JPH04331393A - Sound source surveyor for moving sound source - Google Patents

Sound source surveyor for moving sound source

Info

Publication number
JPH04331393A
JPH04331393A JP3128304A JP12830491A JPH04331393A JP H04331393 A JPH04331393 A JP H04331393A JP 3128304 A JP3128304 A JP 3128304A JP 12830491 A JP12830491 A JP 12830491A JP H04331393 A JPH04331393 A JP H04331393A
Authority
JP
Japan
Prior art keywords
sound source
moving
noise
signal
measuring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3128304A
Other languages
Japanese (ja)
Other versions
JP2816609B2 (en
Inventor
Hiroshi Takeda
博 竹田
Takashi Iwaki
岩城 嵩
Fujio Oka
富士男 岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Engineering and Shipbuilding Co Ltd
Original Assignee
Mitsui Engineering and Shipbuilding Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Engineering and Shipbuilding Co Ltd filed Critical Mitsui Engineering and Shipbuilding Co Ltd
Priority to JP3128304A priority Critical patent/JP2816609B2/en
Publication of JPH04331393A publication Critical patent/JPH04331393A/en
Application granted granted Critical
Publication of JP2816609B2 publication Critical patent/JP2816609B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)

Abstract

PURPOSE:To pick up a moving sound source by collecting noise information at multiple locations, using acoustic holography method and by giving Doppler effect correction. CONSTITUTION:Noise generated by a moving body 1 is collected with a series of microphones 2 and the reflected sound from a reflection plate 5 on the moving body 1 is detected with a beam switch 4. The velocity and the coordinates of the moving body 1 are calculated from the signal obtained by the beam switch 4 and the Doppler effect correction is given by an arithmetic device 6 using the velocity information.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】この発明は、音響ホログラフィ技
術を応用した自動車、電車、船舶等の移動する音源(移
動音源)の音源探査を行う移動音源の音源探査装置に関
するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a sound source searching device for a moving sound source that uses acoustic holography technology to search for the sound source of a moving sound source such as an automobile, train, or ship.

【0002】0002

【従来の技術】近年、生活の質の向上が求められるよう
になり、騒音環境の改善も急務になっている。このため
に動作時の音が小さく、静かな環境を維持できる機械を
製作することが求められているが、それには騒音の発生
位置や強度などを知ること、すなわち音源探査を行って
、その探査結果に基づいて対策をたてることが必要にな
る。
BACKGROUND OF THE INVENTION In recent years, there has been a demand for improvement in the quality of life, and there has also been an urgent need to improve the noise environment. For this reason, there is a need to manufacture machines that make less noise during operation and can maintain a quiet environment, but this requires knowing the location and intensity of the noise, that is, searching for the source of the noise. It is necessary to take measures based on the results.

【0003】従来は、音源探査を行う方法として音響ホ
ログラフィ法、音響インテンシティ法、フェーズドアレ
イ法等がしられている。
[0003] Conventionally, acoustic holography, acoustic intensity, phased array, and the like have been known as methods for detecting sound sources.

【0004】音響ホログラフィ法は騒音源からの騒音を
多数の点で計測し、これらの計測音にホログラフィの原
理を適用することによって騒音の強度分布を等高線表示
するものである。等高線表示された図に基づいて、騒音
源の位置を推定することが出きる。
[0004] The acoustic holography method measures noise from a noise source at a large number of points and displays the noise intensity distribution in contour lines by applying the principle of holography to these measured sounds. The location of the noise source can be estimated based on the map displayed with contour lines.

【0005】音響インテンシティ法は計測点における音
響強度(ベクトル量)を計測するもので、計測点におけ
る音響強度と方向を矢印で表示することによって、音の
流れを可視化することができる。可視化された図を基に
、音の流れを逆にたどることによって音源の位置を推定
することができる。また、これとは別に、計測点での音
響強度分布を等高線で表示することもでき、この等高線
図を基に、音源の位置を推定することも可能である。
The sound intensity method measures the sound intensity (vector quantity) at a measurement point, and the flow of sound can be visualized by displaying the sound intensity and direction at the measurement point with arrows. Based on the visualized diagram, the location of the sound source can be estimated by tracing the flow of the sound in reverse. Separately, the sound intensity distribution at the measurement point can also be displayed as contour lines, and it is also possible to estimate the position of the sound source based on this contour map.

