配線した単結晶シリコ
ン等よりなる太陽電池素子7を挿入し、更に急激
な外気条件の変化による素子の損傷防止や電気絶
縁性の為に、上部透明材料と下部基板用材料の間
を、シリコーン樹脂等の充填材8で充填し、更に
全体をアルミニウム、ステンレス等の枠体10を
用いて封入固定したものである。 更に近年従来の石油を中心としたエネルギーに
代替するものとして、太陽光発電の早期実用化が
強く求められ、モジユールに使用する充填剤8も
液状のシリコーン樹脂からシート状のブチラール
樹脂、更にはより低コストなエチレン−酢酸ビニ
ル共重合樹脂シートに変わり、モジユール複合方
法も熱プレスのみといつた形へ急ピツチで進んで
いる。 ここにおいて、裏面保護シート11は、太陽電
池モジユール内部の部品(太陽電池素子、内部配
線等)を外部からの機械的衝撃、圧力等の外力か
ら保護し、また外部からの湿気の浸入によりモジ
ユール内部部品が劣化することを防止する防湿膜
として設けられる大切なものである。 従来、裏面保護シートとしては第2図にその断
面図を示すような構成から成る積層材料が用いら
れている。すなわち、防湿性金属箔2を耐候性樹
脂フイルム1により両側からはさんだ構成であ
る。耐候性樹脂フイルム1は、太陽電池として実
際に使用される際の屋外曝露条件において、太陽
光あるいは降雨により劣化しないものとして、白
色ポリフツ化ビニル樹脂のフイルムが用いられ、
また防湿性金属箔2としては、例えばアルミニウ
ム箔あるいは亜鉛メツキ鉄箔等が用いられてい
る。 ところが、そのような構成の裏面保護シートを
用いた場合には、白色ポリフツ化ビニルフイルム
の機械的強度が低く、かつ熱プレスの際に加えら
れる140〜150℃の熱により軟化するために、熱プ
レス時において太陽電池素子電極部のハンダ付け
部の突起物が充填剤層を貫通し、さらに裏面保護
シートを構成する内面の白色ポリフツ化ビニルフ
イルム1を貫通し、裏面保護シート中の金属箔2
に接触することにより、太陽電池素子と金属箔が
短絡して電池性能に悪影響を及ぼす、という問題
点があつた。 また現状は充填剤シートと裏面保護シートが
別々である為、複合成型時破損しやすい素子を介
していることからプレス圧を大きくできない等、
そのプレス圧、温度、時間に制限が生じて、太陽
電池モジユール製造工程の連続化・自動化がはか
れず、作業が煩雑であり、作業性の点においても
問題点があつた。 (発明の目的) 本発明は、上記従来技術の問題点を解決するも
のであり、金属箔に替る防湿性層として酸化ケイ
素を主成分とするガラス状防湿皮膜をその両面に
蒸着した耐熱性樹脂フイルムを設けることによ
り、太陽電池素子電極部のハンダ付け部の突起物
と裏面保護シートの電気的短絡を回避するととも
に、本来ガラス質に対して接着性の良い接着性樹
脂の層を、ガラス状防湿皮膜の保護層及び従来
別々であつた充填剤の役割を担うものとして最内
面に設けることにより、太陽電池モジユール製造
作業における大巾な工程短縮、充填剤シートの薄
膜化等のコストダウンを目的としたものである。 なお、金属箔に替る防湿性層としてガラス状防
湿皮膜を蒸着した耐熱性樹脂フイルムを設けた太
陽電池モジユール用裏面保護シートとしては、ガ
ラス状防湿皮膜を片面に蒸着した耐熱性樹脂フイ
ルムを使用するものとして、本出願人による特願
昭59−20510号があるが、本発明の太陽電地モジ
ユール用裏面保護シートにおいては、ガラス状防
湿皮膜を両面に蒸着した耐熱性樹脂フイルムを用
いることにより、防湿機能をさらに向上させ、し
かも、たとえ内面のガラス状防湿皮膜が充填剤層
を貫通した太陽電池素子電極部のハンダ付け部の
突起物との接触によりピンホールを発生しても、
外面にもガラス状防湿皮膜が設けられていること
により防湿機能を充分に維持することが可能であ
る。 (発明の概要) すなわち、本発明は、150℃以下の温度では溶
融軟化しない耐熱性・耐候性樹脂フイルムの内面
に、少なくとも、電気絶縁性ガラス状皮膜をその
両面に蒸着した耐熱性フイルムを積層した積層体
から成る太陽電池モジユール用裏面保護シートを
提供するもので、この裏面保護シートは構成材料
中に導電体の防湿材料を含む必要がないから、太
陽電池モジユールの内部部品(太陽電池素子、内
部配線等)と裏面保護シートの電気的短絡は発生
せず、しかもそのために、プレス圧、時間、温度
などがより自由に選べて熱プレス作業の効率化が
可能となり、また短絡の危険がないので充填剤シ
ートの厚みを必要最小限にすることができるので
材料の節約が可能であり、さらに裏面保護シート
が充填剤と簡単に融着することができる。または
裏面保護シート自体に充填剤としての機能を有す
る接着性樹脂の層が一体化されているために、従
来裏面材−充填剤、次に充填剤−素子という多段
階のプレス工程を要していたものが一度のプレス
工程のみによりモジユール化が可能となる。 (発明の具体例の説明) 以下、図面を参照して本発明の具体例を説明す
る。 第3図は本発明の太陽電池モジユール用裏面保
護シートの一実施例を示す断面図であり、耐熱
性・耐候性樹脂フイルム3、ガラス状防湿皮膜
4,4′をその両面に蒸着した耐熱性樹脂フイル
ム5、接着性樹脂層6から構成されている。 耐熱性・耐候性樹脂フイルム3は、ガラス状防
湿皮膜4の外面に積層して、外部からの機械的圧
力、衝撃等によりガラス状防湿皮膜4にピンホー
ルが発生することを防止し、かつ裏面保護シート
として熱プレス作業性を与えるために設けられ、
太陽電池モジユール製造時の熱プレス工程の際に
加えられる熱により溶融したり劣化したりするこ
とがなく、しかも太陽電池として実際に使用され
る際の屋外曝露条件においても太陽光、降雨等に
より劣化しない樹脂フイルムが使用される。特に
熱プレスの条件は通常150℃程度の熱が加えられ
るので、150℃以下の温度では溶融軟化しない樹
脂フイルムである必要がある。例えば、パーフル
オロアルコキシ樹脂、4フツ化エチレン−6フツ
化プロピレン共重合体、パーフルオロエチレン−
パーフルオロプロピレン−パーフルオロビニルエ
ーテル三元共重合体、エチレン−4フツ化エチレ
ン共重合体、塩化−3フツ化エチレン樹脂、ポリ
フツ化ビニリデン、ポリフツ化ビニルから選ばれ
るフツ素樹脂フイルムのほか、ポリカーボネー
ト、ポリメチルメタクリレート、ポリアクリレー
ト又は紫外線吸収剤(例えば、ベンゾフエノンや
ベンゾトリアゾールなど)を含浸又は練り込んだ
ポリエチレンテレフタレートから選ばれる一種の
フイルム又はこれらの複合フイルムがあり、これ
らのフイルムは酸化チタン等の体質顔料を練り込
んだものであつてもよく、また少なくとも片面に
ベタあるいは絵柄等の印刷を施したものであつて
も差しつかえない。なお、その厚さはガラス状防
湿皮膜の保護効果を確保できる厚さであればよ
く、特に限定されるものではないが、通常12μ以
上の厚さのフイルムが使用される。 電気絶縁性ガラス状防湿皮膜4,4′を両面に
蒸着した耐熱性樹脂フイルム5は、太陽電池モジ
ユール外部から内部へ湿気が浸入して太陽電池素
子や内部配線等の部品が劣化することを防止する
ために設けられるものである。ガラス状防湿皮膜
4,4′は蒸着適性、連続皮膜形成性、防湿性及
びコストの点を考慮して、酸化ケイ素を主成分と
する無機質皮膜が適当である。通常酸化ケイ素の
場合、化学組成的にはSiO2であるが、蒸着皮膜
ではSiOに近い組成である。蒸着皮膜の厚さは、
防湿性の点で少なくとも200Å以上必要であるが、
1000Å以上になると皮膜にクラツクが発生しやす
くかえつて防湿性を損なう結果となるので、500
〜700Åが好ましい。また、蒸着を行なう耐熱性
樹脂フイルム5としては、モジユール製造時の熱
プレスによつて溶融して蒸着皮膜の支持機能を失
なわない耐熱性を必要とするが、蒸着適性面で特
に制限はなく、パーフルオロアルコキシ樹脂、4
フツ化エチレン−6フツ化プロピレン共重合体、
パーフルオロエチレン−パーフルオロプロピレン
−パーフルオロビニルエーテル三元共重合体、エ
チレン−4フツ化エチレン共重合体、塩化−3フ
ツ化エチレン樹脂、ポリフツ化ビニリデン、ポリ
フツ化ビニルから選ばれるフツ素樹脂フイルムの
他、ポリカーボネート、ポリメチルメタクリレー
ト、ポリアクリレート、ポリエチレンテレフタレ
ート、ポリアミド、ポリ塩化ビニル、セロフアン
等より成るフイルムが挙げられる。耐熱性樹脂フ
イルムの厚さは、蒸着皮膜を支持するのに充分な
厚さであればよく、特に限定されるものではない
が、通常12μ以上の厚さのフイルムが使用され
る。 そして、本発明においては、ガラス状防湿被膜
が耐熱性樹脂フイルムの両面に蒸着されているた
めに、片面のみ蒸着されている場合と比較して防
湿性が向上し、また内面のガラス状防湿皮膜4が
モジユール複合化の熱プレス時に太陽電池モジユ
ール素子電極部のハンダ付け部の突起物との接触
等が原因でピンホールを発生しても、外面のガラ
ス状防湿皮膜4′が設けられていることで防湿性
は充分に維持される。しかも、内面のガラス状防
湿皮膜4′は充填剤に対して良好な接着性を有す
るという利点をも有するものである。 しかしながら高度の防湿性を維持するために、
クラツクを発生しやすいガラス状防湿皮膜表面は
熱プレス時まで保護されることが好ましく、その
点でガラス状防湿皮膜4の内面にさらに充填剤と
しての機能を有する接着性樹脂層6を積層するこ
とで、保護シートとしての性能安定化とともに、
モジユール複合工程の簡易化を図ることが可能で
ある。 接着性樹脂層6は、保護シート最内面に配され
ることにより、太陽電池モジユール内部の太陽電
池素子、内部配線等の部品を外部からの機械的衝
撃や圧力から保護するクツシヨン材として、従来
は裏面保護シートとは別々であつた充填剤と同様
の機能を有するものであり、それ自身が太陽電池
素子表面のガラス質及び金属質への接着性を有
し、150℃未満、好ましくは120℃以下の温度で溶
融軟化する樹脂から成るものである。具体的に
は、ポリビニルブチラール、エチレン−酢酸ビニ
ル共重合体、エチレン−酢酸ビニル−グリシジル
メタクリレート三元共重合体、エチレン−酢酸ビ
ニル部分ケン化物−有機酸グラフト四元共重合体
等のエチレン−酢酸ビニル共重合体の変性樹脂、
あるいは無水マレイン酸グラフトポリエチレン等
のカルボキシル基含有ポリオレフイン、エチレン
テレフタレート−変性アルキレンエーテルテレフ
タレートブロツク共重合体等のポリエステル変性
樹脂等のいずれかより成る樹脂が使用され、その
厚さは太陽電池モジユールの裏面クツシヨン材と
しての効果を有効に発揮するために50μ以上であ
ることが好ましい。 耐熱性・耐候性樹脂フイルム1、ガラス状防湿
皮膜4,4′を両面に蒸着した耐熱性樹脂フイル
ム5は接着剤または接着性樹脂フイルムを用い
て、ドライラミネート法あるいはヒートプレス法
等の方法で積層することができるが、150℃以上
の耐熱性及び耐候性のある接着剤または接着性フ
イルムを使用する。また、ポリビニルブチラー
ル、エチレン−酢酸ビニル共重合体及びその変性
樹脂等の接着性樹脂層6をガラス状防湿皮膜4に
積層する場合、ヒートプレス法とともに、接着性
樹脂を熱溶融してガラス状防湿皮膜4′上へ直接
押出し塗工をする方法等、本発明の保護シートは
公知の積層技術を用いて作成することができる。 本発明の保護シートを太陽電池モジユールに適
用する場合、予め配線接続した太陽電池素子7を
上部保護用充填剤シート8を敷いた上部透明材料
9であるガラス板の上に置き、その上から下部保
護用充填剤シート8をかぶせるか、または使用せ
ずに本発明の裏面保護シートを接着性樹脂層6側
を内面にして更にその上にかぶせ、真空に減圧し
