JPH04330234A - Cucumber mosaic virus resistant tomato and method for preparing the same - Google Patents

Cucumber mosaic virus resistant tomato and method for preparing the same

Info

Publication number
JPH04330234A
JPH04330234A JP3081544A JP8154491A JPH04330234A JP H04330234 A JPH04330234 A JP H04330234A JP 3081544 A JP3081544 A JP 3081544A JP 8154491 A JP8154491 A JP 8154491A JP H04330234 A JPH04330234 A JP H04330234A
Authority
JP
Japan
Prior art keywords
mosaic virus
cucumber mosaic
plasmid
satrna
tomato
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3081544A
Other languages
Japanese (ja)
Inventor
Yasuto Saito
齊藤  靖人
Toshihiko Komari
敏彦 小鞠
Takashi Kamishiro
神代 隆
Osamu Masuda
税 増田
Yumiko Hayashi
林 由美子
Yoichi Takanami
高浪 洋一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Tobacco Inc
Original Assignee
Japan Tobacco Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Tobacco Inc filed Critical Japan Tobacco Inc
Priority to JP3081544A priority Critical patent/JPH04330234A/en
Priority to EP19920104774 priority patent/EP0504869A3/en
Publication of JPH04330234A publication Critical patent/JPH04330234A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8261Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
    • C12N15/8271Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance
    • C12N15/8279Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance for biotic stress resistance, pathogen resistance, disease resistance
    • C12N15/8283Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance for biotic stress resistance, pathogen resistance, disease resistance for virus resistance

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Molecular Biology (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Wood Science & Technology (AREA)
  • Microbiology (AREA)
  • Plant Pathology (AREA)
  • Biophysics (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Virology (AREA)
  • Cell Biology (AREA)
  • Breeding Of Plants And Reproduction By Means Of Culturing (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

PURPOSE:To obtain a tomato having resistance to cucumber mosaic virus. CONSTITUTION:Tomato is transformed by a plasmid containing cDNA of satellite RNA to produce a cucumber mosaic virus resistant tomato.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、キュウリモザイクウイ
ルスの感染に対して抵抗性を示すトマト及びその作出方
法に関する。
TECHNICAL FIELD The present invention relates to a tomato exhibiting resistance to infection with cucumber mosaic virus and a method for producing the same.

【0002】0002

【従来の技術】キュウリモザイクウイルスは広範囲な植
物に感染する重要病原ウイルスである。特に、トマトに
おける被害は大きく、抵抗性品種の開発が望まれている
。しかしながら、トマト栽培種あるいはその関連野生種
に抵抗性母体が存在していないために、キュウリモザイ
クウイルス防除の主眼はもっぱら栽培法及び農薬を用い
た間接的な手段に頼っているのが現状である。
BACKGROUND OF THE INVENTION Cucumber mosaic virus is an important pathogenic virus that infects a wide range of plants. The damage to tomatoes is particularly severe, and the development of resistant varieties is desired. However, because there are no resistant strains of tomato cultivated varieties or their related wild varieties, the main focus of cucumber mosaic virus control currently relies solely on cultivation methods and indirect means using pesticides. .

【0003】近年、遺伝子組換えの手法の発展により、
ウイルスの外被タンパクやサテライトRNAの遺伝子を
導入する形質転換による全く新しいタイプのウイルス抵
抗性の獲得が可能となった。従来より弱毒病原性のウイ
ルスを予め植物に接種しておくと、後に同種ウイルスの
強毒系に感染しても強毒ウイルスの感染から免れる干渉
作用は知られていた。この作用は先のウイルスが後のウ
イルスの遺伝子を保護している外被タンパクの脱外被を
妨げるためと考えられている。そこでウイルス外被タン
パクの遺伝子を取り出し形質転換法を利用して植物に導
入し、ウイルスの外被タンパクを産生する植物を作製し
ておくと、その植物は干渉作用に似たウイルス抵抗性を
示すようになることが知られている。例えば、タバコモ
ザイクウイルス(パウエルら、Science 232
:738−743、1986)、アルファルファモザイ
クウイルス(チューマーら、EMBO J 6:118
1−1188、 1987及びロッシュら、EMBO 
J 6:1845−1851、 1987) 、ポテト
ウイルスX(ヘメンウエイら、EMBO J 7:12
73−1280、 1988) 、ポテトウイルスY(
ローソンら、Bio/Technology 8:12
7−134、1990) 及びキュウリモザイクウイル
ス(クゾーら、Bio/Technology 6:5
49−558、 1988) に関して病徴軽減効果が
得られたと報告されている。
[0003] In recent years, with the development of genetic recombination techniques,
It has become possible to acquire a completely new type of virus resistance through transformation that introduces viral coat protein and satellite RNA genes. It has been known that if a plant is inoculated with a weakly pathogenic virus in advance, the plant will be protected from infection by the highly virulent virus even if it is later infected with a highly virulent strain of the same virus. This effect is thought to be due to the earlier virus preventing the shedding of the coat protein that protects the genes of the later virus. Therefore, if you extract the gene for the viral coat protein and introduce it into plants using the transformation method to create a plant that produces the viral coat protein, the plant will exhibit virus resistance similar to interference. It is known that this happens. For example, tobacco mosaic virus (Powell et al., Science 232
:738-743, 1986), alfalfa mosaic virus (Tumer et al., EMBO J 6:118)
1-1188, 1987 and Roche et al., EMBO
J 6:1845-1851, 1987), potato virus X (Hemenway et al., EMBO J 7:12
73-1280, 1988), potato virus Y (
Lawson et al., Bio/Technology 8:12
7-134, 1990) and cucumber mosaic virus (Kuzo et al., Bio/Technology 6:5
49-558, 1988) has been reported to be effective in alleviating disease symptoms.

