JPH0433000B2 - - Google Patents
Info
- Publication number
- JPH0433000B2 JPH0433000B2 JP59029526A JP2952684A JPH0433000B2 JP H0433000 B2 JPH0433000 B2 JP H0433000B2 JP 59029526 A JP59029526 A JP 59029526A JP 2952684 A JP2952684 A JP 2952684A JP H0433000 B2 JPH0433000 B2 JP H0433000B2
- Authority
- JP
- Japan
- Prior art keywords
- reactor
- axial
- detector
- power distribution
- nuclear
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000009826 distribution Methods 0.000 claims description 19
- 238000004458 analytical method Methods 0.000 claims description 7
- 238000000034 method Methods 0.000 claims description 7
- 239000011159 matrix material Substances 0.000 claims description 5
- 238000010586 diagram Methods 0.000 description 4
- 230000004907 flux Effects 0.000 description 4
- 238000001514 detection method Methods 0.000 description 3
- 238000007796 conventional method Methods 0.000 description 2
- 239000003758 nuclear fuel Substances 0.000 description 2
- 230000010355 oscillation Effects 0.000 description 2
- 229910052724 xenon Inorganic materials 0.000 description 2
- FHNFHKCVQCLJFQ-UHFFFAOYSA-N xenon atom Chemical compound [Xe] FHNFHKCVQCLJFQ-UHFFFAOYSA-N 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E30/00—Energy generation of nuclear origin
- Y02E30/30—Nuclear fission reactors
Landscapes
- Monitoring And Testing Of Nuclear Reactors (AREA)
Description
〔発明の分野〕
この発明は、解析的方法により制御保護装置調
整用のデータを得る方法に係わり、特に核計装較
正のためのデータ取得方法に関するものである。
〔一般的説明〕
原子炉内の軸方向中性子束分布を監視するた
め、通常は、軸方向出力分布偏差(△)が用い
られている。
こゝに、△は以下のように定義づけられるも
のである。
△=AO・P
AO=PT−PB/PT+PB
なお、
P;相対出力、
PT;原子炉上半部出力、
PB;原子炉下半部出力、
AO;アキシヤルオフセツト、
である。
この中のPT、PBに相当する信号は、対象とす
る原子炉の外部に設置されている長尺の中性子検
出器からの電流を処理することによつてえられ
る。このような検出器の系統は4チヤネル分設け
られているけれども、夫々の検出器からの電流
は、検出器自体の諸特性のばらつきや原子炉内の
出力分布特性の如何によつて異なるものである。
そこで、これらについて調整を施すことにより、
いずれのチヤネルでも原子炉内の軸方向中性子束
偏差を正確に示すようにすることが必要とされ
る。
ところで、原子炉内の軸方向出力分布は、可動
型微少中性子検出器(Movable Detector;M/
D)と呼ばれる手段を当該原子炉内に装荷されて
いる核燃料集合体の計装用シンプル管に挿入し、
軸方向に走査させることによつてえられる。この
ようにしてえられた原子炉内の軸方向出力分布が
真正値であるものとして、原子炉以外核計装によ
りこの原子炉AOを正確に把握することができる
ように調整がなされる。このような調整を行うた
め、原子炉内の軸方向出力分布を適度に振動さ
せ、原子炉内出力分布と原子炉外中性子検出器電
流についてのデータをいくつかの点で取得するこ
とが必要である。
〔従来技術〕
このようなデータを取得するため、従来におい
ては、制御棒の操作等により、意図的に、軸方向
出力分布に外乱を与え、原子炉の出力分布にセキ
ノン振動を生起させる方法がとられてきた。そし
て、この場合には、前記の如きキセノン振動を利
用することから、核燃料に局所的な高出力が出る
ことを防止するために、原子炉全体としての出力
レベルを25%程度下げるようにされていた。
しかしながら、この従来の方法には以下の欠点
があることを指摘することができる。
(1) 通常運転時に、このデータ取得のために原子