【0006】フェーズドアレイ法は直線上に並べられた
マイクロホン列からの信号を音響強度を計測したい点に
応じて適当な遅延と振幅変化を与えて合成することによ
って計測点の音響強度を求め、表示するものである。
In the phased array method, the sound intensity at a measurement point is determined and displayed by combining signals from a line of microphones arranged in a straight line with an appropriate delay and amplitude change depending on the point at which the sound intensity is to be measured. It is something to do.

【0007】[0007]

【発明が解決しようとする課題】ところが、音響ホログ
ラフィ法は固定音源にしか適用できない。音響インテン
シティ法で移動音源の測定を行うには、マイクロホンを
固定したまま測定する方法と、マイクロホンの位置を変
えて計測点数分だけ移動音源を走行させて計測する方法
がある。しかし、前者はマイクロホンを音源に近接させ
なければならないので、危険である。
However, the acoustic holography method can only be applied to fixed sound sources. To measure a moving sound source using the sound intensity method, there are two methods: one is to measure with the microphone fixed, and the other is to change the position of the microphone and make the moving sound source travel as many times as the number of measurement points. However, the former method is dangerous because it requires the microphone to be placed close to the sound source.

【0008】後者は測定時間がかかりすぎ、また常に同
一の状態で走行できない等の問題がある。すなわち、音
響インテンシティ法で計測する場合、計測点数分走行す
ることが必要であるが、一般的には全く同一の条件で移
動物体を走行させることは不可能である。例えば加速状
態を計測する場合、毎回同一の条件で走行するためには
走行毎の加速度を同一にする必要があるが、これは事実
上不可能である。ところが音響ホログラフィの場合は騒
音を同時に計測するので、1回の走行で計測が終了する
[0008] The latter method has problems such as taking too much measurement time and not being able to always run the vehicle in the same state. That is, when measuring using the sound intensity method, it is necessary to travel for the number of measurement points, but it is generally impossible to make a moving object travel under exactly the same conditions. For example, when measuring the acceleration state, in order to drive under the same conditions every time, it is necessary to make the acceleration the same every time the vehicle runs, but this is virtually impossible. However, in the case of acoustic holography, noise is measured at the same time, so the measurement is completed in one run.

【0009】フェーズドアレイ法はマイクロホン列方向
の分解能は高いが、これと直交する方向の分解能が低く
、音源位置が正確に求められない。例えば、マイク列を
鉛直に設置し、走行する自動車の音源探査を行うとき、
音源が上の方にあるか、下の方にあるかはわかるが、前
の方にあるか後ろの方にあるかは明瞭にできないために
、実用的ではない。
Although the phased array method has high resolution in the direction of the microphone array, the resolution in the direction perpendicular to this is low, and the position of the sound source cannot be accurately determined. For example, when a microphone array is installed vertically to search for the sound source of a moving car,
Although it is possible to tell whether the sound source is above or below, it is not practical because it cannot be clearly determined whether the sound source is in front or behind.

【0010】本発明はこのような状況に鑑みてなされた
もので、音響ホログラフィ法によって移動音源の音源を
探査する装置を提供するものである。
[0010] The present invention has been made in view of the above situation, and provides an apparatus for detecting the sound source of a moving sound source using acoustic holography.

【0011】[0011]

【課題を解決するための手段】このような課題を解決す
るために第1の発明は  騒音を計測する手段と、その
騒音発生座標を測定する手段と、移動音源の速度を計測
する手段と、ドップラ効果を補正する手段とを備えたも
のである。
[Means for Solving the Problems] In order to solve the above problems, the first invention includes a means for measuring noise, a means for measuring the coordinates of the noise generation, a means for measuring the speed of a moving sound source, and means for correcting the Doppler effect.

