JPH0433003B2 - - Google Patents

Info

Publication number
JPH0433003B2
JPH0433003B2 JP59119743A JP11974384A JPH0433003B2 JP H0433003 B2 JPH0433003 B2 JP H0433003B2 JP 59119743 A JP59119743 A JP 59119743A JP 11974384 A JP11974384 A JP 11974384A JP H0433003 B2 JPH0433003 B2 JP H0433003B2
Authority
JP
Japan
Prior art keywords
core
core fiber
lattice
rectangular
fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59119743A
Other languages
Japanese (ja)
Other versions
JPS60263905A (en
Inventor
Yasuji Hatsutori
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP59119743A priority Critical patent/JPS60263905A/en
Publication of JPS60263905A publication Critical patent/JPS60263905A/en
Publication of JPH0433003B2 publication Critical patent/JPH0433003B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/02042Multicore optical fibres

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Endoscopes (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)

Description

【発明の詳細な説明】 〈技術分野〉 本発明は被検体の表面に周期的模様を有する被
検体を観測するための画素の配列が周期構造を有
するマルチコアフアイバを用いた微少変位計に係
る。
DETAILED DESCRIPTION OF THE INVENTION <Technical Field> The present invention relates to a minute displacement meter using a multi-core fiber having a periodic pixel arrangement for observing a subject having a periodic pattern on its surface.

〈従来技術〉 医療用内視鏡や工業用フアイバスコープには対
物端と接眼端において個々に定められた相対的位
置関係を保つた多数本の光フアイバ束から形成さ
れたマルチコアフアイバが使用されている。かか
るマルチコアフアイバには、対物端と接眼端の両
端においてのみ画素線が1対1の決められた相対
的位置関係にあるものと、多数本の画素線がマル
チコアフアイバ全域にわたつて溶融一体化された
ものが知られている。前者は通常積層法とよば
れ、多成分系フアイバを用いたマルチコアフアイ
バの製法が知られている。後者はマルチ法とよば
れ、石英系マルチコアフアイバの製法として知ら
れる。このようなマルチコアフアイバはいずれも
画素フアイバの配列が六方最密に充填され、規則
的に配列されている。このようなマルチコアフア
イバで周期的模様がある測定対象物を観測する
と、測定対象物の濃淡の規則性によつて、マルチ
コアフアイバの観測像にモアレ縞が観測されるこ
とが知られている。
<Prior art> Medical endoscopes and industrial fiberscopes use multi-core fibers formed from a bundle of multiple optical fibers that maintain individually determined relative positional relationships at the objective end and eyepiece end. There is. Such multi-core fibers include those in which pixel lines are in a fixed one-to-one relative positional relationship only at both ends of the object end and eyepiece end, and those in which a large number of pixel lines are fused and integrated over the entire area of the multi-core fiber. things are known. The former method is usually called a lamination method, and a method for manufacturing multi-core fibers using multi-component fibers is known. The latter is called the multi-method and is known as a method for producing quartz-based multi-core fibers. In all of these multi-core fibers, the pixel fibers are packed in a hexagonal close-packed arrangement and are regularly arranged. It is known that when a measurement object with a periodic pattern is observed using such a multi-core fiber, moiré fringes are observed in the observed image of the multi-core fiber due to the regularity of the shading of the measurement object.

これはマルチコアフアイバの個々の画素の配列
は六方最密充填のように規則性を有しているた
め、測定対象物のマルチコアフアイバ入射端面に
おける像の濃淡の規則性がマルチコアフアイバの
個々の画素配列の規則性に近づくとモアレ縞を生
じるためである。このようなモアレ縞を除く方法
として、画素フアイバのコア径をランダム化する
ことにより画素配列の規則性をなくしたマルチコ
アフアイバが知られている。
This is because the arrangement of the individual pixels of the multi-core fiber has a regularity like hexagonal close-packing, so the regularity of the shading of the image at the input end face of the multi-core fiber of the object to be measured is the same as the arrangement of the individual pixels of the multi-core fiber. This is because when the regularity approaches , moiré fringes occur. As a method for removing such moire fringes, a multi-core fiber is known in which the regularity of the pixel arrangement is eliminated by randomizing the core diameter of the pixel fiber.