炉出力を低下させることが必要である。
(2) 通常運転時には生起しないようなキセノン振
動を意図的に生起させることが必要である。
これらの欠点は、原子力発電所の運転の経済性
および安全性の観点から、できるだけさけるよう
にすることが望ましいものである。
〔発明の概要〕
この発明は、上記欠点を排除するためになされ
たものであつて、解析により予め算出した炉外核
計装の応答マトリクスと、別途解析により求めた
対象炉心の複数の軸方向出力分布の各々との積を
求め、この結果から、上、下半部検出器の応答を
算出し、前記軸方向出力分布のそれぞれのアキシ
ヤルオフセツトとの相関を求めることにより、所
要のデータを取得する方法を提供することをその
目的とするものである。
〔発明の実施例〕
第1図は、原子炉1と原子炉外中性子検出器
Diの関係を、特に軸方向成分に着目して、離散
化したモデル図である。
この第1図において、
Pi;離散化された軸方向出力分布(i=1、2,
……2n)
Di;離散化された検出器有感部分、
a; 炉心2最外周から圧力容器3最外周までの
距離、
b; 圧力容器3最外周から検出器Di中心まで
の距離、
である。
この第1図の離散化したモデルにおいて、各検
出器Diの検出電流iであるとすると、上半部
検出電流Tおよび下半部検出電流Bは夫々に以
下のように表わすことができる。
IB=o
〓i=1
IT=2o
〓i=n+1 i
。
このことから、原子炉出力分布と原子炉外検出
器電流との関係を求めるためには、原子炉内出力
分布と検出器Diの検出器電流iとの関係を求め
ればよいことが認められる。
I1は次の演算で算出する。
|I|=|D|×|P|、
こゝに、|I|=|I1、I2、……、I2n|Tr、
|D|=2n×2nマトリクス、
|P|=|P1、P2、……、P2o|Tr
IB=o
〓i=1
Ii、
IT=2o
〓i=n+1 i
。
たゞし、Trは倒置マトリクスを示す。
このようにすると、|D|マトリクスを解析的
に評価することが可能となる。
上記の式を書換えると、次のようになる。
I1
I2
〓
I2o=d11、d12、d1,2o
d21、d22、d2,2o
d2o1、d2o2、d2o2o P1
P2
P2n
Ii=2o
〓j=1
dij・Pj
このことから、検出器Diの電流Iiは出力P1〜P2o
が夫々に検出器Diに与える寄与を加算したもので
あることが認められる。
上記のdijは、Pjによる検出器Diの応答への変換
係数を表わすものである。そして、これは簡単な
モデルを仮定することによつて以下のように評価
することができる。
先ず、圧力容器3の表面を軸方向(↑印方向)
に2n等分する。この各部分に軸方向位置Ziにおけ
る単位出力からの中性子源による下記の中性子束
Skが次のようにえられるものとする。
FIELD OF THE INVENTION The present invention relates to a method of obtaining data for control protection device adjustment by an analytical method, and more particularly to a method of obtaining data for nuclear instrumentation calibration. [General Description] To monitor the axial neutron flux distribution within a nuclear reactor, the axial power distribution deviation (△) is usually used. Here, △ is defined as follows. △=AO・P AO=P T −P B /P T +P BWhere , P: Relative power, P T : Reactor upper half power, P B : Reactor lower half power, AO: Axial offset , is. Signals corresponding to P T and P B are obtained by processing currents from a long neutron detector installed outside the target nuclear reactor. Although such a detector system has four channels, the current from each detector varies depending on variations in the characteristics of the detector itself and the power distribution characteristics within the reactor. be.
Therefore, by adjusting these,
Both channels are required to accurately represent the axial neutron flux deviation within the reactor. By the way, the axial power distribution inside the nuclear reactor is determined by the Movable Detector (M/M).
