JP3287628B2 - Reactive power compensator - Google Patents

Reactive power compensator

Info

Publication number
JP3287628B2
JP3287628B2 JP01641793A JP1641793A JP3287628B2 JP 3287628 B2 JP3287628 B2 JP 3287628B2 JP 01641793 A JP01641793 A JP 01641793A JP 1641793 A JP1641793 A JP 1641793A JP 3287628 B2 JP3287628 B2 JP 3287628B2
Authority
JP
Japan
Prior art keywords
reactive power
current
flowing
secondary winding
orthogonal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP01641793A
Other languages
Japanese (ja)
Other versions
JPH06230839A (en
Inventor
理 一ノ倉
千尋 石橋
隆行 櫻井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Priority to JP01641793A priority Critical patent/JP3287628B2/en
Publication of JPH06230839A publication Critical patent/JPH06230839A/en
Application granted granted Critical
Publication of JP3287628B2 publication Critical patent/JP3287628B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/10Flexible AC transmission systems [FACTS]

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、配電線に生ずる無効電
力を減少させるための無効電力補償装置に関するもので
ある。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a reactive power compensator for reducing reactive power generated in a distribution line.

【0002】[0002]

【従来の技術】近年、パワーエレクトロニクス機器や誘
導電動機などの増加に伴い配電線の無効電力が増加し、
良質な電力の安定供給を妨げている。ここで無効電力と
は、P=V×Isin θとして定義される電力であり、電
圧Vと電流の間の位相差θによって決定される。この無
効電力は負荷端の電圧変動等の原因となるので、従来か
らこれを減少させるために無効電力補償装置が使用され
ている。
2. Description of the Related Art In recent years, the reactive power of distribution lines has increased due to the increase in power electronics equipment and induction motors,
This is preventing the stable supply of high-quality power. Here, the reactive power is power defined as P = V × Isin θ, and is determined by the phase difference θ between the voltage V and the current. Since this reactive power causes a voltage fluctuation at the load terminal, etc., a reactive power compensator has been conventionally used to reduce the reactive power.

【0003】図5はTCR(サイリスタコントロールド
リアクタ)方式として知られている従来の無効電力補償
装置の原理を示すもので、電力系統にリアクトルLとサ
イリスタTとを直列に接続し、サイリスタTの位相制御
によりリアクトルLに流れる電流を制御し、無効電力量
を調節している。ところがこの方式の従来の無効電力補
償装置は、サイリスタTの導通位相角制御により電力系
統に高調波が発生するために高調波除去用の大型フィル
タの設置が必要であること、サイリスタTに電力系統の
高電圧が直接加わるために安全性の点で不安があること
等の問題があった。
FIG. 5 shows the principle of a conventional reactive power compensator known as a TCR (Thyristor Controlled Reactor) system, in which a reactor L and a thyristor T are connected in series to a power system, and a thyristor T is connected. The current flowing through the reactor L is controlled by the phase control to adjust the amount of reactive power. However, the conventional reactive power compensator of this system is that a large filter for removing harmonics needs to be installed because harmonics are generated in the power system by controlling the conduction phase angle of the thyristor T. However, there is a problem that there is a concern about safety because the high voltage is directly applied.

【0004】このため、高調波電流の発生が少なく、安
全性の高い無効電力補償装置が望まれていた。直交磁心
を用いた無効電力補償装置は、比較的低ひずみで安全性
に優れていることが知られている。この無効電力補償装
置は、図6に示すように直交磁心11の一次側巻線N1
直流電源12に接続し、二次側巻線N2 を電力系統13へ接
続し、直流電源12の出力を調整することにより、二次側
巻線N2 のインダクタンスを連続的に調整して無効電力
の補償を行うようにしたものである。
[0004] For this reason, there has been a demand for a reactive power compensator which generates less harmonic current and has high safety. It is known that a reactive power compensator using an orthogonal magnetic core has relatively low distortion and excellent safety. The reactive power compensation device, a primary winding N 1 of the orthogonal magnetic core 11 as shown in FIG. 6 is connected to a DC power supply 12, and connect the secondary winding N 2 to the power grid 13, the DC power supply 12 by adjusting the output, in which to perform continuously adjusted to compensate for the reactive power of the inductance of the secondary winding N 2.

