JPH04331422A - Lag reactive power compensator - Google Patents

Lag reactive power compensator

Info

Publication number
JPH04331422A
JPH04331422A JP3098408A JP9840891A JPH04331422A JP H04331422 A JPH04331422 A JP H04331422A JP 3098408 A JP3098408 A JP 3098408A JP 9840891 A JP9840891 A JP 9840891A JP H04331422 A JPH04331422 A JP H04331422A
Authority
JP
Japan
Prior art keywords
reactive power
capacity
active filter
capacitor
load
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3098408A
Other languages
Japanese (ja)
Inventor
Yoshiyuki Kobayashi
義幸 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP3098408A priority Critical patent/JPH04331422A/en
Publication of JPH04331422A publication Critical patent/JPH04331422A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/30Reactive power compensation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/40Arrangements for reducing harmonics

Landscapes

  • Supply And Distribution Of Alternating Current (AREA)
  • Control Of Electrical Variables (AREA)

Abstract

PURPOSE:To realize a lag reactive power compensator having high performance and a low cost by effectively combining a capacitor type and an active filter type. CONSTITUTION:A capacitor unit 3 in which capacitors are formed to be able to be connected or disconnected at a group capacity unit, and an active filter unit 4 having at least the same capacity as the group capacity, are connected in parallel with a load 2. A control regulator 7 detects a lag reactive power and a harmonic current and a harmonic capacity from outputs of a voltage transformer 5 and a current transformer 6, and sends a control command signal to the units 3 and 4. Thus, a reactive power control having a high responding speed substantially equal to that of an active filter type is performed, and an effect of suppressing a harmonic wave is also provided. A price rise when compared with a capacitor type is small.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】この発明は、配電系統などの力率
改善を行う遅相無効電力補償装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a delayed phase reactive power compensator for improving the power factor of a power distribution system.

【0002】0002

【従来の技術】力率改善方式、即ち遅相無効電力補償装
置として、古くから最も多用されているものとしてコン
デンサ装置がある。コンデンサの進相無効電力により負
荷の遅相無効電力を補償して力率改善を図るものである
。また、比較的最近開発されたものとして例えば、三菱
電機技報 Vol.56,NO6,1982,P455
に開示されたアクティブフィルタ装置がある。これは、
インバータにより負荷の遅相無効電流を相殺する電流を
出力して力率改善を図るものである。
2. Description of the Related Art A capacitor device has been most widely used as a power factor correction system, that is, a slow phase reactive power compensator. The power factor is improved by compensating for the lagging reactive power of the load using the leading phase reactive power of the capacitor. Also, as a relatively recently developed product, for example, Mitsubishi Electric Technical Report Vol. 56, NO6, 1982, P455
There is an active filter device disclosed in . this is,
The inverter outputs a current that offsets the slow phase reactive current of the load to improve the power factor.

【0003】前者は、通常、コンデンサ容量の6%のリ
アクトルを直列に挿入して系統に比較的多く存在する第
5高調波との共振現象の防止を図っている。また、一定
容量を越えるものでは、負荷の遅相無効電力の変動を考
慮して複数群に分割し、補償すべき容量の変化に応じて
投入する群数を調整する方式を採用している。後者は、
例えば、PWM制御による電圧形インバータを使用して
任意の波形の電流を出力することができ、遅相無効電力
に限らず進相無効電力や高調波電流の補償も可能である
In the former method, a reactor with a capacity of 6% of the capacitor is usually inserted in series to prevent resonance with the fifth harmonic, which is relatively abundant in the system. In addition, for devices exceeding a certain capacity, a method is adopted in which the load is divided into multiple groups in consideration of fluctuations in the delayed phase reactive power of the load, and the number of groups to be applied is adjusted according to changes in the capacity to be compensated. The latter is
For example, a voltage source inverter under PWM control can be used to output a current with an arbitrary waveform, and it is also possible to compensate not only for lagging reactive power but also for advancing reactive power and harmonic current.

