JPH04330796A - Metal base printed wiring board and manufacture thereof - Google Patents

Metal base printed wiring board and manufacture thereof

Info

Publication number
JPH04330796A
JPH04330796A JP3100748A JP10074891A JPH04330796A JP H04330796 A JPH04330796 A JP H04330796A JP 3100748 A JP3100748 A JP 3100748A JP 10074891 A JP10074891 A JP 10074891A JP H04330796 A JPH04330796 A JP H04330796A
Authority
JP
Japan
Prior art keywords
metal
hard carbon
film
carbon film
printed wiring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP3100748A
Other languages
Japanese (ja)
Inventor
Kenichi Tanigawa
健一 谷川
Shun Sato
駿 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP3100748A priority Critical patent/JPH04330796A/en
Publication of JPH04330796A publication Critical patent/JPH04330796A/en
Withdrawn legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a circuit board having excellent heat radiation by forming a hard carbon film having high thermal conductivity as an insulating layer on a surface of a board made of a metal material, and forming a conductive layer, or an adhesive layer and a conductive layer thereon. CONSTITUTION:A board of a metal material is coated between a conductive layer and an adhesive layer with an insulating layer made of a hard carbon film having high thermal conductivity. The film is formed by an ion beam method. As the material of the board, various alloy such as iron-based, aluminum-based, titanium-based alloy, and as the conductive layer, various metal such as copper, silver, gold, aluminum, etc., and their alloys are used. As the adhesive layer, thermoplastic adhesive, thermosetting resin, rubber-based adhesive and mineral adhesive are used. In order to coat with the film, it is irradiated with an ion beam containing carbon atom of Kaufmann type or bucket type ion source, etc. Thus, a metal base printed circuit board having excellent heat radiation can be obtained.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、ハイブリッドIC基板
、電源回路基板等として使用される金属ベースプリント
配線板とその製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a metal-based printed wiring board used as a hybrid IC board, a power supply circuit board, etc., and a method for manufacturing the same.

【0002】0002

【従来の技術】金属ベースプリント配線板は、アルミニ
ウム板、珪素鋼板、亜鉛メッキ鋼板等を基板とし、その
表面にエポキシ樹脂または、エポキシ樹脂を含浸したガ
ラスクロスと電解銅箔を積層したものが主にハイブリッ
ドIC基板、電源回路基板として用いられている。
[Prior Art] Metal-based printed wiring boards are mainly made by laminating epoxy resin or glass cloth impregnated with epoxy resin and electrolytic copper foil on the surface of an aluminum plate, silicon steel plate, galvanized steel plate, etc. as a substrate. It is used as a hybrid IC board and a power supply circuit board.

【0003】金属ベースプリント配線板は一般の樹脂プ
リント配線板、セラミックプリント配線板と比べると、
基板に熱伝導性の良い金属材料を用いているため、実装
部品や基板自体の温度上昇を防止でき、放熱性に優れて
いる。ところが、上記の金属ベースプリント配線板は絶
縁層として、熱伝導率が金属基板に比べて低いエポキシ
樹脂またはエポキシ樹脂を含浸したガラスクロスを用い
ているため、金属基板の良好な熱伝導性を生かせない。 即ち、従来の絶縁物質では放熱上の問題を生ずることが
あった。そこで熱伝導率の高い絶縁層の開発が必要とな
る。
[0003] Compared to general resin printed wiring boards and ceramic printed wiring boards, metal-based printed wiring boards have
Since the board is made of a metal material with good thermal conductivity, it is possible to prevent the temperature of the mounted components and the board itself from rising, and it has excellent heat dissipation. However, the above metal-based printed wiring boards use epoxy resin or glass cloth impregnated with epoxy resin, which has lower thermal conductivity than metal substrates, as the insulating layer, so it is difficult to take advantage of the metal substrate's good thermal conductivity. do not have. That is, conventional insulating materials sometimes cause problems in terms of heat dissipation. Therefore, it is necessary to develop an insulating layer with high thermal conductivity.

【0004】熱伝導率の高い絶縁物質として硬質炭素膜
が知られている。この硬質炭素膜は種々の気相成長法に
よって作成されるようになったが、従来の方法では、タ
ングステンカーバイドなどの限られた材料に対しては、
実用に耐えうる程の強い付着力でコーティングすること
は可能とされていたものの、鉄系の金属材料に対しては
困難であった。
Hard carbon films are known as insulating materials with high thermal conductivity. This hard carbon film has been created by various vapor phase growth methods, but conventional methods cannot be used for limited materials such as tungsten carbide.
Although it has been possible to coat with adhesive strength strong enough to withstand practical use, it has been difficult to coat iron-based metal materials.

【0005】[0005]

【発明が解決しようとする課題】本発明の目的は、金属
材料の基板表面に、熱伝導率の高い絶縁層及び導電層、
または熱伝導率の高い絶縁層、接着剤層及び導電層を順
次形成することにより、放熱性に優れる金属ベースプリ
ント配線板及びその製造方法を提供しようとするもので
ある。
SUMMARY OF THE INVENTION An object of the present invention is to provide an insulating layer and a conductive layer with high thermal conductivity on the surface of a substrate made of a metal material.
Another object of the present invention is to provide a metal-based printed wiring board with excellent heat dissipation properties and a method for manufacturing the same by sequentially forming an insulating layer, an adhesive layer, and a conductive layer with high thermal conductivity.