【0004】キュウリモザイクウイルスはRNAウイル
スである。このウイルス粒子には通常4種類のRNA(
RNA1、RNA2、RNA3、RNA4)が含まれて
おり、RNA1及びRNA2はRNAウイルスの複製に
関する遺伝子を持っている。RNA3の5’側の遺伝子
はウイルスの細胞間移動に関与していると考えられてい
る。また、RNA4はRNA3の3’側の遺伝子と同一
のものでありウイルスの外被タンパクの遺伝子を持って
いる。ところが、キュウリモザイクウイルスの分離株の
中にはサテライトRNAと呼ばれる余分なRNAを含ん
でいるものがある。このサテライトRNAは330〜3
90bpから成る低分子RNAであり、RNA自身は増
殖能を持たず、その複製を親ウイルスに依存している。 このサテライトRNAの重要な特質は、罹病植物の病徴
を変化させることにある。つまり、キュウリモザイクウ
イルスとサテライトRNAが同時に宿主植物の細胞にお
いて増殖した場合、一般にウイルスの増殖及び集積が抑
制されウイルス感染植物の病徴がサテライトRNAを持
たないものと比べ軽減する場合が多い。そこでこのサテ
ライトRNAを適当な形質転換法を利用して植物に導入
し、植物で発現させることによりキュウリモザイクウイ
ルスの増殖並びに病徴の進展を抑制しようとする試みが
なされ、タバコにおいては病徴軽減効果があったことが
報告されている(ハリソンら、Nature 328:
799−802、 1987、アグリカルチュラル、ジ
ェネテックス、カンパニー、リミテッドJP−PAT 
64−27474) 。また、トマトにおいてもキュウ
リモザイクウイルスのサテライトRNA導入が試みられ
、サテライトRNAを導入したトマトも作出されたが、
通常のものより病徴が増幅され、実用的な抵抗性は得る
に至らなかった(マクガービーら、Biochemic
al and Biophysical Resear
ch Communications 170:548
−555、 1990 、トウシュら、C.R.Aca
d. Sci. Parist311、 Serie 
III:377−384、 1990) 。
[0004] Cucumber mosaic virus is an RNA virus. This virus particle usually contains four types of RNA (
RNA1, RNA2, RNA3, RNA4), and RNA1 and RNA2 have genes related to RNA virus replication. The gene on the 5' side of RNA3 is thought to be involved in the intercellular movement of the virus. Furthermore, RNA4 is the same as the 3' side gene of RNA3, and contains the virus coat protein gene. However, some isolates of cucumber mosaic virus contain extra RNA called satellite RNA. This satellite RNA is 330-3
It is a small RNA consisting of 90 bp, and the RNA itself does not have the ability to proliferate and relies on the parent virus for its replication. An important characteristic of this satellite RNA is that it changes the disease symptoms of diseased plants. That is, when cucumber mosaic virus and satellite RNA simultaneously proliferate in host plant cells, the proliferation and accumulation of the virus is generally suppressed, and the disease symptoms of virus-infected plants are often reduced compared to plants that do not have satellite RNA. Therefore, attempts were made to suppress the proliferation of cucumber mosaic virus and the development of disease symptoms by introducing this satellite RNA into plants using an appropriate transformation method and expressing it in the plants. It has been reported to be effective (Harrison et al., Nature 328:
799-802, 1987, Agricultural, Genetex, Company, Limited JP-PAT
64-27474). In addition, attempts were made to introduce the satellite RNA of cucumber mosaic virus into tomatoes, and tomatoes with satellite RNA introduced were also produced.
The disease symptoms were amplified compared to normal ones, and practical resistance was not achieved (McGarvey et al., Biochemical
al and Biophysical Research
ch Communications 170:548
-555, 1990, Touche et al., C. R. Aca
d. Sci. Paris311, Serie
III:377-384, 1990).

【0005】[0005]

【発明が解決しようとする課題】上述したようにキュウ
リモザイクウイルスのサテライトRNAをトマトに導入
して実用的に十分なレベルの抵抗性を示すトマトを作出
することには成功していない。本発明は、キュウリモザ
イクウイルス抵抗性に優れたトマト栽培種を提供するこ
とを目的とする。
[Problems to be Solved by the Invention] As mentioned above, it has not been possible to introduce the satellite RNA of cucumber mosaic virus into tomatoes to produce tomatoes that exhibit a practically sufficient level of resistance. An object of the present invention is to provide a tomato cultivar with excellent resistance to cucumber mosaic virus.

【0006】[0006]

【課題を解決するための手段】本願発明者らは、キュウ
リモザイクウイルスのサテライトRNAについて鋭意研
究した結果、トマトに対して黄変、病徴激化等の悪影響
がなく、極めて病徴抑制効果の高いキュウリモザイクウ
イルスのサテライトRNAを単離することに成功し、こ
のサテライトRNAをトマトに導入することによりキュ
ウリモザイクウイルスに対して抵抗性の高いトマトを作
出できることを見出し、この発明を完成した。すなわち
、本発明は、キュウリモザイクウイルスのサテライトR
NAのcDNAをを含むキュウリモザイクウイルス抵抗
性トマトを提供する。
[Means for Solving the Problems] As a result of intensive research on the satellite RNA of cucumber mosaic virus, the present inventors found that it has no adverse effects on tomatoes such as yellowing or intensification of disease symptoms, and has an extremely high effect of suppressing disease symptoms. They succeeded in isolating satellite RNA of cucumber mosaic virus, and discovered that by introducing this satellite RNA into tomatoes, tomatoes with high resistance to cucumber mosaic virus could be produced, and this invention was completed. That is, the present invention relates to cucumber mosaic virus satellite R.
A cucumber mosaic virus-resistant tomato containing a cDNA of NA is provided.

【0007】本発明において、トマトに導入するキュウ
リモザイクウイルスのサテライトRNAはトマト対して
病徴抑制効果が高く悪影響の少ないものを利用する必要
がある。本発明者らは軽微な病徴を示すキュウリモザイ
クウイルス罹病植物を採取し、これら植物体から4系統
のキュウリモザイクウイルスのサテライトRNAを単離
した。これらサテライトRNAはそれぞれS19−sa
tRNA、 T43−satRNA、 T62−sat
RNA、 T73−satRNAと命名された。これら
のキュウリモザイクウイルスのサテライトRNAをトマ
トに接種したところ、T73−satRNAは病徴軽減
効果に特に優れていることが判明した(マスタら、An
n. Phytopath. Soc. Japan 
56:207−212、 1990)。なお、T73−
satRNAの塩基配列は図2に示されており、上記4
系統のサテライトRNAの塩基配列も上記マスタらの文
献に記載されている。  もっとも、本発明において用
いられるキュウリモザイクウイルスのサテライトRNA
はこれらに限られるものではない。すなわち、タバコ等
のキュウリモザイクウイルスに感染して病徴を示す植物
にキュウリモザイクウイルスを感染させ、病徴が軽減さ
れたものからサテライトRNAを常法により抽出し、こ
れをトマトに感染させ、キュウリモザイクウイルスに対
して優れた抵抗性を与えるものを選択することにより、
本発明に用いるのに適当なサテライトRNAを得ること
が可能である。
[0007] In the present invention, it is necessary to use cucumber mosaic virus satellite RNA introduced into tomatoes that has a high effect of suppressing disease symptoms and has little adverse effects on tomatoes. The present inventors collected plants infected with cucumber mosaic virus showing slight disease symptoms, and isolated four strains of cucumber mosaic virus satellite RNA from these plants. These satellite RNAs are each S19-sa
tRNA, T43-satRNA, T62-sat
The RNA was named T73-satRNA. When tomatoes were inoculated with the satellite RNA of these cucumber mosaic viruses, T73-satRNA was found to be particularly effective in reducing disease symptoms (Masta et al., An.
n. Phytopath. Soc. Japan
56:207-212, 1990). In addition, T73-
The base sequence of satRNA is shown in FIG.
The base sequence of the satellite RNA of the strain is also described in the above-mentioned document by Master et al. However, the satellite RNA of cucumber mosaic virus used in the present invention
is not limited to these. That is, plants showing disease symptoms after being infected with cucumber mosaic virus, such as tobacco, are infected with cucumber mosaic virus, satellite RNA is extracted from plants with reduced disease symptoms by a conventional method, and this is used to infect tomatoes. By selecting those that provide excellent resistance to mosaic viruses,
It is possible to obtain satellite RNA suitable for use in the present invention.