ところでモアレ縞は一般に、物体の微少な回転
変位等を拡大して計測する手段として良く知られ
ている。第1図で1,2はそれぞれ等しい周期
2ωをもつ矩形格子であり、角度θ傾いて重ね合
わされるときモアレ縞が観測される。
By the way, moiré fringes are generally well known as a means of magnifying and measuring minute rotational displacements of objects. In Figure 1, 1 and 2 are equal periods.
It is a rectangular lattice with 2ω, and moiré fringes are observed when they are overlapped at an angle of θ.

モアレ縞の間隔をWとすると W=ω/2sin(θ/2) …(1) 矩形格子2が格子線に垂直な方向にωだけ変位し
たとすると、モアレ縞はW移動する。即ち矩形格
子2の変位量は1/{2sin(θ/2)}倍に拡大さ
れて観測される。従つて通常のマルチコアフアイ
バでも画素配列の規則性を利用して、測定対象物
に矩形格子を貼付し、これとマルチコアフアイバ
の画素配列の規則性からモアレ縞を作り、測定対
象物の変位に基づくモアレ縞の変化量から測定対
象物の変位を測定することが考えられる。
Assuming that the interval between the moire fringes is W, W=ω/2 sin (θ/2) (1) If the rectangular grating 2 is displaced by ω in the direction perpendicular to the grating lines, the moire fringes move by W. That is, the amount of displacement of the rectangular grid 2 is magnified by 1/{2sin(θ/2)} times and observed. Therefore, even with ordinary multi-core fibers, a rectangular grid is attached to the object to be measured by utilizing the regularity of the pixel arrangement, and moiré fringes are created from this and the regularity of the pixel arrangement of the multi-core fiber, and moiré fringes are created based on the displacement of the object to be measured. It is conceivable to measure the displacement of the object to be measured from the amount of change in moiré fringes.

しかし通常のマルチコアフアイバの画素フアイ
バの配列は六方最密充填構造をしているので、画
素配列は相互に60゜の傾きをもち三方向に規則性
を有しているため、第1図に示すような一方向に
規則性を有する矩形格子の場合に比較して、観測
されるモアレ縞は複雑となり、測定対象物の微少
な変位を検出するのに不具合いがあつた。
However, since the pixel fiber arrangement of a normal multi-core fiber has a hexagonal close-packed structure, the pixel arrangement has a mutual inclination of 60 degrees and regularity in three directions, as shown in Figure 1. Compared to the case of such a rectangular grid having regularity in one direction, the observed moiré fringes are more complex, making it difficult to detect minute displacements of the object to be measured.

〈発明の目的〉 本発明は測定対象に矩形格子を貼付し、測定対
象の変位を測定できる周期構造をもつたマルチコ
アフアイバによつて測定対象物の微少変位を測定
対象物から遠く隔つた所で計測できる微少変位計
を提供することを目的とする。
<Purpose of the Invention> The present invention involves attaching a rectangular grid to a measurement target and measuring minute displacements of the measurement target at a location far away from the measurement target using a multi-core fiber with a periodic structure that can measure the displacement of the measurement target. The purpose is to provide a minute displacement meter that can perform measurements.

〈問題点解決の具体的手段〉 かかる目的を達成した微少変位計の構成は、矩
形格子を貼有した測定対象物と、所定の列間隔
P1の互いに平行した多数の列上を、上記列間隔
P1より小さい間隔P2で互いに隣接して配置され
たコアからなるマルチコアフアイバと、上記測定
対象物上の矩形格子の像を、上記マルチコアフア
イバ端面に、マルチコアフアイバのコア列間隔
P1と上記矩形格子の格子縞の周期に等しくかつ
矩形格子の格子線とコア列とが角度θで傾くよう
に結像せしめる結像レンズと、上記マルチコアフ
アイバの他端に設けられた撮像管と、該撮像管に
よつて電気信号に変換された画像信号を映す
CRTモニターからなることを特徴ととするもの
である。
<Specific means for solving the problem> The configuration of the minute displacement meter that achieves this purpose is as follows:
P 1 on many mutually parallel rows with the above row spacing.
A multi-core fiber consisting of cores arranged adjacent to each other with an interval P 2 smaller than P 1 and an image of the rectangular lattice on the object to be measured are placed on the end face of the multi-core fiber, and the core row spacing of the multi-core fiber is
P 1 and an imaging lens that forms an image such that the period is equal to the period of the lattice stripes of the rectangular lattice and that the lattice lines of the rectangular lattice and the core row are inclined at an angle θ; and an imaging tube provided at the other end of the multi-core fiber; , displays the image signal converted into an electrical signal by the image pickup tube.
It is characterized by consisting of a CRT monitor.