【0012】第2の発明は第1の発明において騒音座標
を測定する手段を、騒音を計測する手段付近に設けられ
移動体に向けて空間波信号を発生する信号発生器と、そ
の空間波が移動体から反射してくる信号を検出する検出
器と、その検出された信号と移動速度の値によって座標
を求める座標演算手段とを備えたものである。
[0012] In a second invention, the means for measuring the noise coordinates in the first invention is replaced by a signal generator that is provided near the noise measuring means and generates a spatial wave signal toward a moving body, and a signal generator that generates a spatial wave signal toward a moving object. It is equipped with a detector that detects a signal reflected from a moving object, and a coordinate calculation means that calculates coordinates based on the detected signal and the value of the moving speed.

【0013】第3の発明は第1の発明において騒音座標
を測定する手段は、騒音を計測する手段より所定量だけ
走行方向前方位置および走行方向後方に設けられ、移動
体に向けて空間波信号を発生する信号発生器と、その空
間波が移動体から反射してくる信号を検出する検出器と
、その検出された信号と移動速度との値によって座標を
求める座標演算手段とを備えたものである。
[0013] In a third invention, in the first invention, the means for measuring the noise coordinates is provided at a predetermined distance in front of and behind the means for measuring the noise in the traveling direction, and sends a spatial wave signal toward the moving object. A signal generator that generates a signal, a detector that detects a signal from which the spatial wave is reflected from a moving body, and a coordinate calculation means that calculates coordinates based on the values of the detected signal and the moving speed. It is.

【0014】第4の発明は第3の発明において、移動体
はその側面に所定間隔で反射板を設けているものである
[0014] A fourth aspect of the present invention is that in the third aspect, the movable body is provided with reflective plates at predetermined intervals on its side surface.

【0015】第5の発明は、第1の発明から第4の発明
において、ドップラ効果を補正は位相と振幅の両方につ
いて補正するようにしたものである。
[0015] A fifth invention is such that in the first to fourth inventions, the Doppler effect is corrected for both phase and amplitude.

【0016】[0016]

【作用】移動体1から発生する騒音をマイク列2で収集
し、ビームスイッチ4によって移動体1の反射板5から
の反射波を検出する。ビームスイッチによって得られた
信号から移動体の速度および座標が演算され、その速度
情報から演算装置6によってドップラ効果の補正が行わ
れる。
[Operation] Noise generated from the moving object 1 is collected by the microphone array 2, and reflected waves from the reflecting plate 5 of the moving object 1 are detected by the beam switch 4. The speed and coordinates of the moving object are calculated from the signal obtained by the beam switch, and the Doppler effect is corrected by the calculation device 6 based on the speed information.

【0017】[0017]

【実施例】図1は本装置の概念図であり、1は移動音源
(この例では自動車を使用している)、2は集音用マイ
クロホン列、3はマイクロホン支持具、4は移動速度計
測用拡散反射型ビームスイッチ、5は移動体に所定間隔
で取り付けられた反射板、6はパーソナルコンピュータ
をホストコンピュータとする処理装置である。
[Example] Figure 1 is a conceptual diagram of this device, where 1 is a moving sound source (in this example, a car is used), 2 is a microphone array for sound collection, 3 is a microphone support, and 4 is a moving speed measurement. 5 is a reflector plate attached to a moving body at predetermined intervals, and 6 is a processing device using a personal computer as a host computer.

【0018】図2にデータ処理装置のブロック図を示す
。7はマイクロホン用の増幅器、8はA/D変換器、9
はドップラ効果補正回路、10は周波数分析回路、11
は再生計算回路である。
FIG. 2 shows a block diagram of the data processing device. 7 is a microphone amplifier, 8 is an A/D converter, 9
10 is a Doppler effect correction circuit, 10 is a frequency analysis circuit, and 11 is a Doppler effect correction circuit.
is a regeneration calculation circuit.