【0005】ところがその後の研究により、この無効電
力補償装置は、直交磁心11の一次側巻線N1 に流れる電
流が小さいときに二次側巻線N2 に流れる電流のひずみ
が大きくなるという問題点を持つことが判明した。図7
はその様子を示すグラフであり、一次側巻線N1 に流れ
る電流I1 が大きい場合にはCのように二次側巻線N 2
に流れる電流I2 はAに示す系統電圧と同様のサインカ
ーブを描くが、一次側巻線N1 に流れる電流I1 が小さ
い場合にはBのように二次側巻線N2 に流れる電流I2
がひずんでしまうのである。
However, subsequent research has shown that this
The force compensator is the primary winding N of the orthogonal magnetic core 11.1Electricity flowing through
When the current is small, the secondary winding NTwoOf current flowing through
Was found to have a problem of becoming larger. FIG.
Is a graph showing the situation, where the primary winding N1Flow
Current I1Is large, the secondary winding N Two
Current I flowing throughTwoIs the same sign as the system voltage shown in A.
Draw the primary winding N1Current I flowing through1Is small
The secondary winding N like BTwoCurrent I flowing throughTwo
Is distorted.

【0006】[0006]

【発明が解決しようとする課題】本発明は上記した問題
点を解決して、作動時における高調波の発生がほとんど
なく、また安全性に優れるうえ、直交磁心の一次側巻線
に流れる電流が小さいときにも二次側巻線に流れる電流
にひずみを生じないようにした無効電力補償装置を提供
するために完成されたものである。
SUMMARY OF THE INVENTION The present invention solves the above-mentioned problems, has almost no generation of harmonics during operation, is excellent in safety, and has a current flowing through the primary winding of the orthogonal magnetic core. The present invention has been completed in order to provide a reactive power compensator in which a current flowing through the secondary winding is not distorted even when it is small.

【0007】[0007]

【課題を解決するための手段】上記の課題を解決するた
めになされた本発明の無効電力補償装置は、2台の同一
な構成の直交磁心の一次側巻線を並列に直流電源に接続
し、またその二次側巻線を整流素子を介して並列結線し
たいわゆるプッシュプル構成として電力系統へ接続し、
直流電源の出力を調整することにより、二次側巻線のイ
ンピーダンスを連続的に調整して無効電力の補償を行う
ことを特徴とするものである。
A reactive power compensator according to the present invention, which has been made to solve the above-mentioned problem, connects two primary windings of a quadrature magnetic core having the same configuration to a DC power supply in parallel. Also, the secondary winding is connected to the power system as a so-called push-pull configuration in which the secondary winding is connected in parallel via a rectifying element,
By adjusting the output of the DC power supply, the impedance of the secondary winding is continuously adjusted to compensate for the reactive power.

【0008】[0008]

【作用】直交磁心はU形直交磁心、二重直交磁心のいず
れもカットコアを90度転移接続したもので、磁気回路
が空間的に直交しているために通常の変圧器としての機
能は持たない。しかしながら、一次側と二次側の磁気回
路の一部が共用されるため、一次磁束を増加させると共
通磁路が飽和して二次側巻線の実効的なインダクタンス
が減少する。また、一次磁束を減少させると二次側巻線
の実効的なインダクタンスが増加する。そこで直交磁心
の一次側巻線を直流電源に接続することにより一次磁束
を調節し、二次側インダクタンスを連続的に調節する。
これにより二次側巻線のインピーダンスを連続的に調整
し、無効電力量の調整ができる。
[Effect] The orthogonal core is a U-shaped orthogonal core or a double orthogonal core in which cut cores are connected by a 90-degree transition. Since the magnetic circuits are spatially orthogonal, they have the function of a normal transformer. Absent. However, since a part of the primary and secondary side magnetic circuits is shared, increasing the primary magnetic flux saturates the common magnetic path and reduces the effective inductance of the secondary winding. Also, reducing the primary magnetic flux increases the effective inductance of the secondary winding. Therefore, the primary magnetic flux is adjusted by connecting the primary winding of the orthogonal magnetic core to a DC power supply, and the secondary inductance is continuously adjusted.
Thus, the impedance of the secondary winding can be continuously adjusted, and the amount of reactive power can be adjusted.