【0006】[0006]

【課題を解決するための手段】前記目的を達成するため
に、本発明の金属ベースプリント配線板では、金属材料
の基板表面に熱伝導率の高い硬質炭素膜から成る絶縁層
を導電層または接着剤層の間にコーティングする。そし
て、本発明の金属ベースプリント配線板の製造方法では
、硬質炭素膜をイオンビーム法にて形成することを特徴
とする。
[Means for Solving the Problems] In order to achieve the above object, the metal-based printed wiring board of the present invention includes an insulating layer made of a hard carbon film with high thermal conductivity on the surface of a substrate made of a metal material as a conductive layer or adhesive. coating between the agent layers. The method for manufacturing a metal-based printed wiring board of the present invention is characterized in that the hard carbon film is formed by an ion beam method.

【0007】即ち、CVD法などの他の気相成長法では
、硬質炭素膜を金属基板表面に実用に耐え得る程の強い
付着力で形成することは困難であったが、イオンビーム
法を採用することにより、金属ベースプリント配線板に
適した絶縁層を形成することが可能となり、本発明を完
成するに到った。
That is, with other vapor phase growth methods such as the CVD method, it was difficult to form a hard carbon film on the surface of a metal substrate with a strong enough adhesion force to withstand practical use, but the ion beam method was adopted. By doing so, it became possible to form an insulating layer suitable for metal-based printed wiring boards, and the present invention was completed.

【0008】[0008]

【作用】本発明の金属ベースプリント配線板は、金属材
料の基板表面上に、硬質炭素膜及び導電層、または硬質
炭素膜、接着剤層及び導電層を順次設けた構造からなる
。本発明でいう硬質炭素膜あるいはダイヤモンド状炭素
膜と別称されているものは次のようなものである。元素
の構成の主体は炭素であり、天然ダイヤモンドに準ずる
硬度を持ち、非晶質で電気線回折像はハローパターンを
示す。ラマンスペクトルでは1580cm−1付近と1
360−1付近に非晶質特有の広いピークを示す。硬質
炭素膜を走査型電子顕微鏡で10000倍程度に拡大し
て観察しても、結晶粒が認められない一様で平滑な膜で
ある。硬質炭素膜は一般に炭化水素化合物を原料とした
気相合成法によって生成され、アルゴンイオンを用いた
ラザフォード散乱分析法によると40atom%以下の
水素を含有しており、水素が炭素原子のダングリングボ
ンドの部分に入ることにより非晶質状態が安定化され、
かつ高硬度の構造になると考えられている。
[Operation] The metal-based printed wiring board of the present invention has a structure in which a hard carbon film and a conductive layer, or a hard carbon film, an adhesive layer, and a conductive layer are sequentially provided on the surface of a substrate made of a metal material. The hard carbon film or diamond-like carbon film referred to in the present invention is as follows. Its main elemental composition is carbon, and it has a hardness similar to that of natural diamond.It is amorphous and shows a halo pattern in its electric diffraction image. In the Raman spectrum, it is around 1580 cm-1 and 1
It shows a broad peak characteristic of amorphous materials near 360-1. Even when a hard carbon film is observed with a scanning electron microscope at a magnification of about 10,000 times, it is a uniform and smooth film with no crystal grains observed. Hard carbon films are generally produced by a gas phase synthesis method using hydrocarbon compounds as raw materials, and according to Rutherford scattering analysis using argon ions, they contain less than 40 atom% of hydrogen, and hydrogen is a dangling bond of carbon atoms. The amorphous state is stabilized by entering the
It is thought that the structure will also have a high degree of hardness.

【0009】適量の水素が存在することで、硬質炭素膜
は天然ダイヤモンドに準ずる高い硬度を示すものと推測
され、硬質炭素膜中の水素が多すぎると軟らかい有機質
の膜になる。そのため水素の割合は、アルゴンイオンを
用いたラザフォード散乱分析法で測定した場合で、膜中
に35atom%以下、好ましくは20〜30atom
%とすることが好ましい。
[0009] It is assumed that the presence of an appropriate amount of hydrogen makes the hard carbon film exhibit a high hardness similar to that of natural diamond; however, if there is too much hydrogen in the hard carbon film, the film becomes a soft organic film. Therefore, the proportion of hydrogen in the film is 35 atom% or less, preferably 20 to 30 atom%, when measured by Rutherford scattering analysis using argon ions.
% is preferable.

【0010】上述した硬質炭素膜の熱伝導率及び比抵抗
をエポキシ樹脂、エポキシ樹脂を含浸したガラスクロス
のそれぞれと比較すると、例えば表1の通りである。
Table 1 shows, for example, a comparison of the thermal conductivity and specific resistance of the above-mentioned hard carbon film with that of an epoxy resin and a glass cloth impregnated with an epoxy resin.