【0019】図1に示す装置を用いて、次のように音源
探査計測を行う。最初に集音用マイクロホン列2を用い
て移動音源の移動時における騒音を計測する。同時にビ
ームスイッチ4から放射した信号が、反射板5からの反
射され、それをビームスイッチ4で受信して電気パルス
信号に変換し、移動速度の計測用パルス信号を計測する
Using the apparatus shown in FIG. 1, sound source exploration and measurement are performed as follows. First, the sound collection microphone array 2 is used to measure noise when a moving sound source moves. At the same time, a signal emitted from the beam switch 4 is reflected from the reflection plate 5, and is received by the beam switch 4 and converted into an electric pulse signal, thereby measuring a pulse signal for measuring the moving speed.

【0020】マイクロホンからの騒音信号は増幅器7で
増幅され、ビームスイッチ4で検出された速度計測用パ
ルス信号と同時にA/D変換器9でサンプリングされる
。このとき計測される騒音信号は(1)式で示される。
The noise signal from the microphone is amplified by an amplifier 7, and sampled by an A/D converter 9 at the same time as the speed measurement pulse signal detected by the beam switch 4. The noise signal measured at this time is expressed by equation (1).

【0021】[0021]

【数1】[Math 1]

【0022】ここで各緒元は次の通りである。 O:マイクロホンの位置 ρ:媒質の密度 q:音源の体積速度振幅 t:計測時刻 t0:時刻tにおいて計測された放射音が放射された時
刻 R:時刻t0における音源と受音点の距離c:音速 M:マッハ数 θ:時刻t0において音源と受音点を結ぶ直線が図3の
X軸となす角 XS:音源の図3におけるX座標
[0022] Here, each specification is as follows. O: Position of the microphone ρ: Density of the medium q: Volume velocity amplitude of the sound source t: Measurement time t0: Time at which the radiated sound measured at time t was emitted R: Distance between the sound source and the sound receiving point at time t0 c: Sound speed M: Mach number θ: Angle between the straight line connecting the sound source and the sound receiving point at time t0 and the X axis in Fig. 3 XS: X coordinate of the sound source in Fig. 3

【0023】O、XS、θの関係は図3に示しており、
ビームスイッチの出力信号から移動体の速度および座標
が計算できる。
The relationship between O, XS, and θ is shown in FIG.
The speed and coordinates of the moving object can be calculated from the output signal of the beam switch.

【0024】第4図(a)に計測される騒音波形を示す
が、計測波形は音源が近づくにしたがって振幅が大きく
なるとともに、周波数が高くなり、音源が遠ざかるとそ
の反対になる、いわゆるドップラ効果が生ずる。このた
め、計測されたデータを用いて直接周波数分析をすると
真の音源のホログラムが得られない。
FIG. 4(a) shows the measured noise waveform. The measured waveform exhibits the so-called Doppler effect, in which the amplitude increases and the frequency increases as the sound source approaches, and vice versa as the sound source moves away. occurs. For this reason, direct frequency analysis using measured data will not yield a hologram of the true sound source.

【0025】そこでドップラ効果補正回路9を用いてド
ップラ効果の補正を行い、真のホログラムを得ている。 ところで、シミュレーションの結果、時速百km程度ま
では(1)式の第2項は第1項と比較すると無視し得る
ことがわかったために、第2項を無視した補正方法を取
ることにする。計測時刻tにおいて受波された音波を音
源が放射した時の音源と計測位置の距離Rは(2)式で
示される。
Therefore, the Doppler effect is corrected using the Doppler effect correction circuit 9 to obtain a true hologram. By the way, as a result of a simulation, it was found that the second term in equation (1) can be ignored compared to the first term up to about 100 km/h, so a correction method that ignores the second term will be used. The distance R between the sound source and the measurement position when the sound source emits the sound wave received at measurement time t is expressed by equation (2).