つつ全体を140℃〜150℃でプレスして融着一体化
させ、端部をアルミニウム等の枠体10で封入固
定する。 以上詳細に述べたように本発明の太陽電池モジ
ユール用裏面保護シートは、従来の保護シートと
比較して特にモジユール複合適性の面で際立つた
利点を有しており、本発明によればプレス時に
素子電極と保護シートとの短絡が完全になくなる
為、収率向上はもちろんプレス圧・時間・温度な
どがより自由に選べる為作業の効率化がはかれ
る。短絡の危険がない為充填剤シートの厚みを
必要最低限にすることが可能となり材料の節減が
できる。裏面保護シートの一部が充填剤となり
うるかまたは充填剤と簡単に融着できる為、従来
裏面材−充填剤次に充填剤−素子といつた異なる
条件で多段階プレスが必要であつたのが、ほぼ1
度のプレス工程でモジユール化が可能となり、素
子の破損も大幅に減少する、といつた点があげら
れ、また防湿機能の点においてもガラス状防湿皮
膜を二重に設けているために、高度な防湿機能を
モジユール複合時のプレス工程等の厳しい機械的
圧力、衝撃が加えられた後にも充分に維持でき
る、といつた利点を有する。 以上詳細に述べたように、本発明により太陽電
池モジユールの品質安定化、製造安定化、材料節
減が可能となる等の利点が得られ、太陽光発電に
関係する産業分野において多大な価値を有するも
のである。 (実施例の説明) 本発明の実施例を以下に説明する。 本発明の太陽電池モジユール用裏面保護シート
として、次に示す構成の2種類の積層材料を作成
した。 <本発明1> 紫外線吸収剤練込みポリエステルフイルム(商
品名:ルミラ−Q−37〔東レ(株)製〕厚さ25μ)/
両面酸化ケイ素蒸着ポリエステルフイルム(〔尾
池工業製〕厚さ12μ) <本発明2> ポリカーボネートフイルム(商品名:パンライ
ト〔帝人(株)製〕厚さ50μ)/両面酸化ケイ素蒸着
ポリアミドフイルム(〔尾池工業製〕厚さ
15μ)/エチレン−酢酸ビニル共重合体樹脂層
(酢酸ビニル含有量33重量%、厚さ400μ) 上記2種類の本発明の積層材料、及び従来例の
積層材料として、白色ポリフツ化ビニルフイルム
(商品名:テドラー〔デユポン製〕厚さ38μ)/
アルミニウム箔(厚さ20μ)/白色ポリフツ化ビ
ニルフイルム(商品名:テドラー、厚さ38μ)な
る構成の積層材料を裏面保護シートとして使用し
て第1図に示すのと同様の構造の太陽電池モジユ
ールを製造した。ただし、本発明1及び従来例の
積層材料を裏面保護シートとして使用する場合
は、本発明2の積層材料中に接着性樹脂層として
使用されているエチレン−酢酸ビニル共重合体樹
脂層と同じシートを充填剤として用いて太陽電池
モジユールを製造した。なお、熱プレスの条件は
150℃−5Kg/cm2−10分である。 この3種類の太陽電池モジユール用裏面保護シ
ートの透湿度、及び3種類の裏面保護シートを用
いてモジユール複合化した太陽電池モジユールを
各々100個ずつ製造した場合の太陽電池素子電極
部のハンダ付け部の突起物と裏面保護シートとの
電気的短絡による電池性能の不良発生率、及び製
造作業の作業性を比較した結果を次表に示す。
(Industrial Application Field) The present invention relates to a laminated material used as a back protection sheet for a solar cell module. (Configuration of conventional technology and its problems) The basic functions of a solar cell module are to efficiently guide the sun's radiant energy to the solar cell element, and to protect the solar cell element and internal wiring from harsh natural environments for a long period of time. The purpose is to protect it so that it endures. Conventionally, solar cell modules generally have an upper transparent material 9 that serves as a structural support for the entire module as shown in Fig. 1. For example, the upper transparent material 9 such as a glass plate and a painted steel plate or Al foil are sandwiched together. A solar cell element 7 made of monocrystalline silicon or the like is inserted between the back protection sheets 11 such as vinyl fluoride sheets, and furthermore, to prevent damage to the elements due to sudden changes in outside air conditions and to provide electrical insulation. The space between the upper transparent material and the lower substrate material is filled with a filler 8 such as silicone resin, and the whole is sealed and fixed using a frame 10 made of aluminum, stainless steel, etc. Furthermore, in recent years, there has been a strong demand for the early practical application of solar power generation as an alternative to conventional petroleum-based energy, and the filler 8 used in modules has changed from liquid silicone resin to sheet-like butyral resin, and even more. In response to the switch to low-cost ethylene-vinyl acetate copolymer resin sheets, the modular composite method is rapidly progressing to a form that only requires heat pressing. Here, the back protection sheet 11 protects the components inside the solar cell module (solar cell elements, internal wiring, etc.) from external forces such as mechanical shock and pressure from the outside, and also protects the inside of the module from moisture intrusion from the outside. It is an important material provided as a moisture-proof membrane to prevent parts from deteriorating. Conventionally, a laminated material having a structure as shown in a cross-sectional view in FIG. 2 has been used as a back protection sheet. That is, the structure is such that a moisture-proof metal foil 2 is sandwiched between weather-resistant resin films 1 from both sides. The weather-resistant resin film 1 is a white polyvinyl fluoride resin film that does not deteriorate due to sunlight or rain under outdoor exposure conditions when actually used as a solar cell.
Further, as the moisture-proof metal foil 2, for example, aluminum foil or galvanized iron foil is used. However, when using a back protection sheet with such a structure, the mechanical strength of the white polyfluorinated vinyl film is low, and it softens with the heat of 140 to 150°C applied during hot pressing, so it cannot be heated easily. During pressing, the protrusions of the soldered parts of the solar cell element electrodes penetrate the filler layer, and further penetrate the inner white polyfluorinated vinyl film 1 constituting the back protection sheet, and the metal foil 2 in the back protection sheet.
There was a problem in that contact with the metal foil caused a short circuit between the solar cell element and the metal foil, which adversely affected battery performance. Additionally, since the filler sheet and the back protection sheet are currently separate, the pressing pressure cannot be increased due to the use of elements that are easily damaged during composite molding.