【0011】[0011]

【表1】[Table 1]

【0012】以上より、硬質炭素膜の熱伝導率は金属と
同程度かそれより大きい値であるため、絶縁層に硬質炭
素膜を用いると、放熱性が良くなるため実装部品や基板
自体の温度上昇を防止できる。放熱性は一般にプリント
配線板にTO−220のトランジスタをはんだ付けして
、コレクター損失(W)に対する上昇温度(℃)の傾き
である熱抵抗を比較する。
[0012] From the above, the thermal conductivity of a hard carbon film is on the same level as or higher than that of metal, so when a hard carbon film is used as an insulating layer, heat dissipation is improved, and the temperature of the mounted components and the board itself is lowered. It can prevent the rise. Heat dissipation performance is generally measured by soldering a TO-220 transistor to a printed wiring board and comparing the thermal resistance, which is the slope of temperature rise (° C.) against collector loss (W).

【0013】一般に使用されている、1.5mm厚さの
アルミニウム板に、絶縁層としてエポキシ樹脂45μm
またはエポキシ樹脂を含浸したガラスクロス125μm
を用い、18μm厚さの電解銅箔を積層したアルミニウ
ムベースプリント配線板の熱抵抗は、例えばそれぞれ4
.5℃/W及び6.5℃/Wである。次に、本発明で金
属材料の基板表面に硬質炭素膜をコーティングする方法
としては、カウフマン型イオン源、バケット型イオン源
等の各種イオン源で発生される炭素原子を含むイオンビ
ームを照射する方法を適用することができる。ここでは
図1に示すカウフマン型イオン源によりコーティングす
る方法を例にして説明する。減圧下に硬質炭素膜の原料
となる炭化水素ガスを導入し、これをグロー放電と赤熱
フィラメント3によりイオン化させ、電磁石4の広がり
磁場でこのイオンを引き出す。電磁石で覆われたこの部
分をイオン源という。引き出されたイオンは負のバイア
ス電圧がかけられた基材1に向かって加速され、材料に
衝突、蒸着する。
[0013] A generally used 1.5 mm thick aluminum plate is coated with 45 μm of epoxy resin as an insulating layer.
Or glass cloth 125μm impregnated with epoxy resin
The thermal resistance of an aluminum-based printed wiring board laminated with 18 μm thick electrolytic copper foil is, for example, 4
.. 5°C/W and 6.5°C/W. Next, in the present invention, a method of coating a hard carbon film on the surface of a metal substrate is a method of irradiating an ion beam containing carbon atoms generated by various ion sources such as a Kauffman type ion source and a bucket type ion source. can be applied. Here, a coating method using the Kauffman type ion source shown in FIG. 1 will be explained as an example. Hydrocarbon gas, which is a raw material for a hard carbon film, is introduced under reduced pressure, ionized by glow discharge and red-hot filament 3, and extracted by the expanding magnetic field of electromagnet 4. This part covered with electromagnets is called the ion source. The extracted ions are accelerated toward the base material 1 to which a negative bias voltage is applied, collide with the material, and vapor deposit.

【0014】原料ガスとしては、メタン、エタン、アセ
チレン、ベンゼン等の容易に気体として導入できる炭化
水素を用いれば良いが、中でもメタンが好ましい。水素
ガスを前述の原料ガスの希釈ガスとして用いてもさしつ
かえない。容器内の圧力は、プラズマを発生させて、し
かもイオンを加速することが必要なため、1×10−6
Torrから1Torrでよいが、膜質、膜生成速度の
点からは1×10−4Torrから1×10−1Tor
rが望ましい。材料の温度としては室温(25℃程度)
から350℃とすると良好な薄膜が形成される。その範
囲内でも特に室温(25℃程度)から300℃が好まし
い範囲である。
As the raw material gas, hydrocarbons such as methane, ethane, acetylene, and benzene, which can be easily introduced as a gas, may be used, and among them, methane is preferred. Hydrogen gas may be used as a diluent gas for the above-mentioned raw material gas. The pressure inside the container is 1 x 10-6 because it is necessary to generate plasma and accelerate ions.
Torr to 1 Torr is sufficient, but in terms of film quality and film formation rate, 1 x 10-4 Torr to 1 x 10-1 Torr is recommended.
r is desirable. The temperature of the material is room temperature (about 25℃)
to 350° C., a good thin film is formed. Within this range, a particularly preferred range is from room temperature (about 25°C) to 300°C.