【0009】しかも本発明では、2台の同一な構成の直
交磁心の一次側巻線を並列に直流電源に接続し、またそ
の二次側巻線を整流素子を介して並列に電力系統へ接続
したプッシュプル方式を採用したので、後述するように
一次側巻線に流れる電流が小さいときにも二次側巻線に
流れる電流にひずみを生じないようにすることができ
る。
Further, in the present invention, the primary windings of two orthogonal magnetic cores having the same configuration are connected in parallel to a DC power supply, and the secondary windings are connected in parallel to a power system via rectifying elements. Since the push-pull method described above is employed, it is possible to prevent the current flowing through the secondary winding from being distorted even when the current flowing through the primary winding is small, as described later.

【0010】また本発明の無効電力補償装置によれば、
従来のTCR方式のもののように電力系統に高調波が発
生するおそれはほとんどなく、従来のような大型のフィ
ルタの設置を必要としないうえ、直交磁心により高圧側
と低圧側との電気的な絶縁を確保することができるの
で、安全性に優れたものとなる。以下に実施例ととも
に、本発明を更に詳細に説明する。
According to the reactive power compensator of the present invention,
Unlike the conventional TCR type, there is almost no possibility of generating harmonics in the power system, so there is no need to install a large filter as in the past and electrical insulation between the high voltage side and the low voltage side by the orthogonal core. Can be secured, so that safety is excellent. Hereinafter, the present invention will be described in more detail with reference to Examples.

【0011】[0011]

【実施例】図1は本発明の無効電力補償装置の基本回路
を示すものであり、1は系統電圧がe2 の電力系統、2
と3は同一な構成を持つ2台の直交磁心、N1 は直交磁
心2、3の一次側巻線、N2 は直交磁心2、3の二次側
巻線である。直交磁心2、3の一次側巻線N1 は直流電
源4に接続されており、直交磁心2、3の二次側巻線N
2 は整流素子としてのダイオード5、6を介して並列に
電力系統1に接続されてプッシュプル方式の無効電力補
償装置を構成している。
DETAILED DESCRIPTION FIG. 1 shows a basic circuit of a reactive power compensator of the present invention, 1 system voltage of e 2 power system, 2
If 3 is a two orthogonal magnetic core, N 1 is the primary winding of the orthogonal magnetic core 2, the secondary winding of N 2 is orthogonal cores 2, 3 having the same configuration. The primary winding N 1 of the orthogonal cores 2 and 3 is connected to the DC power supply 4, and the secondary winding N of the orthogonal cores 2 and 3
Numeral 2 is connected in parallel to the power system 1 via diodes 5 and 6 as rectifying elements to constitute a push-pull type reactive power compensator.

【0012】図1の無効電力補償装置は、上記のように
2台の直交磁心2、3を利用したプッシュプル方式とし
たので、図2に示すように一次側巻線N1 に流れる電流
1が小さいときにも二次側巻線N2 に流れる電流I2
にひずみを生じないようにすることができる。
[0012] reactive power compensator of Figure 1, since the push-pull system using orthogonal magnetic core 2,3 of two as described above, the current flowing through the primary winding N 1 as shown in FIG. 2 I The current I 2 flowing through the secondary winding N 2 even when 1 is small
Can be prevented from being distorted.

【0013】図3は本発明の無効電力補償装置を実際の
電力系統へ取り付けた状態を説明する回路図であり、図
1に示した構成の他にリアクトル7と、これと直列に接
続されたコンデンサ8が示されている。これらは図1の
回路と並列に電力系統1に接続されている。
FIG. 3 is a circuit diagram for explaining a state in which the reactive power compensator of the present invention is mounted on an actual power system. In addition to the configuration shown in FIG. 1, a reactor 7 is connected in series with the reactor 7. A capacitor 8 is shown. These are connected to the power system 1 in parallel with the circuit of FIG.