There were restrictions on the press pressure, temperature, and time, making it difficult to continuousize and automate the solar cell module manufacturing process, making the work complicated and causing problems in terms of workability. (Object of the Invention) The present invention solves the above-mentioned problems of the prior art, and provides a heat-resistant resin with a glass-like moisture-proof film mainly composed of silicon oxide deposited on both sides of the film as a moisture-proof layer in place of metal foil. By providing the film, it is possible to avoid electrical short circuits between the protrusions of the soldering part of the solar cell element electrode part and the back protective sheet, and also to prevent the layer of adhesive resin, which has good adhesion to glassy materials, from being By providing it on the innermost surface to play the role of the protective layer of the moisture-proof film and the filler, which was previously separated, the purpose is to significantly shorten the process in manufacturing solar cell modules and reduce costs by making the filler sheet thinner. That is. In addition, as a back protection sheet for a solar cell module that has a heat-resistant resin film deposited with a glass-like moisture-proof film as a moisture-proof layer in place of metal foil, a heat-resistant resin film with a glass-like moisture-proof film deposited on one side is used. As an example, there is Japanese Patent Application No. 59-20510 filed by the present applicant, and in the back protection sheet for solar power module of the present invention, by using a heat-resistant resin film with a glassy moisture-proof film deposited on both sides, The moisture-proof function has been further improved, and even if the glass-like moisture-proof film on the inner surface comes into contact with a protrusion on the soldered part of the solar cell element electrode that penetrates the filler layer, pinholes can occur.
By providing a glassy moisture-proof film on the outer surface as well, it is possible to sufficiently maintain the moisture-proof function. (Summary of the Invention) That is, the present invention is a method of laminating a heat-resistant film having at least an electrically insulating glass-like film deposited on both sides on the inner surface of a heat-resistant and weather-resistant resin film that does not melt and soften at temperatures below 150°C. This invention provides a back protection sheet for a solar cell module consisting of a laminate made of a laminate, and since this back protection sheet does not need to contain a conductive moisture-proofing material in its constituent materials, There is no electrical short circuit between the internal wiring, etc.) and the back protection sheet, and as a result, press pressure, time, temperature, etc. can be selected more freely, making heat press work more efficient, and there is no risk of short circuit. Therefore, the thickness of the filler sheet can be reduced to the necessary minimum, so materials can be saved, and furthermore, the back protection sheet can be easily fused to the filler. Alternatively, because the back protection sheet itself has an integrated layer of adhesive resin that functions as a filler, conventionally a multi-step pressing process was required: back material - filler, then filler - element. It is now possible to modularize objects with just one pressing process. (Description of Specific Examples of the Invention) Specific examples of the present invention will be described below with reference to the drawings. FIG. 3 is a cross-sectional view showing one embodiment of the back protection sheet for solar cell modules of the present invention, which has a heat-resistant and weather-resistant resin film 3 and a glassy moisture-proof film 4, 4' deposited on both sides thereof. It is composed of a resin film 5 and an adhesive resin layer 6. The heat-resistant and weather-resistant resin film 3 is laminated on the outer surface of the glassy moisture-proof coating 4 to prevent pinholes from forming in the glassy moisture-proof coating 4 due to external mechanical pressure, impact, etc. Provided as a protective sheet to provide heat press workability,
It will not melt or deteriorate due to the heat applied during the heat press process during solar cell module manufacturing, and will not deteriorate due to sunlight, rain, etc. even under outdoor exposure conditions when actually used as a solar cell. No resin film is used. In particular, since heat press conditions typically involve applying heat of about 150°C, the resin film must not melt and soften at temperatures below 150°C. For example, perfluoroalkoxy resin, tetrafluoroethylene-hexafluoropropylene copolymer, perfluoroethylene-