【0026】[0026]

【数2】[Math 2]

【0027】この式(2)から各時刻において音源と計
測点の位置Rを算出すると、t−(R/c)によって各
時刻に対する騒音放射時刻が算出される。
When the position R of the sound source and the measurement point is calculated at each time from this equation (2), the noise emission time for each time is calculated from t-(R/c).

【0028】(1)式によれば時刻t−(R/c)に放
射された音波は計測点においては振幅が1/{R(1−
Mcosθ)2}倍に振幅変調されている。そこで、各
時刻で計測音圧の振幅を{R(1−Mcosθ)2}倍
する。
According to equation (1), the sound wave emitted at time t-(R/c) has an amplitude of 1/{R(1-
Mcosθ)2} times the amplitude. Therefore, the amplitude of the measured sound pressure is multiplied by {R(1-Mcosθ)2} at each time.

【0029】以上の補正により時刻tに計測点で計測さ
れた音圧は時刻t−(R/c)における音源点での音圧
に変換される。ただし、振幅は音源から1m離れた点で
の振幅に相当する。
With the above correction, the sound pressure measured at the measurement point at time t is converted to the sound pressure at the sound source point at time t-(R/c). However, the amplitude corresponds to the amplitude at a point 1 m away from the sound source.

【0030】次にこれまで算出された音原点における音
圧から音源が移動しない場合に計測されるであろう音圧
を算出する。このため、音源と計測点の距離をRSHと
して時間に関してはtからt−(RSH/c)の遷移、
振幅に関しては1/RSHの補正を行う。
Next, the sound pressure that would be measured if the sound source did not move is calculated from the sound pressure at the sound origin calculated so far. For this reason, assuming the distance between the sound source and the measurement point as RSH, the transition from t to t-(RSH/c) in terms of time,
The amplitude is corrected by 1/RSH.

【0031】以上のように、位相および振幅を補正する
ことによってドップラ効果の補正が完了し、第4図(b
)に示す正弦波形が得られる。図4(a)はドップラ効
果によって左側の波形は記号「イ」に向かって周波数が
高くなりながら振幅が増え、右側の波形は周波数が低く
なりながら振幅が減少している。このため振幅と位相を
補正して(b)に示すように等振幅で等位相に補正して
いる。
As described above, correction of the Doppler effect is completed by correcting the phase and amplitude, and as shown in FIG.
) is obtained. In FIG. 4A, due to the Doppler effect, the waveform on the left side increases in amplitude as the frequency increases toward the symbol "A", and the waveform on the right side decreases in amplitude as the frequency decreases. For this reason, the amplitude and phase are corrected to have equal amplitude and equal phase as shown in (b).

【0032】ただし、実際に音源探査を行う場合は一般
に音源が広がりを有するため、音源の各点が計測点に与
えるドップラ効果は各々異なる。このため、異なる再生
点に対しては異なるドップラ効果の補正を行う必要があ
る。ここではこのことを勘案して設定された再生点にホ
ログラムを計算し、再生計算回路11によって再生計算
を行う。
However, when actually conducting sound source exploration, the sound source generally has a spread, so the Doppler effect that each point of the sound source gives to the measurement point is different. Therefore, it is necessary to perform different Doppler effect corrections for different reproduction points. Here, taking this into consideration, a hologram is calculated at the set reproduction point, and the reproduction calculation circuit 11 performs reproduction calculation.

【0033】次に、この装置で探査された実例の一部を
示す。第5図は自動車の屋根に積載された左側のスピー
カだけから周波数2KHzの純音を放射させ、100k
m/hで自動車を走行させてスピーカの音源探査を行っ
た例である。図に示されるように騒音を放射している左
側のスピーカだけに等高線が集中しており、右側のスピ
ーカには等高線が描かれておらず、この方法が正しいこ
とを証明している。
[0033] Next, some examples investigated using this device will be shown. Figure 5 shows that a pure tone with a frequency of 2KHz is emitted from only the left speaker mounted on the roof of a car, and the frequency is 100K.
This is an example of searching for the sound source of a speaker while driving a car at a speed of m/h. As shown in the figure, the contour lines are concentrated only on the left speaker emitting noise, and no contour lines are drawn on the right speaker, proving that this method is correct.