【0008】次に、本発明のキュウリモザイクウイルス
抵抗性トマトを作出する工程を説明する。本発明におい
て、サテライトRNAを植物に導入し発現させるために
は、DNAである必要がある。そのため単離したサテラ
イトRNAはその全長を含むcDNAを合成プライマー
及び逆転写酵素を用いて常法によりクローニングを行な
うことができる。
Next, the process of producing cucumber mosaic virus-resistant tomatoes of the present invention will be explained. In the present invention, in order to introduce satellite RNA into a plant and express it, it needs to be DNA. Therefore, cDNA containing the entire length of the isolated satellite RNA can be cloned by a conventional method using synthetic primers and reverse transcriptase.

【0009】上記のようにして得られたサテライトRN
AのcDNAは形質転換法を用いてトマトに導入するこ
とができる。従来、トマトの形質転換は効率が低く、ま
た、品種によっては形質転換が著しく困難であった。本
願発明者は、極めて効率が高く、また、トマトに害を与
えない新規なトマト形質転換方法を開発し、特許出願し
た(特願平2−411681号)。キュウリモザイクウ
イルスは、この方法によりトマトに導入することができ
る。
Satellite RN obtained as above
A cDNA can be introduced into tomatoes using a transformation method. Conventionally, the efficiency of tomato transformation has been low, and depending on the variety, transformation has been extremely difficult. The present inventor has developed a novel tomato transformation method that is extremely efficient and does not cause any harm to tomatoes, and has filed a patent application (Japanese Patent Application No. 2-411681). Cucumber mosaic virus can be introduced into tomatoes by this method.

【0010】この方法では、Agrobacteriu
m tumefaciens のTiプラスミドpTi
Bo542のヴィルレンス領域由来のDNA領域を含む
プラスミド及びキュウリモザイクウイルスのサテライト
RNAのcDNAを導入したAgrobacteriu
m tumefaciens でトマトを形質転換する
。ここで、pTiBo542のヴィルレンス領域由来の
DNAは、virB、virG及びvirC遺伝子を含
むものであることが好ましい。このようなプラスミドの
好ましい具体例として、後述の実施例において詳述する
プラスミドpTOK162 を挙げることができる。キ
ュウリモザイクウイルスのサテライトRNAは、上記プ
ラスミドのT領域中に挿入する。この挿入は、制限酵素
を用いた常法により行うことも可能であるが、プラスミ
ドpTOK162 のように、大型で多数の制限酵素部
位を持つものは、通常のサブクローニングの手法では所
望のDNAをT領域内に導入することが必ずしも容易で
はないことがある。このような場合には、Agroba
cterium tumefaciens 細胞内のi
n vivo 系での相同組換え(ヘレラ−エステレラ
ら、EMBO J.2:987−995、1983年、
ホーチら、Science, 223:496−498
、 1984年)を利用することにより、目的のDNA
をpTOK162 に導入することが可能になる。すな
わち、例えば、先ず、pTOK162 をAgroba
cterium tumefaciens に導入して
おいて、この菌にさらにキュウリモザイクウイルスのサ
テライトRNAのcDNAを導入したpBR322と呼
ばれるプラスミド(類似のプラスミドを含む)を導入す
る。pTOK162 のDNAにはpBR322と相同
な部分があるので、pBR322誘導体は相同配列を介
した組み替えによりpTOK162 に組み込まれるこ
とになる。pBR322はpTOK162 と異なりA
grobacterium tumefaciens 
中では複製できないので、このような組み込まれた状態
(pTOK162::pBR322 と言う)でなけれ
ばAgrobacterium tumefacien
s 中で生存することができない。そして、pTOK1
62 とpBR322誘導体のそれぞれに特異的な特性
(薬剤耐性等)に基づいて選抜すれば、pTOK162
::pBR322 誘導体を有するAgrobacte
rium tumefaciens を得ることができ
る。次いで、このプラスミドを導入したAgrobac
terium tumefaciens とトマトの子
葉断片を液体倍地中で共存培養することによりcDNA
をトマトに導入することができる。子葉断片は洗浄後、
例えばプラスミドが薬剤耐性を有する場合、抗生物質を
含むトマト茎葉分化培地に着床させ、抗生物質に対して
耐性を示す茎葉を発根培地に着床させ、形質転換体を得
ることができる。 出現した形質転換体については、形態及び形質調査、サ
テライトRNAのcDNAの導入及びmRNA転写の確
認及びキュウリモザイクウイルスの接種を行うことによ
りキュウリモザイクウイルス抵抗性トマトを得ることが
できる。
[0010] In this method, Agrobacterium
Ti plasmid pTi of M. tumefaciens
Agrobacterium into which a plasmid containing a DNA region derived from the virulence region of Bo542 and cDNA of cucumber mosaic virus satellite RNA were introduced.
Transform tomatoes with M tumefaciens. Here, the DNA derived from the virulence region of pTiBo542 preferably contains virB, virG, and virC genes. A preferred example of such a plasmid is plasmid pTOK162, which will be described in detail in Examples below. The cucumber mosaic virus satellite RNA is inserted into the T region of the plasmid. This insertion can also be carried out by a conventional method using restriction enzymes, but in the case of a large plasmid with many restriction enzyme sites, such as the plasmid pTOK162, it is not possible to insert the desired DNA into the T region using the usual subcloning method. It may not always be easy to introduce it within the organization. In such cases, Agroba
cterium tumefaciens intracellular i
Homologous recombination in the n vivo system (Herrera-Esterera et al., EMBO J. 2:987-995, 1983;
Hoch et al., Science, 223:496-498
, 1984) to extract the desired DNA.
can be introduced into pTOK162. That is, for example, first, pTOK162 is
cterium tumefaciens, and a plasmid called pBR322 (containing similar plasmids) into which cDNA of cucumber mosaic virus satellite RNA is introduced. Since the DNA of pTOK162 has a portion homologous to pBR322, the pBR322 derivative will be integrated into pTOK162 by recombination via the homologous sequence. pBR322 differs from pTOK162 in that A
grobacterium tumefaciens
Agrobacterium tumefacien cannot be replicated in this state unless it is in this integrated state (called pTOK162::pBR322).
cannot survive in s. And pTOK1
pTOK162 and pBR322 derivatives can be selected based on their specific characteristics (drug resistance, etc.).
::Agrobacterium with pBR322 derivative
rium tumefaciens can be obtained. Next, Agrobac into which this plasmid was introduced
cDNA was obtained by co-cultivating Terium tumefaciens and tomato cotyledon fragments in liquid medium.
can be introduced to tomatoes. After washing the cotyledon fragments,
For example, if the plasmid has drug resistance, a transformant can be obtained by implanting the plasmid in a tomato foliage differentiation medium containing an antibiotic, and by implanting foliage showing resistance to the antibiotic in a rooting medium. For the transformants that have emerged, tomatoes resistant to cucumber mosaic virus can be obtained by examining their morphology and traits, introducing cDNA of satellite RNA, confirming mRNA transcription, and inoculating them with cucumber mosaic virus.