In addition to fluororesin films selected from perfluoropropylene-perfluorovinylether terpolymer, ethylene-tetrafluoroethylene copolymer, chloride-trifluoroethylene resin, polyvinylidene fluoride, and polyvinyl fluoride, polycarbonate, There is a type of film selected from polymethyl methacrylate, polyacrylate, or polyethylene terephthalate impregnated or kneaded with an ultraviolet absorber (for example, benzophenone or benzotriazole), or a composite film of these films, and these films are made of titanium oxide or the like. It may be kneaded with pigment, or it may be printed solid or with a pattern on at least one side. The thickness thereof is not particularly limited as long as it can ensure the protective effect of the glassy moisture-proof film, but a film having a thickness of 12 μm or more is usually used. The heat-resistant resin film 5, which has electrically insulating glassy moisture-proof coatings 4, 4' deposited on both sides, prevents moisture from entering the solar cell module from outside and deteriorating components such as the solar cell elements and internal wiring. It is established for the purpose of The glassy moisture-proof coatings 4, 4' are preferably inorganic coatings containing silicon oxide as a main component, taking into consideration vapor deposition suitability, continuous film formation, moisture resistance, and cost. In the case of silicon oxide, the chemical composition is usually SiO 2 , but in the case of a vapor-deposited film, the composition is close to SiO. The thickness of the vapor deposited film is
At least 200Å or more is required for moisture resistance, but
If the thickness exceeds 1000Å, cracks will easily occur in the film, which will actually impair its moisture resistance.
~700 Å is preferred. Furthermore, the heat-resistant resin film 5 used for vapor deposition must have heat resistance so that it will not melt and lose its supporting function for the vapor-deposited film during the heat press during module manufacturing, but there are no particular restrictions in terms of suitability for vapor deposition. , perfluoroalkoxy resin, 4
Fluorinated ethylene-hexafluorinated propylene copolymer,
A fluororesin film selected from perfluoroethylene-perfluoropropylene-perfluorovinyl ether terpolymer, ethylene-tetrafluoroethylene copolymer, chloride-trifluoroethylene resin, polyvinylidene fluoride, and polyvinyl fluoride. Other examples include films made of polycarbonate, polymethyl methacrylate, polyacrylate, polyethylene terephthalate, polyamide, polyvinyl chloride, cellophane, and the like. The thickness of the heat-resistant resin film is not particularly limited as long as it is thick enough to support the vapor-deposited film, but a film having a thickness of 12 μm or more is usually used. In the present invention, since the glassy moisture-proof film is deposited on both sides of the heat-resistant resin film, the moisture-proof property is improved compared to the case where the glassy moisture-proof film is deposited on only one side, and the glassy moisture-proof film on the inner surface is Even if pinholes occur due to contact with protrusions of the soldered part of the electrode part of the solar cell module element during heat pressing of the module composite, the glass-like moisture-proof film 4' on the outer surface is provided. This maintains sufficient moisture resistance. Furthermore, the glassy moisture-proof coating 4' on the inner surface also has the advantage of having good adhesion to fillers. However, in order to maintain a high degree of moisture resistance,
It is preferable that the surface of the glassy moisture-proof film, which is prone to cracking, be protected until the time of heat pressing, and in this respect, an adhesive resin layer 6 having a function as a filler is further laminated on the inner surface of the glassy moisture-proof film 4. In addition to stabilizing the performance as a protective sheet,
It is possible to simplify the module composite process. The adhesive resin layer 6 is placed on the innermost surface of the protective sheet to serve as a cushion material that protects components such as the solar cell elements and internal wiring inside the solar cell module from external mechanical shock and pressure. It has the same function as the filler which was separate from the back protection sheet, and it itself has adhesive properties to glass and metal on the surface of the solar cell element, and has a temperature lower than 150℃, preferably 120℃. It is made of resin that melts and softens at the following temperatures. Specifically, ethylene-acetic acid such as polyvinyl butyral, ethylene-vinyl acetate copolymer, ethylene-vinyl acetate-glycidyl methacrylate terpolymer, ethylene-vinyl acetate partially saponified product-organic acid graft quaternary copolymer, etc. Modified resin of vinyl copolymer,