〈実施例〉 本発明に用いる周期構造をもつたマルチコアフ
アイバの一実施例を図面を参照して説明する。
<Example> An example of a multi-core fiber with a periodic structure used in the present invention will be described with reference to the drawings.

第2図は周期構造をもつマルチコアフアイバの
断面図である。第2図において、3−1,3−
2,…3−23はコア、4はコアの周囲に介在す
るクラツド、コアガラスの屈折率はクラツドガラ
スのそれより大きく所望の光伝搬特性を得る値に
選定される。1例としてコアはゲルマニウム添加
石英、クラツドは純石英でである。第2図に示す
ように本発明に用いる周期構造をもつマルチコア
フアイバでは、列間隔P1で列を形成するコア3
−1,3−2,…3−10;3−11,3−12
…3−20;…が配列されている。また各コア列
内ではコアの中心間隔はP2で配列されておりP1
>P2の如く選定される。コア3−1,3−2,
…3−10は全体として見れば第1図に示すよう
な矩形格子を形成している。即ち、コア列3−
1,3−2,…3−10は全体として一つの開口
部を形成しており、コア列3−11,3−12,
…3−20は他の開口部を形成しており、以下に
ついても同様であり全体としてマルチコアフアイ
バ断面に矩形格子を形成するコア列が多数配列さ
れたことになる。そしてこれらの開口部を形成す
るコア列は列間隔P1で配列されている。他方各
開口部を形成するコア列の中では、互いに隣接す
るコアの中心間隔は列間隔P1より小さいコア間
隔P2で配列されている。これはあとで述べるよ
うに列間隔P1に対応して格子縞を用いて測定対
象物との間でモアレ縞を発生させたとき、各々の
コア列の中に含まれるコア間隔P2でモアレ縞が
発生しないようにするためである。第2図に示す
本発明に用いる周期構造をもつマルチコアフアイ
バは概念的な図で、格子を形成するコア列の数及
び列内のコア数は実際のものよりはるかに少ない
本数で示してある。
FIG. 2 is a cross-sectional view of a multi-core fiber with a periodic structure. In Figure 2, 3-1, 3-
2, . . . 3-23 is a core, and 4 is a cladding placed around the core. The refractive index of the core glass is selected to be larger than that of the cladding glass to obtain desired light propagation characteristics. As an example, the core is made of germanium-doped quartz and the cladding is made of pure quartz. As shown in FIG. 2, in the multi-core fiber with a periodic structure used in the present invention, three cores form a row with a row spacing of P 1 .
-1,3-2,...3-10;3-11,3-12
...3-20;... are arranged. In addition, within each core row, the center spacing of the cores is arranged at P 2 , and P 1
>Selected as shown in P 2 . Core 3-1, 3-2,
...3-10 forms a rectangular lattice as shown in FIG. 1 when viewed as a whole. That is, core row 3-
1, 3-2, ... 3-10 form one opening as a whole, and core rows 3-11, 3-12,
...3-20 forms another opening, and the same applies to the following, and as a whole, a large number of core rows forming a rectangular lattice in the cross section of the multi-core fiber are arranged. The core rows forming these openings are arranged at a row interval of P1 . On the other hand, in the core rows forming each opening, the cores adjacent to each other are arranged at a core spacing P2 smaller than the row spacing P1 . As will be described later, when moire fringes are generated between the measurement target using lattice stripes corresponding to the row spacing P 1 , the moire fringes will be generated at the core spacing P 2 included in each core row. This is to prevent this from occurring. The multi-core fiber with a periodic structure used in the present invention shown in FIG. 2 is a conceptual diagram, and the number of core rows forming a lattice and the number of cores within a row are shown to be much smaller than the actual number.