【0034】図6は自動車の音源探査結果の一例である
。この図は自動車を1速20km/h等速で走行させ、
周波数603Hzに対して再生した結果である。自動車
の足回りから騒音が放射されていることがよくわかる。
FIG. 6 shows an example of the results of a sound source search for a car. This diagram shows a car running at a constant speed of 20km/h in first gear.
This is the result of reproduction for a frequency of 603 Hz. It is clear that the noise is radiated from the undercarriage of the car.

【0035】図2においてA/D変換器8とドップラ効
果補正回路9の間に時間積分器を挿入すると次式で表さ
れる速度ポテンシャルが得られる。
In FIG. 2, if a time integrator is inserted between the A/D converter 8 and the Doppler effect correction circuit 9, a velocity potential expressed by the following equation is obtained.

【0036】[0036]

【数3】[Math 3]

【0037】このようにすれば項が一つになるため、移
動体が亜音速で移動する限り、原理的には正確にドップ
ラ効果の補正ができる。
[0037] In this way, since there is only one term, it is possible in principle to correct the Doppler effect accurately as long as the moving object moves at subsonic speed.

【0038】なお、以上の実施例はビームスイッチを複
数使用しているが、これは非等速運動を想定しているた
めであり、非等速運動では瞬時の速度変化を詳細に捕捉
する必要がある。このためにはマイク列から進行方向前
方および後方に等間隔にビームスイッチを配設し、マイ
ク列に対して対称な信号を得るようにした方が精度の良
い測定が行える。
[0038] Note that the above embodiment uses multiple beam switches, but this is because non-uniform motion is assumed, and in non-uniform motion, it is necessary to capture instantaneous velocity changes in detail. There is. For this purpose, more accurate measurements can be achieved by arranging beam switches at equal intervals in front and behind the microphone row in the direction of travel to obtain signals that are symmetrical with respect to the microphone row.

【0039】また、移動体に反射板を取り付けたのもで
きるだけ細かな情報を得たいために施した工夫であり、
等速運動を行っているものについてはマイク列の付近に
ビームスイッチを1個設ければ良く、移動体に取り付け
た反射板は必ずしも必要なものではない。要は移動体の
長さに対応した反射波が取り出せれば良い。
[0039] Also, the installation of a reflector on the moving body was a measure taken in order to obtain as detailed information as possible.
For objects that are moving at a constant velocity, it is sufficient to provide one beam switch near the microphone row, and a reflector attached to the moving object is not necessarily necessary. The point is that it is sufficient if a reflected wave corresponding to the length of the moving body can be extracted.

【0040】[0040]

【発明の効果】以上説明したように本発明は、複数地点
の騒音情報を収集して音響ホログラフィ法を使用可能に
し、かつドップラ効果の補正を行ったので、移動音源を
捕捉できるという効果を有する。
[Effects of the Invention] As explained above, the present invention enables the use of acoustic holography by collecting noise information from multiple points, and also corrects the Doppler effect, so it has the effect of being able to capture moving sound sources. .