【0015】材料とイオン源との間のバイアス電圧は−
50Vから−1500Vとし、中でも−500Vから−
1200Vが好ましい範囲である。炭化水素イオンがバ
イアス電圧により加速されて材料に衝突すると、衝突エ
ネルギーにより衝突したイオンのC−H結合が切れて、
水素原子は弾き出されてしまう。水素原子が弾き出され
る量は、衝突するイオンの運動エネルギー、即ちバイア
ス電圧に従っており、バイアス電圧が小さ過ぎると水素
が多い有機的な軟らかい膜になりやすく、バイアス電圧
が高過ぎると黒鉛状の膜になり、さらには膜の自己スッ
パタリングが生じ成膜速度が低下する。イオン源での磁
束密度は100Gから1000Gの範囲が適当であり、
300Gから500Gがより好ましい範囲である。詳細
な製造条件は、装置内のガス導入口の配置、イオン源の
大きさ、材料の位置などによって変化するので、適宜最
適条件を設定することが望ましい。
The bias voltage between the material and the ion source is -
From 50V to -1500V, especially from -500V to -
1200V is a preferred range. When hydrocarbon ions are accelerated by a bias voltage and collide with a material, the C-H bonds of the colliding ions are broken due to the collision energy.
Hydrogen atoms are ejected. The amount of hydrogen atoms ejected depends on the kinetic energy of the colliding ions, that is, the bias voltage; if the bias voltage is too low, a soft, organic film with a large amount of hydrogen tends to form, whereas if the bias voltage is too high, a graphite-like film tends to form. Furthermore, self-sputtering of the film occurs, reducing the film formation rate. The appropriate magnetic flux density at the ion source is in the range of 100G to 1000G.
A more preferable range is 300G to 500G. Since the detailed manufacturing conditions vary depending on the arrangement of the gas inlet in the apparatus, the size of the ion source, the position of the material, etc., it is desirable to set optimal conditions as appropriate.

【0016】本発明で基板に適用できる金属材料には鉄
系、アルミニウム系、チタン系等各種合金が挙げられる
が、その中でもこれまでの成膜方法では密着性の良好な
硬質炭素膜が形成されにくかった鉄系材料を対象とした
場合に特に有効である。具体的には、純鉄、炭素を特に
多く含む炭素鋼、クロムを主に含むステンレス鋼、珪素
を主に含む珪素鋼等の市販の合金鋼を含む鉄鋼材料と鉄
系アモルファス合金及びこれらの材料表面にイオン打ち
込みや浸炭処理等で他の元素を注入したものが挙げられ
る。硬質炭素膜をコーティングする面は仕上げ荒さは問
わないが、付着力の強い膜をコーティングするためには
、油脂、錆等の付着物をあらかじめ除去しておくことが
望ましい。
Metal materials that can be applied to the substrate in the present invention include various alloys such as iron-based, aluminum-based, and titanium-based alloys, but among these, conventional film-forming methods have not been able to form hard carbon films with good adhesion. This is particularly effective when dealing with difficult-to-harden iron-based materials. Specifically, steel materials including commercially available alloy steels such as pure iron, carbon steel containing a particularly large amount of carbon, stainless steel containing mainly chromium, silicon steel containing mainly silicon, iron-based amorphous alloys, and these materials. Examples include those in which other elements are implanted into the surface by ion implantation or carburizing treatment. The finish roughness of the surface to be coated with the hard carbon film does not matter, but in order to coat the surface with a film with strong adhesion, it is desirable to remove deposits such as oil, fat, rust, etc. beforehand.

【0017】次に、硬質炭素膜をコーティングした金属
基板上に導電層、または接着剤層及び導電層を被覆する
。導電層を硬質炭素膜上に直接被覆するには、導電箔を
プレス加工等により圧着する方法、電気メッキ、無電解
メッキ等により湿式メッキする方法、溶融メッキ、金属
溶射、気相メッキ、及び真空蒸着法、スパッタリング法
、イオンプレーティング法等の真空メッキ等により乾式
メッキする方法等がある。
Next, a conductive layer or an adhesive layer and a conductive layer are coated on the metal substrate coated with the hard carbon film. To coat the conductive layer directly on the hard carbon film, there are several methods: crimping the conductive foil by pressing, etc., wet plating by electroplating, electroless plating, etc., hot-dip plating, metal spraying, vapor phase plating, and vacuum plating. There are dry plating methods such as vacuum plating such as vapor deposition, sputtering, and ion plating.

【0018】本発明で導電層に適用できる材料には銅、
銀、金、アルミニウム等各種金属及びそれらの合金系が
挙げられる。導電箔をプレス加工により圧着する方法で
は硬質炭素膜の上に接着剤層を設けるのが効果的である
。接着剤層を設けるには、プリント配線板を一般的に製
造する場合と同様に塗布紙(接着剤シート)として供給
する方法や接着剤を塗布する方法等がある。
Materials that can be applied to the conductive layer in the present invention include copper,
Examples include various metals such as silver, gold, and aluminum, and alloys thereof. In the method of bonding conductive foil by press working, it is effective to provide an adhesive layer on the hard carbon film. To provide the adhesive layer, there are a method of supplying it as a coated paper (adhesive sheet), a method of applying an adhesive, etc., as in the general manufacturing of printed wiring boards.

【0019】本発明で接着剤層に適用できる材料にはビ
ニル系樹脂、アクリル系樹脂、繊維素系、アスファルト
等の熱可塑性接着剤、エポキシ樹脂、フェノール樹脂、
メラミン樹脂、ポリアミド樹脂、ポリエステル樹脂、ア
ルキド樹脂、ウレタン樹脂、シリコーン樹脂等の熱硬化
性樹脂、ブタジエン・アクリロニトリルゴム、塩化ゴム
等のゴム系接着剤及び珪酸ソーダ等の鉱物性接着剤が挙
げられる。
Materials that can be applied to the adhesive layer in the present invention include vinyl resins, acrylic resins, cellulose resins, thermoplastic adhesives such as asphalt, epoxy resins, phenolic resins,
Examples include thermosetting resins such as melamine resin, polyamide resin, polyester resin, alkyd resin, urethane resin, and silicone resin, rubber adhesives such as butadiene/acrylonitrile rubber and chloride rubber, and mineral adhesives such as sodium silicate.