【0004】0004

【発明が解決しようとする課題】以上のように、従来の
力率改善方式としては、コンデンサ方式とアクティブフ
ィルタ方式とがあるがこの内前者は、一般的に比較的構
成が簡単で価格も安く、保守も容易である。反面、(1
)コンデンサ投入時に発生する突入電流に対する対策が
必要である、(2)力率制御が不連続なステップ状とな
り、ステップを小さくするためには小容量多群構成とな
り価格が増大、保守も複雑となる、(3)急激な負荷変
動には対応不可である等の欠点を有している。
[Problems to be Solved by the Invention] As mentioned above, conventional power factor correction methods include the capacitor method and the active filter method, but the former is generally relatively simple in configuration and inexpensive. , maintenance is also easy. On the other hand, (1
) It is necessary to take measures against the inrush current that occurs when the capacitor is turned on. (2) Power factor control becomes discontinuous step-like, and in order to reduce the step, a small-capacity multi-group configuration is required, increasing the price and making maintenance complicated. (3) It has drawbacks such as being unable to cope with sudden load changes.

【0005】また、後者のアクティブフィルタ方式は、
急激な負荷変動にも対応して常に力率を1.0に保つ制
御が可能で、更に高調波成分の補償も可能である。しか
し、これらの長所を発揮させるためには、発生し得る遅
相無効電力および高調波成分の最大値を十分補償可能な
容量を備えておく必要があり、一般に単位容量当たりの
価格が高い本方式では、装置全体として極めて高価にな
るという欠点がある。
[0005] Furthermore, the latter active filter method is
It is possible to control the power factor to always maintain it at 1.0 even in response to sudden load fluctuations, and it is also possible to compensate for harmonic components. However, in order to take advantage of these advantages, it is necessary to have a capacity that can sufficiently compensate for the maximum value of delayed phase reactive power and harmonic components that may occur, and this method is generally expensive per unit capacity. However, the disadvantage is that the entire device is extremely expensive.

【0006】そこで、両方式を併用する方式が想定され
るが単に組み合わせるだけでは、両者の有する欠点が有
効に解消されず、しかもその長所も効果的に生かされな
い。この発明は以上のような問題点を解消するためにな
されたもので、コンデンサ方式とアクティブフィルタ方
式とを有効に組み合わせその長所を効果的に発揮するこ
とができる遅相無効電力補償装置を得ることを目的とす
る。
[0006] Therefore, a method of using both methods in combination is envisaged, but simply combining them will not effectively eliminate the drawbacks of both methods, nor will their advantages be effectively utilized. This invention has been made to solve the above-mentioned problems, and it is an object of the present invention to obtain a delayed phase reactive power compensator that can effectively combine a capacitor method and an active filter method and effectively utilize their advantages. With the goal.

【0007】[0007]

【課題を解決するための手段】この発明に係る遅相無効
電力補償装置は、所定の群容量を有する複数群のコンデ
ンサからなり上記群容量単位で入切可能に構成されたコ
ンデンサ装置および少なくとも上記群容量と同一の容量
を有するアクティブフィルタ装置を負荷と並列に接続し
てなる。
[Means for Solving the Problems] A lagging phase reactive power compensator according to the present invention includes a capacitor device comprising a plurality of groups of capacitors having predetermined group capacitances and configured to be able to turn on and off in units of the group capacitances; An active filter device having the same capacitance as the group capacitance is connected in parallel with the load.

【0008】[0008]

【作用】そして、上記負荷の補償すべき遅相無効電力と
上記コンデンサ装置の投入容量との差が最小となるよう
に上記コンデンサ装置の投入群数を設定し、上記アクテ
ィブフィルタ装置により、上記補償すべき遅相無効電力
と上記コンデンサ装置の投入容量との差分の無効電力を
補償するとともに、上記アクティブフィルタ装置の容量
と上記差分無効電力の補償容量との差の範囲内で上記負
荷の高調波成分を補償する。
[Operation]Then, the number of input groups of the capacitor device is set so that the difference between the delayed phase reactive power to be compensated for in the load and the input capacity of the capacitor device is minimized, and the active filter device performs the compensation as described above. In addition to compensating the reactive power of the difference between the delayed phase reactive power to be output and the input capacity of the capacitor device, harmonics of the load are compensated within the range of the difference between the capacitance of the active filter device and the compensating capacity of the differential reactive power. Compensate ingredients.