本発明に用いる周期構造をもつたマルチコアフ
アイバを作成するには、第3図に示すように、ジ
ヤケツト管にVAD法で形成したゲルマニウムド
ープ石英のコアと純石英のクラツドからなる光フ
アイバプリフオームの配列間に純石英のスペーサ
を介在させてマルチコアフアイバの母材を作る。
次に、かかるマルチコアフアイバ母材の下端から
溶融紡糸して所望の径のマルチコアフアイバに形
成する。第3図において6−1,6−2,6−3
…はVAD法で形成したゲルマニウムドープ石英
のコアと純石英のクラツドからなる光フアイバプ
リフオーム、5−1,5−2…は純石英のスペー
サ、このスペーサ5−1,5−2…はマルチコア
フアイバの矩形格子を形成するコア配列の列間隔
P1を与えるためのものである。7−1,7−2
…は純石英棒のうめくさ、8はガラスのジヤケツ
ト管である。
To create a multi-core fiber with a periodic structure used in the present invention, as shown in Figure 3, an optical fiber preform consisting of a germanium-doped quartz core and a pure quartz cladding is formed in a jacket tube by the VAD method. A pure quartz spacer is interposed between the arrays to form a multi-core fiber base material.
Next, the multi-core fiber preform is melt-spun from the lower end to form a multi-core fiber of a desired diameter. 6-1, 6-2, 6-3 in Figure 3
... is an optical fiber preform consisting of a germanium-doped quartz core and a pure quartz cladding formed by the VAD method, 5-1, 5-2... are pure quartz spacers, and these spacers 5-1, 5-2... are multi-core. Column spacing of core arrays forming a rectangular lattice of fibers
It is meant to give P 1 . 7-1, 7-2
... is a groaning pure quartz rod, and 8 is a glass jacket tube.

本発明に用いる周期構造をもつたマルチコアフ
アイバを形成するマルチコアフアイバ母材の具体
的な実施例を以下に示す。第3図に示すジヤケツ
ト管8としては内径90mm、外径100mm、長さ150mm
の下端が閉じた石英パイプを用いた。画素を形成
する光フアイバプリフオーム(コア/クラツド比
0.5)をコーテイングせずに2mmφに紡糸し、単
長100mmになるように切断し、第3図に示すよう
にスペーサ5−−1,5−2,…の間に、1列毎
に30本コアを15列配列した。スペーサ5−1,5
−2…は60mm×10mm×2mmの板状純石英を準備
し、光フアイバプリフオーム6−1,6−2,…
の列の間に挿入した。光フアイバプリフオーム6
−1,6−2,…とスペーサ5−1,5−2…と
ジヤケツト管8の間〓には純石英ロツドを0.5mm
φに紡糸し、長さ100mmに切断し、これらの間〓
に充填した。しかる後ジヤケツト管8の内圧を減
圧して、環状加熱炉で全体を溶融一体化し、充実
棒状のマルチコアフアイバ母材を形成し、紡糸装
置で外径が1mmφとなるように線引した。強度を
保つため、シリコン及び塩化ビニル樹脂の被覆を
紡糸直後に施した。このようにして各列毎に30
本、15列の矩形格子のコア列をもつ第2図に示す
ようなマルチコアフアイバを得た。このマルチコ
アフアイバのコア列間隔P1は約40μm、コア間隔
P2は約20μmであつた。
Specific examples of the multi-core fiber base material forming the multi-core fiber with a periodic structure used in the present invention are shown below. The jacket tube 8 shown in Figure 3 has an inner diameter of 90 mm, an outer diameter of 100 mm, and a length of 150 mm.
A quartz pipe with a closed bottom end was used. Optical fiber preform that forms pixels (core/cladding ratio)
0.5) is spun to 2 mmφ without coating, cut to have a single length of 100 mm, and as shown in Figure 3, 30 fibers are placed in each row between spacers 5-1, 5-2,... The cores were arranged in 15 rows. Spacer 5-1, 5
-2... prepares a plate-shaped pure quartz of 60 mm x 10 mm x 2 mm, and optical fiber preforms 6-1, 6-2,...
inserted between the columns. Optical fiber preform 6
-1, 6-2, ..., spacers 5-1, 5-2, ... and the jacket tube 8, place a 0.5mm pure quartz rod between them.
Spun into φ, cut into lengths of 100 mm, and between these
was filled. Thereafter, the internal pressure of the jacket tube 8 was reduced, and the whole was melted and integrated in an annular heating furnace to form a solid rod-shaped multi-core fiber preform, which was drawn using a spinning device to have an outer diameter of 1 mmφ. To maintain strength, a coating of silicone and vinyl chloride resin was applied immediately after spinning. 30 for each column like this
We obtained a multicore fiber as shown in Fig. 2, which has 15 core rows in a rectangular lattice. The core row spacing P 1 of this multi-core fiber is approximately 40 μm, and the core spacing is approximately 40 μm.
P2 was approximately 20 μm.