【0020】さて、絶縁層としてエポキシ樹脂または、
エポキシ樹脂を含浸したガラスクロスを用いる場合、膜
厚は例えばそれぞれ45μm、125μmである。硬質
炭素膜で絶縁性が確保できるため、接着剤層の厚みはこ
れらより薄くて充分である。
Now, as an insulating layer, epoxy resin or
When using glass cloth impregnated with epoxy resin, the film thicknesses are, for example, 45 μm and 125 μm, respectively. Since insulation can be ensured by the hard carbon film, the thickness of the adhesive layer is thinner than these and is sufficient.

【0021】[0021]

【実施例】【Example】

実施例1 基板に0.5mm厚さの珪素鋼板(Si含有率3%)を
使用し、まず図1に示すカウフマン型イオン源を用いて
表2に示す条件で硬質炭素膜を被覆した。 イオン源−基板距離  50mm 得られた膜の物性と構造は以下の通りである。
Example 1 A 0.5 mm thick silicon steel plate (Si content: 3%) was used as a substrate, and first coated with a hard carbon film under the conditions shown in Table 2 using the Kauffman type ion source shown in FIG. Ion source-substrate distance: 50 mm The physical properties and structure of the obtained film are as follows.

【0022】膜厚:1.2μm 10gf加重Vickers硬度:4500kgf/m
m2 引っかき試験法による膜の付着力:5×107 
N/m2 熱伝導率:800×10−3cal/cm・
sec・℃比抵抗:0.9×1014Ω・cm ラマンスペクトル:1580cm−1付近と1360c
m−1付近に幅の広いピークを示す。
Film thickness: 1.2 μm 10 gf loading Vickers hardness: 4500 kgf/m
m2 Film adhesion strength by scratch test method: 5 x 107
N/m2 Thermal conductivity: 800 x 10-3 cal/cm・
sec・℃ resistivity: 0.9×1014Ω・cm Raman spectrum: around 1580cm-1 and 1360c
A wide peak is shown near m-1.

【0023】水素含有量:28atom%電子線回折像
:明確な回折線の見られないハローパターン 次に、硬質炭素膜の上に化学銅メッキ(無電解メッキ)
を0.2μm施し、それを下地メッキとして、更にシア
ン化銅メッキ浴を用いて電気メッキを20μm施すこと
により金属ベースプリント配線板サンプルを得た。この
サンプルにTO−220のトランジスタをはんだ付けし
、熱抵抗を測定した。
Hydrogen content: 28 atom% Electron diffraction image: Halo pattern with no clear diffraction lines Next, chemical copper plating (electroless plating) on the hard carbon film
A sample of a metal-based printed wiring board was obtained by applying 0.2 μm of electroplating using a copper cyanide plating bath as a base plating. A TO-220 transistor was soldered to this sample, and the thermal resistance was measured.

【0024】熱抵抗:0.6℃/W 実施例2 基板に0.5mm厚さの珪素鋼板(Si含有率3%)を
使用し、まず図1に示すカウフマン型イオン源を用いて
表2に示す条件で硬質炭素膜を被覆した。
Thermal resistance: 0.6°C/W Example 2 A 0.5 mm thick silicon steel plate (3% Si content) was used as the substrate, and the Kauffman type ion source shown in FIG. A hard carbon film was coated under the conditions shown below.

【0025】[0025]

【表2】[Table 2]

【0026】イオン源−基板距離  50mm得られた
硬質炭素膜の物性と構造は実施例1に示したのと同一で
ある。次に、硬質炭素膜の上にエポキシ樹脂系の接着剤
を約10μm塗布し、18μm厚さの電解銅箔をプレス
加工により圧着することにより金属ベースプリント配線
板サンプルを得た。このサンプルにTO−220のトラ
ンジスタをはんだ付けし、熱抵抗を測定した。
Ion source-substrate distance: 50 mm The physical properties and structure of the obtained hard carbon film were the same as those shown in Example 1. Next, an epoxy resin adhesive was applied to the hard carbon film to a thickness of approximately 10 μm, and an 18 μm thick electrolytic copper foil was bonded by pressing to obtain a metal-based printed wiring board sample. A TO-220 transistor was soldered to this sample, and the thermal resistance was measured.

【0027】熱抵抗:1.2℃/W 実施例3 基板に0.5mm厚さの珪素鋼板(Si含有率3%)を
使用し、まず図1に示すカウフマン型イオン源を用いて
表3に示す条件で事前スパッター及び硬質炭素膜の成膜
を行った。
Thermal resistance: 1.2°C/W Example 3 A 0.5 mm thick silicon steel plate (Si content: 3%) was used as the substrate, and the Kauffman type ion source shown in FIG. Pre-sputtering and hard carbon film formation were performed under the conditions shown below.