【0009】[0009]

【実施例】図1はこの発明の一実施例による遅相無効電
力補償装置を示す構成図である。図において、1は系統
電源、2はこの系統電源1に接続された負荷、3は負荷
2と並列に接続されたコンデンサ装置で、所定の群容量
Kを有する複数群で構成されており、各群共、開閉器3
1,直列リアクトル32およびコンデンサ33の直列体
から構成されている。4はアクティブフィルタ装置で、
例えば直流電圧源、パワートランジスタ等のスイッチン
グ素子を使用した電圧形インバータおよび出力変圧器か
ら構成されるが、それ自体は既述の通り公知であるので
詳細な説明は省略する。そして、その容量AとしてはK
≦A≦2・Kの範囲で所定の値に設定される。5は電圧
変成器、6は変流器、7は電圧変成器5および変流器6
の出力から遅相無効電力、高調波電流および高調波容量
を検出し、コンデンサ装置3およびアクティブフィルタ
装置4に制御指令信号を送出する制御調整装置である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 is a block diagram showing a delayed phase reactive power compensator according to an embodiment of the present invention. In the figure, 1 is a system power supply, 2 is a load connected to this system power supply 1, and 3 is a capacitor device connected in parallel with the load 2, which is composed of multiple groups each having a predetermined group capacity K. Group, switch 3
1. It is composed of a series reactor 32 and a capacitor 33. 4 is an active filter device,
For example, it is composed of a DC voltage source, a voltage source inverter using switching elements such as power transistors, and an output transformer, which are well known as described above, so detailed explanation will be omitted. And its capacity A is K
It is set to a predetermined value within the range of ≦A≦2·K. 5 is a voltage transformer, 6 is a current transformer, 7 is a voltage transformer 5 and a current transformer 6
This is a control adjustment device that detects slow phase reactive power, harmonic current, and harmonic capacitance from the output of and sends a control command signal to capacitor device 3 and active filter device 4.

【0010】次に動作を図2のフローチャートを参照し
て説明する。このフローチャートは、制御調整装置7内
において、一定の時間間隔で繰り返し行う処理内容を示
している。先ず、電圧変成器5および変流器6の出力か
ら遅相無効電力、高調波電流および高調波容量を検出す
る(ステップS1,S2)。次に、下式に基づきコンデ
ンサ装置3の投入群数Nを設定する(ステップS3)。 −0.5<Q/K−N≦0.5 換言すれば、補償すべき遅相無効電力の値とコンデンサ
装置3の投入容量の値との差が最小となる群数Nが設定
される訳である。これに基づきコンデンサ装置3の各開
閉器31が開閉操作される。そして、その補償容量の不
足分または過剰分はアクティブフィルタ装置4が補足、
修正する。従って、この補足等のための補償容量Q1 
は下式により演算される(ステップS4)。 Q1 =|Q−K・N|
Next, the operation will be explained with reference to the flowchart shown in FIG. This flowchart shows the content of processing that is repeated at regular time intervals within the control adjustment device 7. First, lagging reactive power, harmonic current, and harmonic capacity are detected from the outputs of voltage transformer 5 and current transformer 6 (steps S1 and S2). Next, the number N of input groups of the capacitor device 3 is set based on the following formula (step S3). −0.5<Q/K−N≦0.5 In other words, the number of groups N is set such that the difference between the value of the delayed phase reactive power to be compensated and the value of the input capacitance of the capacitor device 3 is minimum. This is the translation. Based on this, each switch 31 of the capacitor device 3 is operated to open and close. Then, the active filter device 4 supplements the deficiency or excess of the compensation capacity.
Fix it. Therefore, the compensation capacity Q1 for this supplement etc.
is calculated by the following formula (step S4). Q1 = |Q-K・N|

【0011】次に、この時点でアクティブフィルタ装置
4が有している高調波補償容量Q2を下式により演算す
る(ステップS5)。 Q2=H         H≦A−Q1 のときQ2
=A−Q1    H>A−Q1 のとき最後に、上記
で得られたQ2 からアクティブフィルタ装置4の高調
波補償電流Ih を演算する(ステップS6)。 Ih =I・Q2 /H 従って、  H≦A−Q1 のときは、Ih =Iとな
り、高調波成分が100%補償される。また、H>A−
Q1 のときは、アクティブフィルタ装置4の有する能
力の範囲内で最大の高調波電流補償が得られることにな
る。
Next, the harmonic compensation capacitance Q2 that the active filter device 4 has at this point is calculated using the following formula (step S5). Q2=H When H≦A-Q1, Q2
=A-Q1 H>A-Q1 Finally, the harmonic compensation current Ih of the active filter device 4 is calculated from Q2 obtained above (step S6). Ih = I·Q2 /H Therefore, when H≦A−Q1, Ih = I, and the harmonic components are 100% compensated. Also, H>A-
When Q1, the maximum harmonic current compensation is obtained within the capability of the active filter device 4.