【0011】[0011]

【発明の効果】本発明により、キュウリモザイクウイル
スの感染による生育遅延、果実収量の低下等の被害を伴
わない事実上十分キュウリモザイクウイルスに対して抵
抗性のあるトマト及びその作出方法が提供された。本発
明のトマトは、キュウリモザイクウイルス通常系(O系
統)の感染によっても殆どが病徴を示さない抵抗性トマ
トである。
[Effects of the Invention] The present invention provides a tomato that is virtually fully resistant to cucumber mosaic virus and a method for producing the same, which does not cause damage such as delayed growth or reduced fruit yield due to infection with cucumber mosaic virus. . The tomato of the present invention is a resistant tomato that shows almost no disease symptoms even when infected with the cucumber mosaic virus normal strain (O strain).

【0012】0012

【実施例】以下、本発明を実施例により、さらに具体的
に説明するが、本発明の実施例はこれに限定されるもの
ではない。なお、以下の実施例において、特に断りがな
い限り、ティー・マニアティス(Molecular 
Cloning、 Cold Spring Harb
or(1982))記載の方法により行った。 (1) T73−satRNAの単離及びcDNAのク
ローニング栃木県下のタバコ産地を中心に種々のキュウ
リモザイクウイルスの採取を行い、4系統のキュウリモ
ザイクウイルスのサテライトRNAを単離した。これら
のサテライトRNAの4系統は、それぞれS19−sa
tRNA、 T43−satRNA、T62−satR
NA、T73−satRNAと命名した。これらのキュ
ウリモザイクウイルスのサテライトRNAをトマトに接
種したところT73−satRNAはトマトの病徴軽減
に特に優れていることが判明した(マスタら、上掲)。 次いで、T73−satRNAの全長を含むcDNAを
合成プライマーと逆転写酵素を用いてクローニングを行
った。この操作は具体的には次のように行った。T73
−satRNAの3’末端領域と相同な合成プローブを
プライマーとし、第一鎖のcDNA合成を行い、RNA
−DNA雑種分子を得た。この雑種分子をRNaseH
で処理した後、DNAの3’末端と相同な合成プローブ
をプライマーとして第2鎖のDNAを得た。このように
して得られた全長cDNAを、プラスミドpUC119
( 宝酒造株式会社製)のSmaI部位に導入し、pU
C119−73satを得た。
[Examples] The present invention will be explained in more detail with reference to Examples below, but the Examples of the present invention are not limited thereto. In the following examples, unless otherwise specified, T. maniatis (Molecular
Cloning, Cold Spring Harb
(1982)). (1) Isolation of T73-satRNA and cloning of cDNA Various cucumber mosaic viruses were collected mainly from tobacco-producing areas in Tochigi Prefecture, and satellite RNAs of four strains of cucumber mosaic viruses were isolated. These four satellite RNA lines are each S19-sa
tRNA, T43-satRNA, T62-satR
NA, named T73-satRNA. When these cucumber mosaic virus satellite RNAs were inoculated into tomatoes, it was found that T73-satRNA was particularly effective in alleviating disease symptoms in tomatoes (Masta et al., supra). Next, cDNA containing the full length of T73-satRNA was cloned using synthetic primers and reverse transcriptase. Specifically, this operation was performed as follows. T73
- Using a synthetic probe homologous to the 3' end region of satRNA as a primer, first strand cDNA synthesis is performed, and RNA
- A DNA hybrid molecule was obtained. This hybrid molecule was converted into RNaseH.
After treatment, a second strand of DNA was obtained using a synthetic probe homologous to the 3' end of the DNA as a primer. The full-length cDNA thus obtained was transformed into plasmid pUC119.
(manufactured by Takara Shuzo Co., Ltd.) into the SmaI site and pU
C119-73sat was obtained.