Alternatively, resins made of carboxyl group-containing polyolefins such as maleic anhydride-grafted polyethylene, polyester-modified resins such as ethylene terephthalate-modified alkylene ether terephthalate block copolymers, etc. are used, and the thickness is the same as that of the back cushion of the solar cell module. In order to effectively exhibit the effect as a material, it is preferable that the thickness is 50μ or more. The heat-resistant/weather-resistant resin film 1 and the heat-resistant resin film 5 having glassy moisture-proof coatings 4 and 4' deposited on both sides are formed by a dry laminating method, a heat press method, etc. using an adhesive or an adhesive resin film. Can be laminated, but use adhesive or adhesive film that is heat resistant to 150°C or higher and weather resistant. In addition, when laminating the adhesive resin layer 6 such as polyvinyl butyral, ethylene-vinyl acetate copolymer, and its modified resin on the glassy moisture-proof coating 4, it is possible to use a heat press method as well as heat-melting the adhesive resin to form a glassy moisture-proof coating. The protective sheet of the present invention can be produced using known lamination techniques, such as direct extrusion coating onto the film 4'. When the protective sheet of the present invention is applied to a solar cell module, the solar cell element 7 that has been wired in advance is placed on a glass plate that is the upper transparent material 9 on which the upper protective filler sheet 8 is spread, and then the lower Either cover with the protective filler sheet 8 or without using it, cover the back protection sheet of the present invention with the adhesive resin layer 6 side facing inside, and heat the whole body to 140°C to 150°C while reducing the pressure in a vacuum. The parts are pressed and fused together, and the ends are enclosed and fixed with a frame 10 made of aluminum or the like. As described in detail above, the back protection sheet for solar cell modules of the present invention has outstanding advantages over conventional protection sheets, especially in terms of module composite suitability. Since short circuits between the element electrodes and the protective sheet are completely eliminated, not only is the yield improved, but the press pressure, time, temperature, etc. can be selected more freely, which improves work efficiency. Since there is no risk of short circuit, it is possible to minimize the thickness of the filler sheet and save on materials. Because a part of the back protection sheet can become the filler or can be easily fused with the filler, conventionally, multi-stage pressing was required under different conditions such as back material - filler, then filler - element. , almost 1
It is possible to make it into a module through the multiple pressing process, and damage to the elements is greatly reduced.Also, in terms of moisture-proofing function, the glass-like moisture-proof coating is double-layered, making it highly durable. It has the advantage of being able to maintain its moisture-proofing function sufficiently even after severe mechanical pressure and shock are applied during the pressing process when combining modules. As described in detail above, the present invention provides advantages such as stabilizing the quality of solar cell modules, stabilizing manufacturing, and making it possible to save materials, and has great value in industrial fields related to solar power generation. It is something. (Description of Examples) Examples of the present invention will be described below. Two types of laminated materials having the following configurations were created as back protection sheets for solar cell modules of the present invention. <Invention 1> Ultraviolet absorber kneaded polyester film (product name: Lumira-Q-37 [manufactured by Toray Industries, Inc.] thickness 25μ)/
Double-sided silicon oxide vapor-deposited polyester film ([manufactured by Oike Kogyo] thickness 12μ) <Invention 2> Polycarbonate film (product name: Panlite [manufactured by Teijin Ltd.] thickness 50μ) / double-sided silicon oxide vapor-deposited polyamide film ([ Made by Oike Kogyo] Thickness
15 μ) / ethylene-vinyl acetate copolymer resin layer (vinyl acetate content: 33% by weight, thickness: 400 μ) As the above two types of laminated materials of the present invention and the laminated materials of the conventional example, white polyfluorinated vinyl film (product Name: Tedlar [manufactured by Dupont] thickness 38μ) /
A solar cell module with a structure similar to that shown in Figure 1 using a laminated material consisting of aluminum foil (thickness 20μ)/white polyfluorinated vinyl film (trade name: Tedlar, thickness 38μ) as the back protection sheet. was manufactured. However, when using the laminated materials of Invention 1 and the conventional example as a back protection sheet, the same sheet as the ethylene-vinyl acetate copolymer resin layer used as the adhesive resin layer in the laminated material of Invention 2 is used. A solar cell module was manufactured using the compound as a filler. In addition, the conditions of heat press are
150°C-5Kg/ cm2-10 minutes. Moisture permeability of these three types of back protection sheets for solar cell modules, and soldering parts of solar cell element electrodes when 100 solar cell modules each were manufactured by combining the three types of back protection sheets into modules. The table below shows the results of a comparison of the incidence of battery performance failures due to electrical shorts between the protrusions and the back protection sheet, and the workability of manufacturing operations.