次に、かかる周期構造をもつマルチコアフアイ
バを用いて物体の微少変位を測定する本発明によ
る微少変位計の一実施例を第4図に示す。
Next, FIG. 4 shows an embodiment of a minute displacement meter according to the present invention that measures minute displacements of an object using a multi-core fiber having such a periodic structure.

第4図において9は測定対象物、10は測定対
象物の変位方向に対し格子線が垂直になるように
貼られている矩形格子、11は結像レンズ、12
は本発明で用いるマルチコアフアイバ、13はマ
ルチコアフアイバ12を伝搬した映像を電気的画
像信号に変換する撮像管、14は撮像管の画像信
号を映すCRTモニターである。
In FIG. 4, reference numeral 9 denotes an object to be measured, 10 a rectangular grating pasted so that the grid lines are perpendicular to the displacement direction of the object to be measured, 11 an imaging lens, and 12
13 is a multi-core fiber used in the present invention, 13 is an image pickup tube that converts the image propagated through the multi-core fiber 12 into an electrical image signal, and 14 is a CRT monitor that displays the image signal of the image pickup tube.

本発明による微少変位計によれば、測定対象物
9の上に測定対象物の変位の方向に垂直に格子線
が向くように矩形格子10が貼付されている。か
かる矩形格子の像を結像レンズ11により、周期
構造をもつマルチコアフアイバ12の端面12a
上に結像する。尚、マルチコアフアイバ端面12
a上の矩形格子の像の格子縞の周期はマルチコア
フアイバの画素開口列間隔P1に一致するように
し、且つ両者の格子線が比較的小さな角度θで傾
いて重なるように矩形格子10の像がマルチコア
フアイバ端面上に結像されるように結像レンズと
マルチコアフアイバ端面12aの光学的関係位置
が決定される。従つて、測定対象物9の微少変位
ωが生じたとき、マルチコアフアイバ端面12a
上でのモアレ縞の移動量Wは W=mω/2sin(θ/2) …(2) で与えられる。ここでmは結像レンズ11の拡大
(または縮小)倍率である。マルチコアフアイバ
端面12a上に結像された像はマルチコアフアイ
バ12を伝搬し撮像管13によつて光電変換さ
れ、電気的画素信号としてCRTモニター14上
で、第1図に示す様に拡大して観測される。
According to the minute displacement meter according to the present invention, a rectangular grid 10 is pasted onto the measurement target 9 so that the grid lines are oriented perpendicular to the direction of displacement of the measurement target. The image of this rectangular grating is captured by the imaging lens 11 on the end face 12a of the multi-core fiber 12 having a periodic structure.
image on top. In addition, the multi-core fiber end face 12
The period of the lattice fringes of the image of the rectangular lattice on a is made to match the pixel aperture row spacing P 1 of the multi-core fiber, and the image of the rectangular lattice 10 is made such that both lattice lines overlap at a relatively small angle θ. The optical relationship between the imaging lens and the multi-core fiber end surface 12a is determined so that the image is formed on the multi-core fiber end surface. Therefore, when a minute displacement ω of the measurement object 9 occurs, the multi-core fiber end face 12a
The amount of movement W of the moiré fringes above is given by W=mω/2sin(θ/2) (2). Here, m is the magnification (or reduction) magnification of the imaging lens 11. The image formed on the multi-core fiber end face 12a propagates through the multi-core fiber 12, is photoelectrically converted by the image pickup tube 13, and is magnified and observed as an electrical pixel signal on the CRT monitor 14 as shown in FIG. be done.