【0014】図3の回路は次のように作動する。即ち仮
に、電力系統1に接続された負荷に無効電力変化QL
発生しその波形が遅れ位相であったとする。これを補償
するために、電力系統1に接続されたリアクトル7及び
コンデンサ8によって一定の進み無効電力Q2 を発生さ
せる。また直交磁心2、3の一次側巻線N1 に接続され
た直流電源4を制御することにより、直交磁心2、3の
二次側巻線N2 に流れる電流を制御し、遅れ無効電力Q
1を発生させる。その結果、進み無効電力Q2 と遅れ無
効電力Q1 とを合成した補償無効電力QC が得られる
が、これが無効電力変化QL と位相が逆であるように直
流電源4を制御することにより、無効電力変化QL は補
償無効電力QC によって補償されることとなる。
The circuit of FIG. 3 operates as follows. That Assume that the reactive power changes Q L to a load connected to the power system 1 was a delay phase the waveform occurs. To compensate for this, a constant leading reactive power Q 2 is generated by the reactor 7 and the capacitor 8 connected to the power system 1. Further by controlling the DC power supply 4 connected to the primary winding N 1 of the orthogonal magnetic core 2, controls the current flowing through the secondary winding N 2 of the orthogonal magnetic core 2, lagging reactive power Q
Generate 1 As a result, compensation reactive power Q C obtained by synthesizing the reactive power Q 1 delayed reactive power Q 2 proceeds is obtained by this reactive power change Q L and the phase to control the DC power source 4 such that the reverse , the reactive power changes Q L becomes to be compensated by the compensating reactive power Q C.

【0015】図4はこの状態をグラフ化したもので、横
軸に示す一次側巻線N1 に流れる電流I1 を変化させる
ことによって、進み位相から遅れ位相まで補償無効電力
Cの値を自由に変化させることができる。
[0015] Figure 4 is a graph of the state, by changing the current I 1 flowing through the primary winding N 1 indicated on the horizontal axis, the process proceeds to the value of the compensation reactive power Q C from the phase to lag phase Can be changed freely.

【0016】[0016]

【発明の効果】以上に説明したように、本発明の無効電
力補償装置は電力系統に高調波を発生させるおそれはほ
とんどなく、従来のような大型のフィルタの設置を必要
としないので設備を簡素化することができる。また、本
発明の無効電力補償装置は直交磁心により高圧側と低圧
側との電気的な絶縁が確保されており、直流電源側に電
力系統の高電圧が直接加わることがないので、安全性に
優れる利点がある。しかも2台の同一な構成の直交磁心
の一次側巻線を並列に直流電源に接続し、またその二次
側巻線を整流素子としてのダイオードを介して並列に電
力系統へ接続したプッシュプル方式としたので、直交磁
心の一次側巻線に流れる電流が小さいときにも二次側巻
線に流れる電流にひずみを生じない。よって本発明は先
に記述したTCR方式あるいは直交磁心方式の無効電力
補償装置の問題点を解決したものとして、産業の発展に
寄与するところは極めて大きいものである。
As described above, the reactive power compensator of the present invention hardly generates harmonics in the power system, and does not require installation of a large-sized filter as in the prior art, thus simplifying the equipment. Can be In addition, the reactive power compensator of the present invention secures electrical insulation between the high voltage side and the low voltage side by the orthogonal magnetic core, and the high voltage of the power system is not directly applied to the DC power supply side. There are excellent advantages. In addition, a push-pull system in which the primary windings of two identically configured orthogonal cores are connected in parallel to a DC power supply, and the secondary windings are connected in parallel to the power system via diodes as rectifying elements Therefore, even when the current flowing through the primary winding of the orthogonal magnetic core is small, no distortion occurs in the current flowing through the secondary winding. Therefore, the present invention solves the above-mentioned problem of the TCR or quadrature magnetic core type reactive power compensator, and greatly contributes to industrial development.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の無効電力補償装置の基本回路を説明す
る回路図である。
FIG. 1 is a circuit diagram illustrating a basic circuit of a reactive power compensator according to the present invention.