【表】 このように、本発明の太陽電池モジユール用裏
面保護シートを使用することにより、高度の防湿
機能が得られるとともに、電池の品質の安定化、
モジユール製造作業の簡便化を図ることに効果が
あつた。
[Table] As described above, by using the back protection sheet for solar cell modules of the present invention, a high degree of moisture-proofing function can be obtained, and the quality of the battery can be stabilized.
This was effective in simplifying module manufacturing work.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来及び本発明の裏面保護シートを適
用する太陽電池モジユールの構造を示す概略断面
図、第2図は従来例の太陽電池モジユール裏面保
護シートを示す概略断面図、第3図は本発明の太
陽電池モジユール用裏面保護シートの1実施例を
示す概略断面図である。 1……耐候性樹脂フイルム、2……防湿性金属
箔、3……耐熱性・耐候性樹脂フイルム、4,
4′……電気絶縁性ガラス状防湿皮膜、5……耐
熱性樹脂フイルム、6……接着性樹脂層、7……
太陽電池素子、8……充填剤、9……上部透明材
料、10……枠体、11……裏面保護シート。
FIG. 1 is a schematic sectional view showing the structure of a solar cell module to which the back protection sheet of the conventional and present invention is applied, FIG. 2 is a schematic sectional view showing the back protection sheet of a conventional solar cell module, and FIG. BRIEF DESCRIPTION OF THE DRAWINGS It is a schematic sectional drawing which shows one Example of the back surface protection sheet for solar cell modules of this invention. 1... Weather-resistant resin film, 2... Moisture-proof metal foil, 3... Heat-resistant/weather-resistant resin film, 4,
4'... Electrically insulating glassy moisture-proof film, 5... Heat-resistant resin film, 6... Adhesive resin layer, 7...
Solar cell element, 8... Filler, 9... Upper transparent material, 10... Frame, 11... Back protective sheet.