【0028】[0028]

【表3】[Table 3]

【0029】イオン源−基板距離  50mm得られた
膜の物性と構造は以下の通りである。 膜厚:1.2μm 10gf加重Vickers硬度:4500kgf/m
m2 引っかき試験法による膜の付着力:18×107
 N/m2  熱伝導率:800×10−3cal/cm・sec・℃
比抵抗:0.9×1014Ω・cm ラマンスペクトル:1580cm−1付近と1360c
m−1付近に幅の広いピークを示す 水素含有量:28atom% 電子線回折像:明確な回折線の見られないハローパター
ン 実施例1の硬質炭素膜と比較すると、酸素イオンビーム
を事前に照射した場合、膜の付着力は3倍以上向上した
Ion source-substrate distance: 50 mm The physical properties and structure of the obtained film are as follows. Film thickness: 1.2μm 10gf loading Vickers hardness: 4500kgf/m
m2 Film adhesion strength by scratch test method: 18×107
N/m2 Thermal conductivity: 800 x 10-3 cal/cm・sec・℃
Specific resistance: 0.9×1014Ω・cm Raman spectrum: around 1580cm-1 and 1360c
Hydrogen content showing a wide peak near m-1: 28 atom% Electron diffraction image: halo pattern with no clear diffraction lines Compared to the hard carbon film of Example 1, the carbon film was irradiated with an oxygen ion beam in advance. In this case, the adhesion of the film was improved by more than three times.

【0030】次に、硬質炭素膜の上に化学銅メッキ(無
電解メッキ)を0.2μm施し、それを下地メッキとし
て、更にシアン化銅メッキ浴を用いて電気メッキを20
μm施すことにより金属ベースプリント配線板サンプル
を得た。このサンプルにTO−220のトランジスタを
はんだ付けし、熱抵抗を測定した。 熱抵抗:0.6℃/W 実施例4 基板に0.5mm厚さの珪素鋼板(Si含有率3%)を
使用し、まず図1に示すカウフマン型イオン源を用いて
表3に示す条件で事前スパッター及び硬質炭素膜の成膜
を行った。
Next, 0.2 μm of chemical copper plating (electroless plating) was applied on the hard carbon film, and using this as a base plating, electroplating was performed for 20 minutes using a copper cyanide plating bath.
A metal-based printed wiring board sample was obtained by applying μm. A TO-220 transistor was soldered to this sample, and the thermal resistance was measured. Thermal resistance: 0.6°C/W Example 4 A 0.5 mm thick silicon steel plate (Si content: 3%) was used as the substrate, and the Kauffman type ion source shown in Figure 1 was used under the conditions shown in Table 3. Pre-sputtering and hard carbon film formation were performed.

【0031】イオン源−基板距離  50mm得られた
硬質炭素膜の物性と構造は実施例3に示したのと同一で
ある。次に、硬質炭素膜の上にエポキシ樹脂系の接着剤
を約10μm塗布し、18μm厚さの電解銅箔をプレス
加工により圧着することにより金属ベースプリント配線
板サンプルを得た。このサンプルにTO−220のトラ
ンジスタをはんだ付けし、熱抵抗を測定した。
Ion source-substrate distance: 50 mm The physical properties and structure of the obtained hard carbon film were the same as those shown in Example 3. Next, an epoxy resin adhesive was applied to the hard carbon film to a thickness of approximately 10 μm, and an 18 μm thick electrolytic copper foil was bonded by pressing to obtain a metal-based printed wiring board sample. A TO-220 transistor was soldered to this sample, and the thermal resistance was measured.

【0032】熱抵抗:1.2℃/W 実施例5 基板に各25μm厚さのアモルファス合金Fe80.5
Si6. 5B12C1,Fe78Si12B10,C
o70Fe5 Si15B10(atom%)の3種類
を使用し、まず図1に示すカウフマン型イオン源を用い
て表3に示す条件で事前スパッター及び硬質炭素膜の成
膜を行った。
Thermal resistance: 1.2°C/W Example 5 Amorphous alloy Fe80.5 with a thickness of 25 μm each on the substrate
Si6. 5B12C1,Fe78Si12B10,C
Using three types of o70Fe5Si15B10 (atom%), preliminary sputtering and film formation of a hard carbon film were performed under the conditions shown in Table 3 using the Kauffman type ion source shown in FIG.