Insert the means called D) into the simple instrumentation tube of the nuclear fuel assembly loaded in the reactor,
Obtained by scanning in the axial direction. Assuming that the axial power distribution within the reactor obtained in this manner is the true value, adjustments are made so that the reactor AO can be accurately grasped by nuclear instrumentation other than the reactor. In order to make such adjustments, it is necessary to moderately oscillate the axial power distribution inside the reactor and obtain data on the power distribution inside the reactor and the neutron detector current outside the reactor at several points. be. [Prior art] In order to obtain this kind of data, conventional methods have been used to intentionally create disturbances in the axial power distribution by operating control rods, etc., to cause sequinon oscillations in the power distribution of the reactor. It has been taken. In this case, since xenon oscillations as described above are used, the output level of the entire reactor is reduced by about 25% to prevent local high output from being generated in the nuclear fuel. Ta. However, it can be pointed out that this conventional method has the following drawbacks. (1) During normal operation, it is necessary to reduce the reactor power in order to obtain this data. (2) It is necessary to intentionally generate xenon vibrations that do not occur during normal operation. It is desirable to avoid these drawbacks as much as possible from the viewpoint of economic efficiency and safety of nuclear power plant operation. [Summary of the Invention] This invention has been made to eliminate the above-mentioned drawbacks, and uses a response matrix of the external core instrumentation calculated in advance by analysis and a plurality of axial outputs of the target core determined by separate analysis. The required data is obtained by calculating the product of each of the distributions, calculating the response of the upper and lower half detectors from this result, and calculating the correlation with each axial offset of the axial output distribution. Its purpose is to provide a method for obtaining. [Embodiment of the invention] Figure 1 shows a nuclear reactor 1 and an extra-reactor neutron detector.
FIG. 2 is a model diagram in which the relationship between Di is discretized, focusing in particular on the axial component. In this Figure 1, Pi: discretized axial power distribution (i=1, 2,
...2n) Di: Discretized detector sensitive part, a: Distance from the outermost periphery of the core 2 to the outermost periphery of the pressure vessel 3, b: Distance from the outermost periphery of the pressure vessel 3 to the center of the detector Di, . In the discretized model of FIG. 1, if the detection current of each detector Di is i, then the upper half detection current T and the lower half detection current B can be respectively expressed as follows. I B = o 〓 i=1 I T = 2o 〓 i=n+1 i . From this, it is recognized that in order to find the relationship between the reactor power distribution and the external detector current, it is sufficient to find the relationship between the in-reactor power distribution and the detector current i of the detector Di. I 1 is calculated using the following calculation. | I | = | D| P 1 , P 2 , ..., P 2o | Tr I B = o 〓 i=1 I i , I T = 2o 〓 i=n+1 i . However, T r indicates an inverted matrix. In this way, it becomes possible to analytically evaluate the |D| matrix. Rewriting the above formula, it becomes as follows. I 1 I 2 〓 I 2o = d 11 , d 12 , d 1,2o d 21 , d 22 , d 2,2o d 2o1 , d 2o2 , d 2o2o P 1 P 2 P 2 n I i = 2o 〓 j= 1 d ij・P j From this, the current I i of the detector D i is the output P 1 ~ P 2o
It is recognized that is the sum of the contributions each makes to the detector D i . The above d ij represents the conversion coefficient of P j to the response of the detector D i . This can be evaluated as follows by assuming a simple model. First, move the surface of the pressure vessel 3 in the axial direction (↑ direction)
Divide into 2n equal parts. In each of these parts, the following neutron flux from the neutron source from the unit output at the axial position Z i is calculated.
Let S k be obtained as follows.
この発明の方法による評価の結果は充分に妥当
性があることは、初期炉心、取替炉心を含む多数
のデータに基づく追試によつて確認されており、
その再現性にも問題はない。
したがつて、この発明の方法によれば、解析に
より予め算出した炉外核計装の応答マトリクス
と、別途解析により求めた対象炉心の複数の軸方
向出力分布の各々との積を求め、この結果から、
上、下半部検出器の応答を算出し、前記軸方向出
力分布のそれぞれのアキシヤルオフセツトとの相
関を求めることにより、原子炉における核計装較
正のためデータ取得が的確になされるものであ
る。
It has been confirmed through follow-up tests based on a large amount of data including the initial core and replacement core that the evaluation results obtained using the method of this invention are sufficiently valid.
There is no problem with its reproducibility. Therefore, according to the method of the present invention, the product of the response matrix of the external core instrumentation calculated in advance by analysis and each of the plurality of axial power distributions of the target reactor core obtained by separate analysis is calculated, and this result is calculated. from,
By calculating the responses of the upper and lower half detectors and finding the correlation with each axial offset of the axial power distribution, data can be accurately acquired for nuclear instrumentation calibration in the reactor. be.