Claims (1)

【特許請求の範囲】 1 150℃以下の温度では溶融軟化しない耐熱性、
耐候性樹脂フイルムの内面に、少なくとも、電気
絶縁性ガラス状防湿皮膜をその両面に蒸着した耐
熱性フイルムを積層し、さらにその上に接着性樹
脂層を設けて成る太陽電池モジユール用裏面保護
シート。 2 電気絶縁性ガラス状防湿皮膜が酸化ケイ素を
主成分とする特許請求の範囲第1項記載の太陽電
池モジユール用裏面保護シート。 3 接着性樹脂層が、ガラス及び金属に対する接
着性を有し、150℃未満好ましくは120℃以下で溶
融軟化する樹脂層である特許請求の範囲第1項記
載の太陽電池モジユール用裏面保護シート。
[Claims] 1. Heat resistance that does not melt and soften at temperatures below 150°C;
A back protection sheet for a solar cell module, comprising a heat-resistant film having at least an electrically insulating glassy moisture-proof film deposited on both sides on the inner surface of a weather-resistant resin film, and an adhesive resin layer further provided on top of the heat-resistant film. 2. The back protection sheet for a solar cell module according to claim 1, wherein the electrically insulating glassy moisture-proof coating contains silicon oxide as a main component. 3. The back protective sheet for a solar cell module according to claim 1, wherein the adhesive resin layer is a resin layer that has adhesiveness to glass and metal and melts and softens at a temperature of less than 150°C, preferably 120°C or less.
JP59057992A 1984-03-26 1984-03-26 Back surface protective sheet for solar cell module Granted JPS60201652A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59057992A JPS60201652A (en) 1984-03-26 1984-03-26 Back surface protective sheet for solar cell module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59057992A JPS60201652A (en) 1984-03-26 1984-03-26 Back surface protective sheet for solar cell module