【0033】イオン源−基板距離  50mm得られた
膜の物性と構造は以下の通りである。 膜厚:1.3μm 熱伝導率:900×10−3cal/cm・sec・℃
比抵抗:0.8×1014Ω・cm ラマンスペクトル:1580cm−1付近と1360c
m−1付近に幅の広いピークを示す 水素含有量:28atom% 電子線回折像:明確な回折線の見られないハローパター
ン 次に、硬質炭素膜の上に化学銅メッキ(無電解メッキ)
を0.2μm施し、それを下地メッキとして、更にシア
ン化銅メッキ浴を用いて電気メッキを20μm施すこと
により金属ベースプリント配線板サンプルを得た。この
サンプルにTO−220のトランジスタをはんだ付けし
、熱抵抗を測定した。
Ion source-substrate distance: 50 mm The physical properties and structure of the obtained film are as follows. Film thickness: 1.3 μm Thermal conductivity: 900 x 10-3 cal/cm・sec・℃
Specific resistance: 0.8×1014Ω・cm Raman spectrum: around 1580cm-1 and 1360c
Hydrogen content showing a wide peak near m-1: 28 atom% Electron diffraction image: Halo pattern with no clear diffraction lines Next, chemical copper plating (electroless plating) on the hard carbon film
A sample of a metal-based printed wiring board was obtained by applying 0.2 μm of electroplating using a copper cyanide plating bath as a base plating. A TO-220 transistor was soldered to this sample, and the thermal resistance was measured.

【0034】 熱抵抗:0.6℃/W アモルファス合金は強度が高いため、基板に用いること
により、薄型化、即ち軽量化が可能となる。引っ張り強
さおよびヤング率はそれぞれ、例えばFe系合金で30
0〜400kgf/mm2  、0.02〜0.03k
gf/mm2  と現在実用化されている金属材料の最
高値よりもかなり高い。
Thermal resistance: 0.6° C./W Since amorphous alloys have high strength, by using them for substrates, it is possible to reduce the thickness and weight. The tensile strength and Young's modulus are, for example, 30 for Fe-based alloys, respectively.
0~400kgf/mm2, 0.02~0.03k
gf/mm2, which is considerably higher than the highest value of metal materials currently in practical use.

【0035】また、アモルファス合金は透磁率が高いた
め、磁気シールド性に優れる金属ベースプリント配線板
を提供できる。 実施例6  基板に組成Fe73.5Si13.5B9 Cu1 
Nb3 (atom%)のアモルファス合金を550℃
、1時間のN2ガス中焼鈍により結晶化させた粒径10
nmの超微細粒組織をもつ、25μm厚さの軟磁性薄帯
を使用し、まず図1に示すカウフマン型イオン源を用い
て表3に示す条件で事前スパッター及び硬質炭素膜の成
膜を行った。
Furthermore, since the amorphous alloy has high magnetic permeability, it is possible to provide a metal-based printed wiring board with excellent magnetic shielding properties. Example 6 Substrate composition: Fe73.5Si13.5B9 Cu1
Nb3 (atom%) amorphous alloy at 550℃
, grain size 10 crystallized by annealing in N2 gas for 1 hour.
Using a soft magnetic ribbon with a thickness of 25 μm and an ultra-fine grain structure of 100 nm, pre-sputtering and film formation of a hard carbon film were first performed using the Kauffman type ion source shown in Figure 1 under the conditions shown in Table 3. Ta.

【0036】イオン源−基板距離  50mm得られた
硬質炭素膜の物性と構造は実施例5に示したのと同一で
ある。次に、硬質炭素膜の上にエポキシ樹脂系の接着剤
を約10μm塗布し、18μm厚さの電解銅箔をプレス
加工により圧着することにより金属ベースプリント配線
板サンプルを得た。このサンプルにTO−220のトラ
ンジスタをはんだ付けし、熱抵抗を測定した。
Ion source-substrate distance: 50 mm The physical properties and structure of the obtained hard carbon film were the same as those shown in Example 5. Next, an epoxy resin adhesive was applied to the hard carbon film to a thickness of approximately 10 μm, and an 18 μm thick electrolytic copper foil was bonded by pressing to obtain a metal-based printed wiring board sample. A TO-220 transistor was soldered to this sample, and the thermal resistance was measured.

【0037】熱抵抗:1.2℃/W 今回用いた超微細組織をもつ軟磁性薄帯は透磁率が高い
ため、基板に用いることにより、磁気シールド性に優れ
た金属ベースリント配線板を提供できる。
Thermal resistance: 1.2°C/W The soft magnetic ribbon with ultrafine structure used this time has high magnetic permeability, so by using it in the substrate, a metal-based lint wiring board with excellent magnetic shielding properties can be provided. can.

【0038】[0038]

【発明の効果】本発明は、金属材料の基板表面に熱伝導
率の高い硬質炭素膜を絶縁層として形成し、その上に導
電層、または接着剤層及び導電層を形成することにより
、放熱性に優れる金属ベースプリント配線板が得られ、
また板厚を低減できる。また、イオンビーム法を採用す
ることにより、各種金属材料、特に鉄系材料の表面に、
絶縁層として実用に耐えうる程の強い付着力で硬質炭素
膜を形成できる。
Effects of the Invention The present invention provides heat dissipation by forming a hard carbon film with high thermal conductivity as an insulating layer on the surface of a substrate made of metal material, and forming a conductive layer or an adhesive layer and a conductive layer thereon. A metal-based printed wiring board with excellent properties is obtained.
Also, the plate thickness can be reduced. In addition, by adopting the ion beam method, it is possible to coat the surface of various metal materials, especially iron-based materials.
A hard carbon film can be formed with a strong enough adhesion to be used as an insulating layer.