【図面の簡単な説明】[Brief explanation of drawings]

【図1】音源探査装置の概念図[Figure 1] Conceptual diagram of sound source detection device

【図2】処理装置のブロック図[Figure 2] Block diagram of processing device

【図3】ドップラ効果の説明図[Figure 3] Illustration of the Doppler effect

【図4】計測波形とドップラ効果補正後の波形を示す図
[Figure 4] Diagram showing the measured waveform and the waveform after Doppler effect correction

【図5】スピーカの音源探査結果を示す図[Figure 5] Diagram showing speaker sound source search results

【図6】自動
車の音源探査結果を示す図
[Figure 6] Diagram showing car sound source detection results

【符号の説明】[Explanation of symbols]

1  移動音源 2  集音用マイクロホン列 3  マイクロホン支持具 4  拡散反射型ビームスイッチ 5  反射板 6  処理装置 7  増幅器 8  A/D変換器 9  ドップラ効果補正回路 10  周波数分析回路 11  再生計算回路 1. Moving sound source 2. Microphone row for sound collection 3. Microphone support 4 Diffuse reflection type beam switch 5 Reflector plate 6 Processing equipment 7 Amplifier 8 A/D converter 9 Doppler effect correction circuit 10 Frequency analysis circuit 11 Regeneration calculation circuit

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】  移動音源の放射する騒音を計測し音響
ホログラフィ法により騒音源の探査を行う移動音源の音
源探査装置において、騒音を計測する手段と、その騒音
発生座標を測定する手段と、移動音源の速度を計測する
手段と、ドップラ効果を補正する手段とを備えたことを
特徴とする移動音源の音源探査装置。
Claim 1. A sound source detection device for a moving sound source that measures noise emitted by a moving sound source and searches for the noise source using an acoustic holography method, comprising: a means for measuring noise; a means for measuring the coordinates of the noise generation; A sound source detection device for a moving sound source, comprising means for measuring the speed of the sound source and means for correcting the Doppler effect.
【請求項2】  請求項1において騒音座標を測定する
手段は、騒音を計測する手段付近に設けられ、移動体に
向けて空間波信号を発生する信号発生器と、その空間波
が移動体から反射してくる信号を検出しする信号検出器
と、信号検出器によって検出された信号と移動速度との
値によって座標を求める座標演算手段とを備えたことを
特徴とする移動音源の音原探査装置。
2. In claim 1, the means for measuring noise coordinates is provided near the means for measuring noise, and includes a signal generator that generates a spatial wave signal toward a moving object, and a signal generator that generates a spatial wave signal toward a moving object. Sound source exploration of a moving sound source characterized by comprising a signal detector that detects a reflected signal, and coordinate calculation means that calculates coordinates based on the values of the signal detected by the signal detector and the moving speed. Device.
【請求項3】  請求項1において騒音座標を測定する
手段は、騒音を計測する手段より所定量だけ走行方向前
方位置および走行方向後方に設けられ、移動体に向けて
空間波信号を発生する信号発生器と、その空間波が移動
体から反射してくる信号を検出しする信号検出器と、信
号検出器によって検出された信号と移動速度との値によ
って座標を求める座標演算手段とを備えたことを特徴と
する移動音源の音原探査装置。
3. In claim 1, the means for measuring noise coordinates is provided at a predetermined distance in front of and behind the means for measuring noise in the traveling direction, and is configured to generate a spatial wave signal toward the moving object. A generator, a signal detector for detecting a signal of the spatial wave reflected from a moving object, and a coordinate calculation means for calculating coordinates based on the signal detected by the signal detector and the moving speed. A sound source exploration device for a moving sound source, characterized in that:
【請求項4】  請求項3において移動体はその側面に
所定間隔で反射板を設けていることを特徴とする移動音
源の音源探査装置。
4. A sound source detection device for a moving sound source according to claim 3, wherein the moving body is provided with reflecting plates at predetermined intervals on its side surface.
【請求項5】  請求項1から請求項4においてドップ
ラ効果を補正は位相と振幅の両方について補正すること
を特徴とする移動音源の音源探査装置。
5. A sound source detection device for a moving sound source according to claim 1, wherein the Doppler effect is corrected for both phase and amplitude.
JP3128304A 1991-05-02 1991-05-02 Sound source search device for moving sound sources Expired - Fee Related JP2816609B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3128304A JP2816609B2 (en) 1991-05-02 1991-05-02 Sound source search device for moving sound sources