先に説明した周期構造をもつ、各開口コア列毎
30本、15列、P1=40μm、P2=20μmのマルチコア
フアイバの先端12aに焦点距離4mmの結像レン
ズ11を取り付け、結像レンズ11の中心より約
40mmの距離に第4図に示すように、反射形の矩形
格子10(ω=200μm)を可動台上の測定対象物
9上に取りつけ、矩形格子10の方向とマルチコ
アフアイバ先端12aの開口列の方向がθ=10゜
傾くよう設置した処、測定対象物9の200μmの移
動に対し測定対象物9からマルチコアフアイバ1
2を経由して遠方に置かれたCRTモニター14
上の画像で、モアレ縞が5ないし6コア分移動す
ることが確認された。尚、第4図に示す微少変位
計で測定対象物の変位を精度よく測定するために
は、隣接するコア間隔P2をできるだけ小さくす
ることが必要である。一方本発明に用いるマルチ
コアフアイバは画像を伝送する性能が要求される
ため、隣接コア間の光の結合、いわゆるクロスト
ークを実用上問題にならない程度におさえる必要
がある。屈折率差2%の石英系フアイバを用いた
場合隣接コア間距離の最小値は約6μm程度である
ことが経験的に知られており、本実施例の場合は
コア間隔は20μmであり、クロストークの問題は
ない。逆にコア間隔P2を大きくすることは単位
断面内におけるコア数が減少することになり、従
つて解像度が低下し得策ではない。
Each aperture core row has the periodic structure explained above.
An imaging lens 11 with a focal length of 4 mm is attached to the tip 12a of a multi-core fiber of 30 fibers, 15 rows, P 1 = 40 μm, P 2 = 20 μm.
As shown in FIG. 4 at a distance of 40 mm, a reflective rectangular grating 10 (ω = 200 μm) is mounted on the measurement object 9 on the movable table, and the direction of the rectangular grating 10 and the opening row of the multi-core fiber tip 12a are aligned. When installed so that the direction is tilted by θ = 10°, the multi-core fiber 1 is
CRT monitor 14 placed far away via 2
In the image above, it was confirmed that the moiré fringes moved by 5 to 6 cores. Incidentally, in order to accurately measure the displacement of the object to be measured using the minute displacement meter shown in FIG. 4, it is necessary to make the interval P2 between adjacent cores as small as possible. On the other hand, since the multi-core fiber used in the present invention is required to have the ability to transmit images, it is necessary to suppress the coupling of light between adjacent cores, so-called crosstalk, to a level that does not pose a practical problem. It is empirically known that when a silica fiber with a refractive index difference of 2% is used, the minimum distance between adjacent cores is approximately 6 μm. In this example, the core spacing was 20 μm, and cross There is no problem with talk. On the other hand, increasing the core spacing P 2 is not a good idea as it will reduce the number of cores within a unit cross section, which will lower the resolution.

以上説明した実施例のものはマルチ法で溶融紡
糸した石英系マルチコアフアイバの例について説
明したが、積層法でスペースを介在して形成した
周期構造をもつたマルチコアフアイバを形成する
こともできる。
Although the embodiments described above are examples of quartz-based multi-core fibers melt-spun using a multi-layer method, it is also possible to form multi-core fibers with a periodic structure formed by intervening spaces using a lamination method.