【図2】図1の基本回路の波形図であり、Aは系統電
圧、Bは一次側巻線N1 に流れる電流I1 が小さい場合
の二次側巻線N2 に流れる電流I2 の波形図、Cは一次
側巻線N1 に流れる電流I1 が大きい場合の二次側巻線
2 に流れる電流I2 の波形図である。
Figure 2 is a waveform diagram of the basic circuit of Figure 1, A is the system voltage, B is the current I 2 flowing through the secondary winding N 2 when the current I 1 flowing through the primary winding N 1 is smaller waveform, C is a waveform diagram of a current I 2 flowing through the secondary winding N 2 when the current I 1 flowing through the primary winding N 1 is large.

【図3】本発明の実施例を示す回路図である。FIG. 3 is a circuit diagram showing an embodiment of the present invention.

【図4】図3の回路における一次側巻線N1 に流れる電
流I1 と補償無効電力QC との関係を示すグラフであ
る。
4 is a graph showing the relationship between the current I 1 flowing through the primary winding N 1 in the circuit of FIG. 3 and the compensation reactive power Q C.

【図5】従来のTCR(サイリスタコントロールドリア
クタ)方式の無効電力補償装置の原理を示す回路図であ
る。
FIG. 5 is a circuit diagram showing the principle of a conventional TCR (thyristor control reactor) type reactive power compensator.

【図6】先願の無効電力補償装置の基本回路を説明する
回路図である。
FIG. 6 is a circuit diagram illustrating a basic circuit of the reactive power compensator of the prior application.

【図7】図6の先願回路の波形図であり、Aは系統電
圧、Bは一次側巻線N1 に流れる電流I1 が小さい場合
の二次側巻線N2 に流れる電流I2 の波形図、Cは一次
側巻線N1 に流れる電流I1 が大きい場合の二次側巻線
2 に流れる電流I2 の波形図である。
7 is a waveform diagram of a prior application circuit in FIG. 6, A is the system voltage, B is the current I 2 flowing through the secondary winding N 2 when the current I 1 flowing through the primary winding N 1 is smaller waveform diagram, C is a waveform diagram of a current I 2 flowing through the secondary winding N 2 when the current I 1 flowing through the primary winding N 1 is large.

【符号の説明】[Explanation of symbols]

1 電力系統 2 直交磁心 3 直交磁心 4 直流電源 5 ダイオード 6 ダイオード 7 リアクトル 8 コンデンサ N1 一次側巻線 N2 二次側巻線 I1 一次側巻線に流れる電流 I2 二次側巻線に流れる電流DESCRIPTION OF SYMBOLS 1 Power system 2 Orthogonal core 3 Orthogonal core 4 DC power supply 5 Diode 6 Diode 7 Reactor 8 Capacitor N 1 Primary winding N 2 Secondary winding I 1 Current flowing in primary winding I 2 Current flowing in secondary winding Flowing current

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 鈴木宏和、土屋朗、羽根吉寿正、田所 睦雄著、電気学会研究会資料マグネット 研究会MA−84−91「カット (58)調査した分野(Int.Cl.7,DB名) G05F 1/70 H02J 3/18 ────────────────────────────────────────────────── ─── Continuing on the front page (56) References Hirokazu Suzuki, Akira Tsuchiya, Yoshimasa Hane, and Mutsuo Tadokoro, IEEJ Technical Meeting Material Magnet Study Group MA-84-91 `` Cut Cl. 7 , DB name) G05F 1/70 H02J 3/18