【0012】以上のように、この実施例では、補償すべ
き容量の大部分は比較的安価なコンデンサ装置で構成し
、高価なアクティブフィルタ装置は最低限コンデンサ装
置の1群分の容量をもてば足りるので、装置全体をコン
デンサ方式で構成する場合からの価格上昇分を小さく抑
えることができる。また、負荷の時々刻々変動する遅相
無効電力に追従する連続制御が可能で力率を常に1にす
ることができる。この点で極めて高価となる、装置全体
をアクティブフィルタ方式で構成する場合と同等の性能
を有している。更に、アクティブフィルタ装置4の保有
する容量の内、無効電力の補償に使用される分の残りの
容量を高調波の補償に利用するので、アクティブフィル
タ装置4の利用率が向上し、力率改善に加えて高調波の
抑制が可能となる。
As described above, in this embodiment, most of the capacitance to be compensated is composed of relatively inexpensive capacitor devices, and the expensive active filter device has at least the capacity of one group of capacitor devices. Therefore, the price increase compared to when the entire device is constructed using a capacitor type can be kept to a small level. In addition, continuous control that follows the slow phase reactive power that changes moment by moment in the load is possible, and the power factor can always be kept at 1. In this respect, it has the same performance as the case where the entire device is constructed using an active filter method, which is extremely expensive. Furthermore, of the capacity of the active filter device 4, the remaining capacity used for compensating for reactive power is used for compensating for harmonics, so the utilization rate of the active filter device 4 is improved and the power factor is improved. In addition, harmonics can be suppressed.

【0013】なお、アクティブフィルタ装置4の容量A
の値としては、コンデンサ装置3の1群分容量Kの値を
有すれば足りるが、コンデンサ装置3の開閉器31の開
閉制御を円滑に行うためKの値より若干大きく設定する
ことが望ましい。また、容量を大きくした方が高調波抑
制の効果も大きくなる。但し、無効電力の制御のために
はKの2倍を越える容量とする必要はない。
Note that the capacity A of the active filter device 4
It is sufficient to have the value of the capacitance K for one group of the capacitor device 3, but it is desirable to set it slightly larger than the value of K in order to smoothly control the opening and closing of the switch 31 of the capacitor device 3. Furthermore, the larger the capacity, the greater the harmonic suppression effect. However, in order to control reactive power, the capacity does not need to be more than twice K.

【0014】[0014]

【発明の効果】この発明は以上のように構成されている
ので、コンデンサ方式とアクティブフィルタ方式との長
所が有効に生かされ、比較的低価格で無効電力の連続制
御が可能となり高調波抑制の効果もある。
[Effects of the Invention] Since the present invention is constructed as described above, the advantages of the capacitor method and the active filter method are effectively utilized, making it possible to continuously control reactive power at a relatively low cost and suppressing harmonics. It's also effective.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】この発明の一実施例による遅相無効電力補償装
置を示す構成図である。
FIG. 1 is a configuration diagram showing a lagging reactive power compensator according to an embodiment of the present invention.

【図2】図1の実施例の動作を説明するフローチャート
である。
FIG. 2 is a flowchart illustrating the operation of the embodiment of FIG. 1;

【符号の説明】[Explanation of symbols]

2  負荷 3  コンデンサ装置 4  アクティブフィルタ装置 7  制御調整装置 K  群容量 Q  遅相無効電力 I  高調波電流 H  高調波容量 2 Load 3 Capacitor device 4 Active filter device 7 Control adjustment device K group capacity Q lagging reactive power I Harmonic current H Harmonic capacity

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  所定の群容量を有する複数群のコンデ
ンサからなり上記群容量単位で入切可能に構成されたコ
ンデンサ装置および少なくとも上記群容量と同一の容量
を有するアクティブフィルタ装置を負荷と並列に接続し
、上記負荷の補償すべき遅相無効電力と上記コンデンサ
装置の投入容量との差が最小となるように上記コンデン
サ装置の投入群数を設定し、上記アクティブフィルタ装
置により、上記補償すべき遅相無効電力と上記コンデン
サ装置の投入容量との差分の無効電力を補償するととも
に、上記アクティブフィルタ装置の容量と上記差分無効
電力の補償容量との差の範囲内で上記負荷の高調波成分
を補償するようにした遅相無効電力補償装置。
1. A capacitor device comprising a plurality of groups of capacitors having predetermined group capacitances and configured to be able to be turned on and off in units of the group capacitances, and an active filter device having at least the same capacitance as the group capacitances are connected in parallel with a load. The number of input groups of the capacitor device is set so that the difference between the delayed phase reactive power to be compensated for in the load and the input capacity of the capacitor device is minimized, and the active filter device While compensating for the reactive power of the difference between the delayed phase reactive power and the input capacity of the capacitor device, harmonic components of the load are compensated within the range of the difference between the capacitance of the active filter device and the compensating capacity of the differential reactive power. A lagging reactive power compensator designed to compensate.
JP3098408A 1991-04-30 1991-04-30 Lag reactive power compensator Pending JPH04331422A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3098408A JPH04331422A (en) 1991-04-30 1991-04-30 Lag reactive power compensator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3098408A JPH04331422A (en) 1991-04-30 1991-04-30 Lag reactive power compensator