【0013】(2) プラスミドpTOK162 への
サテライトRNAの導入 (1) で得られたcDNAを植物発現用ベクターpL
GV2382に常法により組み込み、pLGV2382
−73satを得た。このベクターを制限酵素Hind
III 及びPvuII で切断し、Nos プロモー
タ、T73−SatRNAのcDNA及びNos ター
ミネーターを含むDNA断片を回収した。このDNA断
片を大腸菌DNAポリメレースIクレノー断片により平
滑末端とした。次に、トランスポゾンTn7 の制限酵
素ClaI断片2.5kb 由来のスペクチノマイシン
耐性遺伝子を含むpBR322を制限酵素ClaIで切
断した後、大腸菌DNAポリメレースIクレノー断片に
より平滑末端とし、先のDNA断片とT4ライゲースに
より連結を行ないT73−SatRNAのcDNA,ス
ペクチノマイシン耐性遺伝子を含むpYS134を得た
。このようにして得られたpYS134をカナマイシン
及びテトラサイクリン耐性を持つプラスミドpTOK1
62 (コマリ、Plant Cell Report
 9:303−306、 1990)を有するAgro
bacterium tumefaciens の菌種
LBA4404 (ホックマンら、Nature 30
3:179−180、 1983) に三系交配法(デ
ィッタら、Proc.Natl.Acad.Sci.U
SA 77:7347−73511980) により導
入した。次に、カナマイシン、スペクチノマイシン双方
に耐性を示すコロニーを選抜した。得られた耐性コロニ
ーは2種のプラスミドpYS134、 pTOK162
 の中の相同領域を介した組み換えによって出現したも
のである。 以上の結果、プラスミドpTOK162 にT73−s
atRNA遺伝子を組み込んだプラスミドを構築し、こ
れをpYS143と命名した。図1にプラスミドpYS
143の構築の図を示す。
(2) Introduction of satellite RNA into plasmid pTOK162 The cDNA obtained in (1) was transformed into a plant expression vector pL.
Incorporated into GV2382 by a conventional method, pLGV2382
-73 sat was obtained. This vector is digested with restriction enzyme Hind.
III and PvuII, and a DNA fragment containing the Nos promoter, T73-SatRNA cDNA, and Nos terminator was recovered. This DNA fragment was made blunt-ended with E. coli DNA polymerase I Klenow fragment. Next, pBR322 containing the spectinomycin resistance gene derived from the 2.5 kb restriction enzyme ClaI fragment of transposon Tn7 was digested with the restriction enzyme ClaI, blunt-ended with E. coli DNA polymerase I Klenow fragment, and the previous DNA fragment and T4 ligase were cut. After ligation, pYS134 containing the T73-SatRNA cDNA and the spectinomycin resistance gene was obtained. The thus obtained pYS134 was transformed into a plasmid pTOK1 with kanamycin and tetracycline resistance.
62 (Komali, Plant Cell Report
9:303-306, 1990)
bacterium tumefaciens strain LBA4404 (Hockman et al., Nature 30
3:179-180, 1983) using the three-line cross method (Ditta et al., Proc. Natl. Acad. Sci.
SA 77:7347-73511980). Next, colonies showing resistance to both kanamycin and spectinomycin were selected. The obtained resistant colonies contained two types of plasmids, pYS134 and pTOK162.
It emerged through recombination through homologous regions within. As a result, T73-s was added to plasmid pTOK162.
A plasmid incorporating the atRNA gene was constructed and named pYS143. Figure 1 shows plasmid pYS
A diagram of the construction of 143 is shown.

【0014】(3) トマトの形質転換(2) で得ら
れたLBA4404(pYS143) を用いてトマト
の形質転換を行なった。形質転換は、トマト品種桃太郎
(タキイ種苗株式会社)及びJTM−7(日本たばこ株
式会社、植物開発研究所で育成したもの)を使用した。 これらの種子をエチルアルコール及び次亜鉛素酸ナトリ
ウムにより滅菌した後、Linsmaier and 
Skoog(1965)の無機塩類、30g/l のシ
ュクロース及び寒天(0.9%) を含む培地に播種し
た。播種10日後、無菌的に発芽させたトマトの子葉を
0.7 ×0.7 cmの大きさに切断した。この子葉
の断片1g とAgrobacterium tume
faciens 約108 細胞とをLinsmaie
r and Skoog の無機塩類と30g /l 
のグルコースより成る液体培地中で40時間共存培養し
た。 そして、子葉断片を滅菌水で洗浄し、細菌を洗い落とし
た後、Linsmaier and Skoog の無
機塩類、インドール酢酸0.3mg/l 、イソペンテ
ニルアデニン10 mg/l 、カナマイシン100m
g/l 、セフォタキシム250mg/l 、グルコー
ス30g/l を含む寒天(0.9%) 培地に着床し
た。培養20日後、着床した子葉断片よりカナマイシン
耐性カルスが出現した。これらのカルスを上記培地上で
さらに15日間培養を行なった結果、カナマイシン耐性
を示す茎葉が出現した。これらの茎葉を切断し、Lin
smaier and Skoog の無機塩類、30
g/l のシュクロース及びセフォタキシム250mg
/l を含む寒天(0.9%) 培地に着床した。培養
30日後、発根した植物体を閉鎖型室温内で栽培した。 その結果、JTM−7について再分化植物4個体(Sa
t−71、Sat−72、Sat−73、Sat−74
)が得られ、桃太郎については再分化植物3個体(Sa
tm−11、 Satm−12、 Satm−13)が
得られた。
(3) Transformation of tomato Tomato was transformed using LBA4404 (pYS143) obtained in (2). For transformation, tomato cultivars Momotaro (Takii Seed Co., Ltd.) and JTM-7 (grown at Japan Tobacco Co., Ltd., Plant Development Research Institute) were used. After sterilizing these seeds with ethyl alcohol and sodium subzinc oxide, Linsmaier and
The cells were plated on a medium containing Skoog (1965) inorganic salts, 30 g/l sucrose and agar (0.9%). Ten days after sowing, the aseptically germinated tomato cotyledons were cut into pieces of 0.7 x 0.7 cm. 1g of this cotyledon fragment and Agrobacterium tume
Linsmaie with about 108 cells
r and Skoog inorganic salts and 30g/l
The cells were co-cultured for 40 hours in a liquid medium consisting of glucose. The cotyledon fragments were then washed with sterile water to remove bacteria, and then treated with Linsmaier and Skoog's inorganic salts, indoleacetic acid 0.3 mg/l, isopentenyl adenine 10 mg/l, kanamycin 100 m
g/l, 250 mg/l of cefotaxime, and 30 g/l of glucose. After 20 days of culture, kanamycin-resistant callus appeared from the implanted cotyledon fragments. These calli were cultured on the above medium for an additional 15 days, and as a result, stems and leaves showing kanamycin resistance appeared. Cut these stems and leaves, Lin
Inorganic salts of Smaier and Skoog, 30
g/l sucrose and cefotaxime 250 mg
The cells were implanted on an agar (0.9%) medium containing /l. After 30 days of culture, the rooted plants were cultivated in a closed room at room temperature. As a result, four regenerated plants (Sa
t-71, Sat-72, Sat-73, Sat-74
) were obtained, and for Momotaro, three regenerated plants (Sa
tm-11, Satm-12, Satm-13) were obtained.