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 2台の同一な構成の直交磁心の一次側巻
線を並列に直流電源に接続し、またその二次側巻線を整
流素子を介して並列結線したいわゆるプッシュプル構成
として電力系統へ接続し、直流電源の出力を調整するこ
とにより、二次側巻線のインピーダンスを連続的に調整
して無効電力の補償を行うことを特徴とする無効電力補
償装置。
1. A so-called push-pull configuration in which two primary windings of an orthogonal magnetic core having the same configuration are connected in parallel to a DC power supply, and the secondary windings are connected in parallel via a rectifying element. A reactive power compensator, which is connected to a system and adjusts the output of a DC power supply to continuously adjust the impedance of a secondary winding to compensate for reactive power.
JP01641793A 1993-02-03 1993-02-03 Reactive power compensator Expired - Fee Related JP3287628B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP01641793A JP3287628B2 (en) 1993-02-03 1993-02-03 Reactive power compensator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP01641793A JP3287628B2 (en) 1993-02-03 1993-02-03 Reactive power compensator

Publications (2)

Publication Number Publication Date
JPH06230839A JPH06230839A (en) 1994-08-19
JP3287628B2 true JP3287628B2 (en) 2002-06-04

Family

ID=11915661

Family Applications (1)

Application Number Title Priority Date Filing Date
JP01641793A Expired - Fee Related JP3287628B2 (en) 1993-02-03 1993-02-03 Reactive power compensator

Country Status (1)

Country Link
JP (1) JP3287628B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6572968B2 (en) 1995-06-27 2003-06-03 Hitachi Chemical Co., Ltd. Method of producing prepreg for printed wiring boards, glass fiber material treated with silicone oligomer, and laminate for printed wiring boards

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7355868B2 (en) * 2005-03-31 2008-04-08 International Rectifier Corporation Current sense method for bridgeless boost (BLB) PFC circuit using single current transformer

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
鈴木宏和、土屋朗、羽根吉寿正、田所睦雄著、電気学会研究会資料マグネット研究会MA−84−91「カット

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6572968B2 (en) 1995-06-27 2003-06-03 Hitachi Chemical Co., Ltd. Method of producing prepreg for printed wiring boards, glass fiber material treated with silicone oligomer, and laminate for printed wiring boards
US6692792B2 (en) 1995-06-27 2004-02-17 Hitachi Chemical Company, Ltd. Prepreg for printed wiring boards, resin varnish, resin composition, and laminate for printed wiring boards produced by using these substances

Also Published As

Publication number Publication date
JPH06230839A (en) 1994-08-19

Similar Documents

Publication Publication Date Title
Jintakosonwit et al. Implementation and performance of automatic gain adjustment in a shunt-active filter for harmonic damping throughout a power distribution system
Cheng et al. Control of square-wave inverters in high-power hybrid active filter systems
US20040202012A1 (en) Regulated AC to DC converter for aerospace applications
US5900723A (en) Voltage based VAR compensation system
US20070274115A1 (en) Harmonics attenuator using combination feedback controller
US20030042877A1 (en) Power supply apparatus and method thereof for input harmonic current suppression and output voltage regulation
US6433520B1 (en) Dc power regulator incorporating high power ac to dc converter with controllable dc voltage and method of use
JP2795183B2 (en) Static var compensator
EP1576437B1 (en) System for voltage stabilization of power supply lines
JP3287628B2 (en) Reactive power compensator
TWI750649B (en) Power converting device and method with high frequency inverter module compensating low frequency inverter module
JPH06178449A (en) Reactive power compensator
JPH05207660A (en) Troubleshooting system for power supply
US20100054006A1 (en) Controlling transient response of a power supply
JP3480123B2 (en) Compensation method for reactive power etc. of power supply system with power generation equipment
JP2800470B2 (en) Reactive power compensator
JPH0511870A (en) Flicker compensation device
JP2682241B2 (en) Power failure countermeasure device
JP3319169B2 (en) Static var compensator
JP3270214B2 (en) Orthogonal core current limiter
JP2000006693A (en) Method and device for regulating feeder voltage
JP3304486B2 (en) High reactance autotransformer
JPH05333953A (en) Static reactive power compensating device
JP2800471B2 (en) Reactive power compensator
EP0975202B1 (en) Controlled current feed device for electric arc furnace

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20020226

LAPS Cancellation because of no payment of annual fees