Publications (1)

Publication Number Publication Date
JPH04331422A true JPH04331422A (en) 1992-11-19

Family

ID=14219011

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3098408A Pending JPH04331422A (en) 1991-04-30 1991-04-30 Lag reactive power compensator

Country Status (1)

Country Link
JP (1) JPH04331422A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012516134A (en) * 2009-01-26 2012-07-12 ジュネーブ クリーンテック インコーポレイテッド Distortion reduction device
CN104037770A (en) * 2014-07-04 2014-09-10 西南交通大学 Power harmonic adaptive filter and adaptive filtering method thereof
US9020769B2 (en) 2009-01-26 2015-04-28 Geneva Cleantech Inc. Automatic detection of appliances
CN106026116A (en) * 2016-05-18 2016-10-12 武汉理工大学 Reactive compensation rapid smooth adjustment method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012516134A (en) * 2009-01-26 2012-07-12 ジュネーブ クリーンテック インコーポレイテッド Distortion reduction device
US9020769B2 (en) 2009-01-26 2015-04-28 Geneva Cleantech Inc. Automatic detection of appliances
JP2015167468A (en) * 2009-01-26 2015-09-24 ジュネーブ クリーンテック インコーポレイテッド distortion reduction device
CN104037770A (en) * 2014-07-04 2014-09-10 西南交通大学 Power harmonic adaptive filter and adaptive filtering method thereof
CN106026116A (en) * 2016-05-18 2016-10-12 武汉理工大学 Reactive compensation rapid smooth adjustment method

Similar Documents

Publication Publication Date Title
KR101152364B1 (en) Control device for reactive power compansator of hvdc system and hvdc system having the same
US11050344B2 (en) Methods and apparatus to compensate for power factor loss using a phasor cancellation based compensation scheme
CN106787880B (en) A kind of low order circulation inhibition method of Modular multilevel converter
JPH03183324A (en) Voltage variation and harmonic wave suppressor
US5586018A (en) Device for suppressing voltage fluctuation and higher harmonics
JPH04331422A (en) Lag reactive power compensator
Nikolaev et al. The dynamic operation investigation of an active rectifier control system with igct-thyristor switching angle table selection function
CN106411167B (en) It is a kind of based on the MMC loop current suppression system and methods predicted from redundant state
Zhang et al. Mitigating disturbance in harmonic voltage using grid-side current feedback for grid-connected LCL-filtered inverter
JP3075578B2 (en) Reactive power compensator
Ramesh et al. Single phase transformer based inverter for nonlinear load application using pi controller
JP3319169B2 (en) Static var compensator
Sim et al. A Novel Reactive Power Control Mitigating a DC link Ripple voltage of Reactive Power Compensator for Distribution Line
CN212463086U (en) Inverter parallel device based on power interaction
JP3287628B2 (en) Reactive power compensator
Lin et al. A frequency adaptive repetitive control for active power filter with SiC-MOSFET inverter
Shahparasti et al. An Adaptive Load Voltage Support Control Strategy for Inverter-based Renewable Energy Conversion System
JPH11146564A (en) Power converter
JPS62269213A (en) Reactive power compensating device
JPH07107669A (en) Restraining method for higher harmonic of capacitor for power factor improvement
Pranusha et al. Fuzzy Controller Based Power Quality Improvement Using VLLMS Based Shunt Active Power Filter
JP2000071821A (en) Power leveling device
Lin Integrated power quality compensator with three-level pwm ac/dc converter
JPH0951634A (en) Voltage detection method for self-excited reactive power comprensator
Gupta et al. STATCOM-Its control algorthim