【0015】(4) 再分化植物の形態(3) で得ら
れた再分化植物とその親品種JTM−7又は桃太郎との
比較調査を行なった。その結果、これらの形質転換体の
形態及び生育特性は親品種と変わらず、稔性も正常であ
り、果実の形成も親品種と同様正常であった。
(4) Morphology of regenerated plants A comparative investigation was conducted between the regenerated plants obtained in (3) and their parent varieties JTM-7 or Momotaro. As a result, the morphology and growth characteristics of these transformants were the same as those of the parent variety, the fertility was normal, and the fruit formation was also normal like the parent variety.

【0016】(5) サザン分析によるT73−sat
RNA遺伝子の導入の確認 再分化植物体のうち、Sat−71、 Sat−72、
 Satm−11、 Satm−12、 Satm−1
3 についてサザン分析によるT73−satRNA遺
伝子の導入の確認を行なった。まず、これら5個体の葉
からコマリらの方法(コマリら、Theor Appl
 Genet 77:547−552、 1989)に
従い、全DNAの抽出を行なった。得られた全DNAを
制限酵素Bam H1で切断し、アガロースゲル電気泳
動によりDNA断片の分離を行なった。次に、これらの
DNA断片をナイロン膜、ジーン  スクリーン  プ
ラス(ジュポン社製)に移行させ、プラスミドpUC1
19−73satのHind III、 EcoRI 
断片0.4kb をランダム・プライム法(ベーリンガ
ー、マンハイム社製)により32P標識したプローブを
用いてサザン分析を行なった。その結果を図3に示す。 サザン分析の結果、Sat−71、 Sat−72にお
いて5.8kb のバンドが検出され、これは導入され
たT73−satRNA遺伝子を含むBam H1断片
の大きさとほぼ一致した。また対照として用いたJTM
−7にはにこのようなバンドは検出されなかった。この
結果から、これら2個体にT73−SatRNAのcD
NAが組み込まれていることが明らかになった。一方、
桃太郎の形質転換体3個体についても同様に分析を行な
った結果、T73−SatRNAのcDNAの導入が確
認された。
(5) T73-sat by Southern analysis
Among the regenerated plants confirmed to have introduced the RNA gene, Sat-71, Sat-72,
Satm-11, Satm-12, Satm-1
3, the introduction of the T73-satRNA gene was confirmed by Southern analysis. First, from the leaves of these five individuals, the method of Komari et al. (Komali et al., Theor Appl.
Genet 77:547-552, 1989), total DNA was extracted. The obtained total DNA was digested with the restriction enzyme Bam H1, and DNA fragments were separated by agarose gel electrophoresis. Next, these DNA fragments were transferred to a nylon membrane, Gene Screen Plus (manufactured by Jupon), and the plasmid pUC1
19-73sat Hind III, EcoRI
Southern analysis was performed on the 0.4 kb fragment using a 32P-labeled probe using the random prime method (Boehringer, manufactured by Mannheim). The results are shown in FIG. As a result of Southern analysis, a 5.8 kb band was detected in Sat-71 and Sat-72, which approximately matched the size of the Bam H1 fragment containing the introduced T73-satRNA gene. Also used as a control was JTM.
No such band was detected for -7. From this result, we found that cD of T73-SatRNA was present in these two individuals.
It became clear that NA was incorporated. on the other hand,
A similar analysis was performed on three Momotaro transformants, and as a result, introduction of T73-SatRNA cDNA was confirmed.

【0017】(6) ノーザン分析によるT73−sa
tRNA遺伝子の転写の確認 再分化植物体Sat−71、 Sat−72についてノ
ーザン分析によるT73−satRNA遺伝子のmRN
A転写の確認を行なった。 先ず、これら2個体の葉より全RNAを抽出し、トーマ
スの方法(トーマス、Proc.Natl.Acad.
Sci.USA 77:5201−5205(1980
))に従いグリオキサルとジメチルスルホキサイドでR
NAを変性させた後、アガロースゲル電気泳動により分
離した。次に、これらRNAをナイロン膜、ジーンスク
リーンプラス(ジュポン社製)に移行させ、サザン分析
と同様の0.4kb のDNA断片をプローブに用いて
ノーザン分析を行なった。その結果を図4に示す。ノー
ザン分析の結果、Sat−71、 Sat−72におい
て1.3kbのmRNAの転写が認められた。これは予
測されるT73−satRNA遺伝子から転写されるm
RNAの大きさと一致するものである。また、対照とし
て用いたJTM−7にはこのようなmRNAの転写は認
められなかった。この結果はこれら2個体においてT7
3−SatRNA遺伝子のmRNAが転写されているこ
とを示している。再分化植物体Satm−11、 Sa
tm−12、 Satm−13 についても同様に分析
した結果、T73−satRNA遺伝子のmRNAの転
写が確認された。
(6) T73-sa by Northern analysis
Confirmation of transcription of tRNA gene mRNA of T73-satRNA gene by Northern analysis of redifferentiated plants Sat-71 and Sat-72
A transcription was confirmed. First, total RNA was extracted from the leaves of these two individuals using the Thomas method (Thomas, Proc. Natl. Acad.
Sci. USA 77:5201-5205 (1980
)) with glyoxal and dimethyl sulfoxide.
After NA was denatured, it was separated by agarose gel electrophoresis. Next, these RNAs were transferred to a nylon membrane and GeneScreen Plus (manufactured by Jupon), and Northern analysis was performed using the same 0.4 kb DNA fragment as in Southern analysis as a probe. The results are shown in FIG. As a result of Northern analysis, transcription of 1.3 kb mRNA was observed in Sat-71 and Sat-72. This is the m transcribed from the predicted T73-satRNA gene.
The size corresponds to that of RNA. Further, such transcription of mRNA was not observed in JTM-7 used as a control. This result shows that T7 in these two individuals
3-SatRNA gene mRNA is transcribed. Regenerated plant Satm-11, Sa
Similar analysis of tm-12 and Satm-13 confirmed transcription of T73-satRNA gene mRNA.