Publications (2)

Publication Number Publication Date
JPS60201652A JPS60201652A (en) 1985-10-12
JPH0433146B2 true JPH0433146B2 (en) 1992-06-02

Family

ID=13071498

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59057992A Granted JPS60201652A (en) 1984-03-26 1984-03-26 Back surface protective sheet for solar cell module

Country Status (1)

Country Link
JP (1) JPS60201652A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002520820A (en) * 1998-07-03 2002-07-09 イソボルタ・エスターライヒツシエ・イゾリールシユトツフベルケ・アクチエンゲゼルシヤフト Photovoltaic module and manufacturing method thereof

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62107465U (en) * 1985-12-24 1987-07-09
JP2000121138A (en) * 1998-10-20 2000-04-28 Fujimori Sangyo Kk Duct for air conditioning
DE69924025T2 (en) 1998-12-07 2005-07-21 Bridgestone Corp. COVER MATERIAL FOR SOLAR CELL
JP3978912B2 (en) * 1998-12-07 2007-09-19 株式会社ブリヂストン Solar cell cover material, sealing film, and solar cell
JP3978911B2 (en) * 1998-12-07 2007-09-19 株式会社ブリヂストン Solar cell cover material, sealing film, and solar cell
JP2000294813A (en) * 1999-04-07 2000-10-20 Bridgestone Corp Back cover material for solar cells and solar cell
EP1228536B1 (en) * 2000-07-03 2012-08-15 Bridgestone Corporation Backside covering material for a solar cell module and its use
JP4887551B2 (en) * 2000-07-03 2012-02-29 株式会社ブリヂストン Solar cell back cover material sealing film and solar cell
JP5214087B2 (en) * 2004-05-06 2013-06-19 恵和株式会社 Back sheet for solar cell module and solar cell module using the same
JP4977991B2 (en) * 2005-09-30 2012-07-18 凸版印刷株式会社 Solar cell back surface protection sheet, solar cell module using the back surface protection sheet, and method for manufacturing the back surface protection sheet for the solar cell

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002520820A (en) * 1998-07-03 2002-07-09 イソボルタ・エスターライヒツシエ・イゾリールシユトツフベルケ・アクチエンゲゼルシヤフト Photovoltaic module and manufacturing method thereof

Also Published As

Publication number Publication date
JPS60201652A (en) 1985-10-12

Similar Documents

Publication Publication Date Title
US5728230A (en) Solar cell and method for manufacturing the same
US6407329B1 (en) Backside covering member for solar battery, sealing film and solar battery
KR101205627B1 (en) Solar cell module and method of encapsulating same
US4401839A (en) Solar panel with hardened foil back layer
ES2197971T3 (en) SOLAR CELL MODULE WITH SPECIFIC SURFACE COVER WITH GOOD FEATURES OF MOISTURE AND TRANSPARENCY RESISTANCE.
EP1921684A1 (en) Solar cell module and process for manufacture thereof
JPH11261085A (en) Backside protective sheet for solar battery
JP2006310680A (en) Thin film solar cell module
JPH0433146B2 (en)
JP2002134771A (en) Rear-surface protective sheet for solar cell
JPS60148175A (en) Back protective sheet for solar cell module
CN211957659U (en) Novel photovoltaic module
JPS61274373A (en) Back plane protection sheet for solar battery
JPS61251176A (en) Protective sheet for reverse side surface of solar cel
JPH0476232B2 (en)
JPH1187744A (en) Manufacture of solar battery module
JP2009170771A (en) Solar cell back sheet and solar cell module
JPH0476231B2 (en)
JPH0244995Y2 (en)
JPH09331079A (en) Frameless solar cell module
JP2001127320A (en) Solar cell module
JPS61272975A (en) Back protective sheet for solar cell
JPH0445256Y2 (en)
JPS60253253A (en) Back protective sheet for solar cell module
JPS6240783A (en) Back protection sheet for solar cell module