〈発明の効果〉 本発明に示した周期構造をもつたマルチコアフ
アイバを用いれば、測定対象物の微少な変位を隔
つた場所で計測できる微少変位計が構成される。
従来は測定対象物に貼付した矩形格子と測定用矩
形格子の間でモアレ縞を形成させ、このモアレ縞
画像を近傍で光電変換、画像処理を行つて電気信
号に変換して隔つた地点の受像装置に表示するこ
としかできなかつたが、測定対象物の環境が人が
接近することができないような防爆性、高温、放
射能あるいは毒物処理等の悪環境等では、このよ
うな電気的手段のものは破壊されて使用できなか
つたり、機能が著しく害されることが避けられな
かつた。しかるに本発明による周期構造をもつた
マルチコアフアイバを用いた微少変位計によれ
ば、これらの環境でも高い信頼性で正確に微少変
位を計測することができるようになつた。
<Effects of the Invention> By using the multi-core fiber with the periodic structure shown in the present invention, a minute displacement meter is constructed that can measure minute displacements of the object to be measured at separate locations.
Conventionally, moiré fringes are formed between a rectangular grating attached to the measurement target and a rectangular measuring grating, and this moire fringe image is photoelectrically converted and processed nearby to convert it into an electrical signal, which is then received at a distant point. However, in harsh environments such as explosion-proof, high temperature, radioactive or toxic processing where the environment of the object to be measured cannot be accessed by humans, electrical means such as this can be used. It was inevitable that things would be destroyed and become unusable, or their functions would be seriously impaired. However, according to the minute displacement meter using a multi-core fiber with a periodic structure according to the present invention, it has become possible to accurately measure minute displacements with high reliability even in these environments.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はモアレ縞による変位測定の説明図、第
2図は本発明に用いる周期構造をもつたマルチコ
アフアイバの断面図、第3図は本発明に用いる周
期構造をもつたマルチコアフアイバの母材構造の
説明図、第4図は本発明による微少変位計の構成
図である。 図面中、1,2は矩形格子、3−1,3−2…
3−23はコア、4はクラツド、5−1,5−
2,…はスペーサ、6−1,6−2,…は光フア
イバプリフオーム、7−1,7−2…はうめく
さ、8はジヤケツト管、9は測定対象物、10は
矩形格子、11は結像レンズ、12はマルチコア
フアイバ、13は撮像管、14はCRTモニター
である。
Fig. 1 is an explanatory diagram of displacement measurement using moire fringes, Fig. 2 is a cross-sectional view of a multi-core fiber with a periodic structure used in the present invention, and Fig. 3 is a base material of the multi-core fiber with a periodic structure used in the present invention. An explanatory diagram of the structure, FIG. 4 is a configuration diagram of a minute displacement meter according to the present invention. In the drawing, 1 and 2 are rectangular grids, 3-1, 3-2...
3-23 is core, 4 is clad, 5-1, 5-
2, . . . are spacers, 6-1, 6-2, . . . are optical fiber preforms, 7-1, 7-2, . 1 is an imaging lens, 12 is a multi-core fiber, 13 is an image pickup tube, and 14 is a CRT monitor.

Claims (1)

【特許請求の範囲】[Claims] 1 矩形格子を貼有した測定対象物と、所定の列
間間隔P1の互いに平行な多数の列上を、上記列
間間隔P1より小さい間隔P2で互いに隣接して配
置されたコアからなるマルチコアフアイバと、上
記測定対象物上の矩形格子の像を上記マルチコア
フアイバ端面に、マルチコアフアイバのコア列間
隔と上記矩形格子の格子縞の周期に等しくかつ矩
形格子の格子線とコア列とが角度θで傾くように
結像せしめる結像レンズと、上記マルチコアフア
イバの他端に設けられた撮像管と、該撮像管によ
つて電気信号に変換された画像信号を映すCRT
モニターからなることを特徴とする微少変位計。
1. A measurement object with a rectangular grid pasted thereon and a number of mutually parallel rows with a predetermined inter-row spacing P 1 are measured from cores arranged adjacent to each other at a spacing P 2 smaller than the above-mentioned inter-row spacing P 1 . The image of the rectangular lattice on the object to be measured is placed on the end face of the multi-core fiber, and the distance between the core rows of the multi-core fiber is equal to the period of the lattice stripes of the rectangular lattice, and the lattice lines of the rectangular lattice and the core rows are at an angle. an imaging lens that forms an image tilted at θ, an imaging tube provided at the other end of the multi-core fiber, and a CRT that displays image signals converted into electrical signals by the imaging tube.
A minute displacement meter characterized by consisting of a monitor.
JP59119743A 1984-06-13 1984-06-13 Multicore fiber with periodic structure and fine displacement gauge using multicore fiber Granted JPS60263905A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59119743A JPS60263905A (en) 1984-06-13 1984-06-13 Multicore fiber with periodic structure and fine displacement gauge using multicore fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59119743A JPS60263905A (en) 1984-06-13 1984-06-13 Multicore fiber with periodic structure and fine displacement gauge using multicore fiber