【0018】(7) キュウリモザイクウイルスの人工
接種による病徴の発現 T73−satRNAのcDNAの導入及びmRNAの
転写が認められた形質転換体Sat−71、 Sat−
72についてキュウリモザイクウイルス普通系(O系統
)の接種を行なった。対照として親品種であるJTM−
7を用いた。その結果、キュウリモザイクウイルスO系
統を接種したSat−71、Sat−72 は僅かなが
らモザイク様の病徴を示したが、形態及び生育状態は、
キュウリモザイクウイルスO系統の接種を行なっていな
い対照のJTM−7と何ら変わりはなかった。また、対
照のJTM−7と同様に正常に果実の形成が認められた
。一方、キュウリモザイクウイルスO系統の接種を行な
ったJTM−7は生育も極度に遅れ、果実も形成されな
かった。以上の結果より、T73−satRNAの発現
が確認された個体は普通系キュウリモザイクウイルスが
感染しても病徴発現が極めて軽微であることが明らかに
なった。次に、キュウリモザイクウイルスO系統の接種
を行なったSat−71、 Sat−72より抽出した
RNAをアガロースゲル電気泳動により分析した。その
結果を図5に示す。キュウリモザイクウイルスO系統の
RNAのほか、T73−satRNAが増殖しているこ
とが確認された。一方、対照として用いたキュウリモザ
イクウイルスO系統の接種を行なったJTM−7におい
てはT73−satRNAは認められなかった。この結
果から、ここで認められたT73−satRNAの増殖
が病徴軽減効果をもたらしていると考えられる。形質転
換体Satm−11、 Satm−12、 Satm−
13 についても同様にキュウリモザイクウイルスO系
統の接種を行なったところ病徴は殆ど現われず、これら
の形質転換体でT73−satRNAの増殖が認められ
た。以上の結果から、T73−satRNAのcDNA
を導入したトマトは、キュウリモザイクウイルスに感染
しても極めて軽微な病徴を示すのみで、事実上抵抗性を
持つことが明らかとなった。従って、本発明により現在
まで得ることのできなかったキュウリモザイクウイルス
抵抗性トマトを作出することが可能となった。
(7) Expression of disease symptoms by artificial inoculation with cucumber mosaic virus Transformants Sat-71 and Sat- in which introduction of T73-satRNA cDNA and transcription of mRNA were observed
72 were inoculated with cucumber mosaic virus common strain (O strain). As a control, the parent variety JTM-
7 was used. As a result, Sat-71 and Sat-72 inoculated with cucumber mosaic virus O strain showed slight mosaic-like disease symptoms, but the morphology and growth condition were
There was no difference from the control JTM-7 which was not inoculated with cucumber mosaic virus O strain. In addition, normal fruit formation was observed as in the control JTM-7. On the other hand, JTM-7 inoculated with cucumber mosaic virus O strain had extremely delayed growth and did not form any fruit. From the above results, it was revealed that individuals in which expression of T73-satRNA was confirmed showed very slight disease symptoms even if infected with the common cucumber mosaic virus. Next, RNA extracted from Sat-71 and Sat-72 inoculated with cucumber mosaic virus O strain was analyzed by agarose gel electrophoresis. The results are shown in FIG. In addition to RNA of cucumber mosaic virus O strain, it was confirmed that T73-satRNA was proliferating. On the other hand, T73-satRNA was not observed in JTM-7, which was used as a control and inoculated with cucumber mosaic virus O strain. From this result, it is considered that the proliferation of T73-satRNA observed here brings about the effect of alleviating disease symptoms. Transformants Satm-11, Satm-12, Satm-
13 was similarly inoculated with cucumber mosaic virus O strain, but almost no disease symptoms appeared, and proliferation of T73-satRNA was observed in these transformants. From the above results, the cDNA of T73-satRNA
It has become clear that tomatoes introduced with Cucumber Mosaic Virus show only very slight disease symptoms even when infected, and are effectively resistant to the virus. Therefore, the present invention has made it possible to produce tomatoes resistant to cucumber mosaic virus, which has not been possible until now.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】プラスミドpYS143の構築を示す図。FIG. 1: Diagram showing the construction of plasmid pYS143.

【図2】T73−satRNAの全塩基配列を示す図。FIG. 2 is a diagram showing the entire base sequence of T73-satRNA.

【図3】形質転換体Sat−71、Sat−72 を用
いたサザン分析の結果を示す図。
FIG. 3 is a diagram showing the results of Southern analysis using transformants Sat-71 and Sat-72.

【図4】形質転換体Sat−71、Sat−72 を用
いたノーザン分析の結果を示す図。
FIG. 4 is a diagram showing the results of Northern analysis using transformants Sat-71 and Sat-72.

【図5】CMV接種形質転換体Sat−71のRNAの
アガロースゲル電気泳動の結果を示す図。
FIG. 5 is a diagram showing the results of agarose gel electrophoresis of RNA of CMV-inoculated transformant Sat-71.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】  キュウリモザイクウイルスのサテライ
トRNAのcDNAをを含むキュウリモザイクウイルス
抵抗性トマト。
1. A cucumber mosaic virus-resistant tomato comprising a cDNA of a satellite RNA of cucumber mosaic virus.
【請求項2】  前記cDNAがキュウリモザイクウイ
ルスのT73−satRNAのcDNAである請求項1
記載のキュウリモザイクウイルス抵抗性トマト。
2. Claim 1, wherein the cDNA is T73-satRNA cDNA of cucumber mosaic virus.
The described cucumber mosaic virus resistant tomato.
【請求項3】  Agrobacterium tum
efaciens のTiプラスミドpTiBo542
のヴィルレンス領域由来のDNA領域を含むプラスミド
及びキュウリモザイクウイルスのサテライトRNAのc
DNAを導入したAgrobacterium tum
efaciens でトマトを形質転換することから成
るトマトの形質転換方法。
[Claim 3] Agrobacterium tum
efaciens Ti plasmid pTiBo542
A plasmid containing a DNA region derived from the virulence region of C. and a satellite RNA of cucumber mosaic virus.
Agrobacterium tum introduced with DNA
A method for tomato transformation comprising transforming tomatoes with P. efaciens.
【請求項4】  前記pTiBo542のヴィルレンス
領域由来のDNAは、virB、virG及びvirC
遺伝子を含む請求項3記載の方法。
4. The DNA derived from the virulence region of pTiBo542 contains virB, virG, and virC.
4. The method according to claim 3, comprising a gene.
【請求項5】  前記TiプラスミドpTiBo542
のヴィルレンス領域由来のDNAを含有するプラスミド
はプラスミドpTOK162 である請求項3記載の方
法。
5. The Ti plasmid pTiBo542
4. The method according to claim 3, wherein the plasmid containing DNA derived from the virulence region of is plasmid pTOK162.
JP3081544A 1991-03-20 1991-03-20 Cucumber mosaic virus resistant tomato and method for preparing the same Pending JPH04330234A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP3081544A JPH04330234A (en) 1991-03-20 1991-03-20 Cucumber mosaic virus resistant tomato and method for preparing the same
EP19920104774 EP0504869A3 (en) 1991-03-20 1992-03-19 Tomato resistant to cucumber mosaic virus and method for transforming tomato