【0039】更に、基板にアモルファス合金、または同
合金を結晶化させた超微細粒組織をもつ軟磁性薄帯を用
いることにより、軽量化ないし磁気シールド性向上が可
能である。
Furthermore, by using an amorphous alloy or a soft magnetic ribbon having an ultrafine grain structure obtained by crystallizing the same alloy for the substrate, it is possible to reduce the weight or improve the magnetic shielding property.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】イオン化蒸着装置の原理図である。FIG. 1 is a diagram showing the principle of an ionization vapor deposition apparatus.

【符号の説明】[Explanation of symbols]

1    基材 2    グリッド 3    フィラメント 4    電磁石 5    ガス導入管 1 Base material 2 Grid 3 Filament 4 Electromagnet 5 Gas introduction pipe

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】  金属材料の基板表面に硬質炭素膜及び
導電層を順次設けて成る金属ベースプリント配線板。
1. A metal-based printed wiring board comprising a hard carbon film and a conductive layer sequentially provided on the surface of a substrate made of a metal material.
【請求項2】  金属材料の基板表面に硬質炭素膜、接
着剤層及び導電層を順次設けて成る金属ベースプリント
配線板。
2. A metal-based printed wiring board comprising a hard carbon film, an adhesive layer, and a conductive layer sequentially provided on the surface of a metal substrate.
【請求項3】  金属材料が鉄系である請求項1または
2記載の金属ベースプリント配線板。
3. The metal-based printed wiring board according to claim 1, wherein the metal material is iron-based.
【請求項4】  イオンビーム法により硬質炭素膜を金
属材料の基板表面に形成することを特徴とする金属ベー
スプリント配線板の製造方法。
4. A method for manufacturing a metal-based printed wiring board, comprising forming a hard carbon film on the surface of a metal substrate by an ion beam method.
【請求項5】  金属材料が鉄系である請求項4記載の
金属ベースプリント配線板の製造方法。
5. The method for manufacturing a metal-based printed wiring board according to claim 4, wherein the metal material is iron-based.
JP3100748A 1991-05-02 1991-05-02 Metal base printed wiring board and manufacture thereof Withdrawn JPH04330796A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3100748A JPH04330796A (en) 1991-05-02 1991-05-02 Metal base printed wiring board and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3100748A JPH04330796A (en) 1991-05-02 1991-05-02 Metal base printed wiring board and manufacture thereof

Publications (1)

Publication Number Publication Date
JPH04330796A true JPH04330796A (en) 1992-11-18

Family

ID=14282157

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3100748A Withdrawn JPH04330796A (en) 1991-05-02 1991-05-02 Metal base printed wiring board and manufacture thereof

Country Status (1)

Country Link
JP (1) JPH04330796A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012023042A (en) * 2008-11-28 2012-02-02 Nissan Motor Co Ltd Seal structure and fuel cell equipped with the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012023042A (en) * 2008-11-28 2012-02-02 Nissan Motor Co Ltd Seal structure and fuel cell equipped with the same
US9350027B2 (en) 2008-11-28 2016-05-24 Nissan Motor Co., Ltd. Sealing structure and fuel cell having the sealing structure

Similar Documents

Publication Publication Date Title
US4902535A (en) Method for depositing hard coatings on titanium or titanium alloys
US5009966A (en) Hard outer coatings deposited on titanium or titanium alloys
TW200930561A (en) Metal covered polyimide composite, process for producing the composite, and apparatus for producing the composite
JP3031719B2 (en) Diamond film deposition method on electroless plated nickel layer
CN115125479A (en) Hard alloy coating cutter and preparation method thereof
JPH04350908A (en) Thin inductor/transformer
KR100870971B1 (en) Method for manufacturing substrate of metal pcb using high rate and high density magnetron sputtering way
Zhitomirsky et al. Vacuum arc deposition of metal/ceramic coatings on polymer substrates
JPH04330796A (en) Metal base printed wiring board and manufacture thereof
JPH0356675A (en) Coating of ultrahard alloy base and ultrahard tool manufactured by means of said coating
CN101572993B (en) Method for forming conducting wire on insulated heat-conducting metal substrate in a vacuum sputtering way
Shih et al. Application of diamond coating to tool steels
CN101572994B (en) Method for forming conducting wire on radiating substrate in a vacuum sputtering way
JPH07268607A (en) Article having diamondlike carbon thin film and its production
TW202112913A (en) Polyarylene sulfide resin film, metal layered product, production method for polyarylene sulfide resin film, and production method for metal layered product
JPS61104078A (en) Hard coated sintered alloy and its manufacture
Shih et al. Application of nickel plating for the synthesis of chemical vapour deposition of diamond on steels
TWI468538B (en) Method for manufacturing shielding
JP3826756B2 (en) Electromagnetic shielding film
KR960015545B1 (en) Method for vapor deposition diamond film on electroless nickel platings
JPS6257802A (en) Parts coated with hard carbon
JPH0445287A (en) Material coated with hard carbon film and production thereof
JP2001135979A (en) Electromagnetic wave preventing plastic material and method of manufacturing the same
JPS62107918A (en) Electric discharge machining electrode and manufacture thereof
JPH04124272A (en) Cubic boron nitride coating member and its production

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19980806