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3128304A JP2816609B2 (en) 1991-05-02 1991-05-02 Sound source search device for moving sound sources

Publications (2)

Publication Number Publication Date
JPH04331393A true JPH04331393A (en) 1992-11-19
JP2816609B2 JP2816609B2 (en) 1998-10-27

Family

ID=14981474

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3128304A Expired - Fee Related JP2816609B2 (en) 1991-05-02 1991-05-02 Sound source search device for moving sound sources

Country Status (1)

Country Link
JP (1) JP2816609B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100366206B1 (en) * 2000-08-30 2002-12-31 한국과학기술원 Real-time diagnostics and monitoring system and method for transportation machinery by using sound visualization system and method of band-limited noise
KR100412457B1 (en) * 2001-12-20 2003-12-31 현대자동차주식회사 Acoustic holography system for the bottom of a body considered the influence of reflected wave
US20100036622A1 (en) * 2008-08-07 2010-02-11 Korea Research Institute Of Standards And Science Method and system for predicting acoustic fields based on generalized moving frame acoustic holography
JP2012202958A (en) * 2011-03-28 2012-10-22 Ono Sokki Co Ltd Noise source identification system

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109633547A (en) * 2018-12-18 2019-04-16 中国人民解放军国防科技大学 Pneumatic noise source positioning method and system based on near-field acoustic holography

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100366206B1 (en) * 2000-08-30 2002-12-31 한국과학기술원 Real-time diagnostics and monitoring system and method for transportation machinery by using sound visualization system and method of band-limited noise
KR100412457B1 (en) * 2001-12-20 2003-12-31 현대자동차주식회사 Acoustic holography system for the bottom of a body considered the influence of reflected wave
US20100036622A1 (en) * 2008-08-07 2010-02-11 Korea Research Institute Of Standards And Science Method and system for predicting acoustic fields based on generalized moving frame acoustic holography
US8371172B2 (en) * 2008-08-07 2013-02-12 Korea Research Institute Of Standards And Science Method and system for predicting acoustic fields based on generalized moving frame acoustic holography
JP2012202958A (en) * 2011-03-28 2012-10-22 Ono Sokki Co Ltd Noise source identification system

Also Published As

Publication number Publication date
JP2816609B2 (en) 1998-10-27

Similar Documents

Publication Publication Date Title
CN104133217B (en) Method and device for three-dimensional velocity joint determination of underwater moving target and water flow
JPH04331393A (en) Sound source surveyor for moving sound source
JP4046905B2 (en) Inter-vehicle distance measuring device
JPH07140243A (en) Sounding method of ocean, etc.
CN111915918A (en) System and method for calibrating automobile whistling snapshot device on site based on dynamic characteristics
JP2780698B2 (en) Underwater vehicle detection device
US11032657B2 (en) Volume acceleration sensor calibration
JP3489282B2 (en) Sound source search method
JP2650935B2 (en) Partial discharge location method
JP3144442B2 (en) Sound source search method
JPH04324324A (en) Device and method for measuring moving sound source
JP3506604B2 (en) Distance detecting device and distance detecting method for navigating object
JPH0750144B2 (en) Partial discharge position location method
JPH0634647A (en) Measuring equipment for speed
JP3389726B2 (en) Sound source search method
JP2000241545A (en) Device and method for detecting distance to navigation object
JP3108373B2 (en) Sound intensity distribution measurement system for moving objects
JP2000171232A (en) Ultrasonic wave measuring instrument
JPS62204733A (en) Ultrasonic doppler diagnostic apparatus
RU98254U1 (en) MULTI-FREQUENCY CORRELATION HYDROACOUSTIC LAG
JPH06138221A (en) Ground speed detecting device
JP4760249B2 (en) Speaker array device
JPH11211809A (en) Underwater position measuring method
JPH11338478A (en) Active noise control device
SU1411399A1 (en) Method of measuring the rate of progress of tractor unit

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19980714

LAPS Cancellation because of no payment of annual fees