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3081544A JPH04330234A (en) 1991-03-20 1991-03-20 Cucumber mosaic virus resistant tomato and method for preparing the same

Publications (1)

Publication Number Publication Date
JPH04330234A true JPH04330234A (en) 1992-11-18

Family

ID=13749238

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3081544A Pending JPH04330234A (en) 1991-03-20 1991-03-20 Cucumber mosaic virus resistant tomato and method for preparing the same

Country Status (2)

Country Link
EP (1) EP0504869A3 (en)
JP (1) JPH04330234A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019151417A1 (en) * 2018-02-02 2019-08-08 キッコーマン株式会社 Virus-resistant plant and method for production thereof

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ATE207957T1 (en) * 1992-02-19 2001-11-15 Oregon State PRODUCTION OF VIRUS-RESISTANT PLANTS BY INTRODUCING NON-TRANSLATIBLE VIRAL PLUS STRAND RNA
EP0604662B1 (en) 1992-07-07 2008-06-18 Japan Tobacco Inc. Method of transforming monocotyledon
US7060876B2 (en) 1992-07-07 2006-06-13 Japan Tobacco Inc. Method for transforming monocotyledons
US5747327A (en) * 1993-09-30 1998-05-05 Japan Tobacco Inc. Phospholipase D gene originated from plant
CA2155570C (en) * 1993-12-08 2007-06-26 Toshihiko Komari Method for transforming plant and vector therefor
JPH10117776A (en) 1996-10-22 1998-05-12 Japan Tobacco Inc Transformation of indica rice
IL132580A0 (en) 1997-08-12 2001-03-19 Univ North Carolina State Genetically engineered duckweed
WO2002012521A1 (en) 1999-06-04 2002-02-14 Japan Tobacco Inc. Method of improving gene transfer efficiency into plant cells
KR100807434B1 (en) 2000-08-03 2008-02-25 니뽄 다바코 산교 가부시키가이샤 Method of improving gene transfer efficiency into plant cells
AU8980001A (en) 2000-08-11 2002-02-25 Syngenta Participations Ag Methods for stable transformation of plants
EP1279737A1 (en) 2001-07-27 2003-01-29 Coöperatieve Verkoop- en Productievereniging, van Aardappelmeel en Derivaten AVEBE B.A. Transformation method for obtaining marker-free plants
KR101154142B1 (en) 2008-09-08 2012-06-14 재단법인서울대학교산학협력재단 The mixture composition comprising agrobacterium tumefaciens species capable of reconstituting infection activity of cucumber mosaic virus in plant
US9896695B2 (en) 2012-02-02 2018-02-20 Consejo Nacional De Investigaciones Cientificas Y Tecnicas (Conicet) HAHB11 provides improved plant yield and tolerance to abiotic stress
WO2013136274A1 (en) 2012-03-13 2013-09-19 University Of Guelph Myb55 promoter and use thereof
HUP1400495A2 (en) 2012-03-13 2015-03-02 Univ Guelph Guelph Ontario Methods of increasing tolerance to heat stress and amino acid content of plants
CN105200080B (en) * 2015-09-24 2018-09-18 江苏农林职业技术学院 A kind of efficient fast and stable gene transformation method of tomato
AU2016350610A1 (en) 2015-11-06 2018-04-12 Pioneer Hi-Bred International, Inc. Methods and compositions of improved plant transformation
CN107860774B (en) * 2017-11-10 2020-01-07 青岛市农业科学研究院 Screening method of sensitive genotype of agrobacterium tumefaciens of cucumber

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019151417A1 (en) * 2018-02-02 2019-08-08 キッコーマン株式会社 Virus-resistant plant and method for production thereof
US11814639B2 (en) 2018-02-02 2023-11-14 Kikkoman Corporation Virus-resistant plant and method for producing the same

Also Published As

Publication number Publication date
EP0504869A3 (en) 1992-11-19
EP0504869A2 (en) 1992-09-23

Similar Documents

Publication Publication Date Title
JPH04330234A (en) Cucumber mosaic virus resistant tomato and method for preparing the same
Daubert et al. Expression of disease symptoms in cauliflower mosaic virus genomic hybrids.
US5773700A (en) Constructs containing impatiens necrotic spot tospovirus RNA and methods of use thereof
JPS61502725A (en) Method for producing whole plants containing foreign DNA
WO2019196576A1 (en) Method using plant hybrid vigor
EP0479180A2 (en) Virus resistant plants, method for their production
Sohrab et al. Characterization of Tomato Leaf Curl New Delhi Virus infecting cucurbits: Evidence for sap transmission in a host specific manner
de la Torre et al. Transformation of Mecardonia (Plantaginaceae) with wild-type Agrobacterium rhizogenes efficiently improves compact growth, branching and flower related ornamental traits
US20060212973A1 (en) Agrobacterium-mediated transformation of turfgrass
HU219059B (en) Genes being resistant against viruses and herbicides, method for their production and application
JPH04222527A (en) Transformation of tomato
CN116694652B (en) Verticillium dahliae VdNRPS4 gene antipathogenic target gene fragment, interference vector and application
KR100804766B1 (en) Transgenic hot pepper tolerant to cmv pathotype
CN110904145A (en) Method for cultivating tomato resisting TYLCV virus, vector and application thereof
WO1997017429A1 (en) Method for the commercial production of transgenic plants
US6087162A (en) Transgenic plants resistant to geminivirus infection
KR100737670B1 (en) Sweetpotato expansin cdna and high-yield transgenic plants using the same
EP1100876B1 (en) Agrobacterium-mediated transformation of turfgrass
Slightom et al. Field testing of cucumber plants which express the CMV coat protein gene: field plot design to test natural infection pressures
Yeh et al. I. 4 Papaya
Bijelović et al. In vitro regeneration and transformation of Blackstonia perfoliata
WO2019151417A1 (en) Virus-resistant plant and method for production thereof
WO2005086993A1 (en) Method for preparing transgenic pepper using callus induction
CN116445540B (en) Construction method of sweet potato leaf curl virus infectious clone and efficient and simple sweet potato infection method
CN114934064B (en) RNA2 mutant plasmid of 6 cucumber mosaic viruses capable of resisting four plant viruses and application thereof