Publications (2)

Publication Number Publication Date
JPS60263905A JPS60263905A (en) 1985-12-27
JPH0433003B2 true JPH0433003B2 (en) 1992-06-01

Family

ID=14769033

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59119743A Granted JPS60263905A (en) 1984-06-13 1984-06-13 Multicore fiber with periodic structure and fine displacement gauge using multicore fiber

Country Status (1)

Country Link
JP (1) JPS60263905A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2706281B2 (en) * 1988-12-09 1998-01-28 古河電気工業株式会社 Optical fiber sensor
US6188058B1 (en) * 1998-09-17 2001-02-13 Agilent Technologies Inc. System for taking displacement measurements having photosensors with imaged pattern arrangement
JP5842556B2 (en) * 2011-11-11 2016-01-13 住友電気工業株式会社 Bi-directional optical communication method and multi-core optical fiber

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58126506A (en) * 1982-01-22 1983-07-28 Nippon Telegr & Teleph Corp <Ntt> Multilayer piled type rectangular optical core
JPS5969703A (en) * 1982-10-14 1984-04-20 Sumitomo Electric Ind Ltd Multicored plastic optical fiber and its production

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58126506A (en) * 1982-01-22 1983-07-28 Nippon Telegr & Teleph Corp <Ntt> Multilayer piled type rectangular optical core
JPS5969703A (en) * 1982-10-14 1984-04-20 Sumitomo Electric Ind Ltd Multicored plastic optical fiber and its production

Also Published As

Publication number Publication date
JPS60263905A (en) 1985-12-27

Similar Documents

Publication Publication Date Title
CN110832370B (en) Method for manufacturing optical device
JP5916525B2 (en) Multi-core fiber
JP5782502B2 (en) Multi-core fiber and multi-core fiber connection method using the same
CN106959077A (en) A kind of universal bend sensor of multi-core fiber grating
JP7192094B2 (en) fiber optic sensor
US9207398B2 (en) Multi-core optical fibers for IR image transmission
JPWO2017217539A1 (en) Axis alignment method for coupled multi-core optical fiber
JP2018132421A (en) Optical fiber sensor
Cooper et al. Design and performance of multicore fiber optimized towards communications and sensing applications
Ford et al. Fiber-coupled monocentric lens imaging
JP2022075219A (en) Multi-core fiber having connector
JPH0433003B2 (en)
CN102607448A (en) Optical fiber strain sensor based on optical fiber LP 21 mode and measuring method thereof
JPS617808A (en) Needle type scope
Zhang et al. Multi-Core Fiber Bragg Grating and Its Sensing Application
JP2573493B2 (en) How to measure physical quantities
Filipenko et al. The autoconvolution method use for positioning photonic crystal fibers
Gu et al. A highly sensitive curvature and rotation angle sensor based on asymmetric hollow-core anti-resonant fiber
JP2774590B2 (en) Optical fiber spatial filter and manufacturing method thereof
Zhan et al. Bessel-beam-based side-view measurement of seven-core fibre internal core distribution
JP2745415B2 (en) Image fiber manufacturing method
JPH0583125B2 (en)
JP2020160309A (en) Multi-core fiber and optical fiber connection structure
Hasegawa et al. Changes in speckle patterns in an output light spot from an optical fiber to be caused by load application of small weight level
JP2006058740A (en) Composite optical fiber