第1図は原子炉と炉外中性子検出器の関係を示
す離散化したモデル図、第2図は中性子束SKか
ら検出器Djを見込む角度ωjを得るための説明図、
第3図はこの発明の方法を実施するための装置の
構成を例示するブロツク図である。
1,11……原子炉、2……炉心、3……圧力
容器、Di,12,13……炉外中性子検出器、1
4……AO計算装置、15……較正データ演算装
置。
Figure 1 is a discretized model diagram showing the relationship between the nuclear reactor and the ex-core neutron detector, Figure 2 is an explanatory diagram for obtaining the angle ω j looking into the detector D j from the neutron flux S K ,
FIG. 3 is a block diagram illustrating the configuration of an apparatus for carrying out the method of the present invention. 1, 11... Nuclear reactor, 2... Core, 3... Pressure vessel, D i , 12, 13... Ex-core neutron detector, 1
4...AO calculation device, 15...Calibration data calculation device.
Claims (1)
トリクスと、別途解析により求めた対象炉心の複
数の軸方向出力分布の各々との積を求め、この結
果から、上、下半部検出器の応答を算出し、前記
軸方向出力分布のそれぞれのアキシヤルオフセツ
トとの相関を求めることを特徴とする核計装較正
のためのデータ取得方法。1 Find the product of the response matrix of the external core instrumentation calculated in advance by analysis and each of the multiple axial power distributions of the target reactor core obtained by separate analysis, and from this result, calculate the response of the upper and lower half detectors. 1. A data acquisition method for nuclear instrumentation calibration, characterized by calculating the correlation between the axial power distribution and each axial offset of the axial power distribution.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59029526A JPS60174986A (en) | 1984-02-21 | 1984-02-21 | Method of gaining data for nuclear instrumentation correcting |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59029526A JPS60174986A (en) | 1984-02-21 | 1984-02-21 | Method of gaining data for nuclear instrumentation correcting |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS60174986A JPS60174986A (en) | 1985-09-09 |
JPH0433000B2 true JPH0433000B2 (en) | 1992-06-01 |
Family
ID=12278548
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP59029526A Granted JPS60174986A (en) | 1984-02-21 | 1984-02-21 | Method of gaining data for nuclear instrumentation correcting |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS60174986A (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20110268239A1 (en) * | 2010-04-30 | 2011-11-03 | David Jerome Krieg | Method of calibrating excore detectors in a nuclear reactor |
-
1984
- 1984-02-21 JP JP59029526A patent/JPS60174986A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS60174986A (en) | 1985-09-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3087766B2 (en) | Method and apparatus for accurately calculating pressurized water reactor power from out-of-core detector output current corrected for changes in three-dimensional power distribution and coolant density in the reactor core | |
JP4999222B2 (en) | Method for monitoring at least one operating parameter of a reactor core | |
US4637910A (en) | Method and apparatus for continuous on-line synthesis of power distribution in a nuclear reactor core | |
JPH0515240B2 (en) | ||
JPH02302695A (en) | Updating of parameter of core model and updating of parameter of analytic model | |
JP2628534B2 (en) | Method and apparatus for synthesizing continuous power distribution of reactor core | |
US6400786B1 (en) | Process and device for monitoring at least one operating parameter of the core of a nuclear reactor | |
EP0326267B1 (en) | Core reactivity validation computer and method | |
EP0100640B1 (en) | Systems for monitoring operating conditions within nuclear reactors | |
Tsuji et al. | Subcriticality measurement by neutron source multiplication method with a fundamental mode extraction | |
JPH03214099A (en) | Method of determining output distribution in nuclear reactor core and method of calibrating neutron detector around reactor core | |
JPH07119827B2 (en) | Measuring device of reactor power distribution | |
JPH0433000B2 (en) | ||
JP3274904B2 (en) | Reactor power measurement device | |
KR20200088273A (en) | Nuclear measurement isolated output signal scaling method and system using same | |
JP2647573B2 (en) | Core power distribution monitoring device, reactor protection device, reactor core detector device, and reactor core monitoring method | |
JP2975654B2 (en) | Core monitoring device | |
JPS59193398A (en) | Reactor power distribution monitoring device | |
JPH0587978A (en) | Device for measuring reactor output | |
JPH04115193A (en) | Measuring apparatus for average burnup of nuclear fuel assembly | |
JP2521683B2 (en) | Reactor power distribution monitor | |
JPH09211176A (en) | Tester for power range monitor | |
JP2573334B2 (en) | Movable in-core probe | |
JPH0219918B2 (en) | ||
JPS5827096A (en) | Method of estimating position of local power range monitor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
EXPY | Cancellation because of completion of term |