JPH04329852A - Alloy for waste incineration furnace boiler and multiple layered steel tube - Google Patents

Alloy for waste incineration furnace boiler and multiple layered steel tube

Info

Publication number
JPH04329852A
JPH04329852A JP10166191A JP10166191A JPH04329852A JP H04329852 A JPH04329852 A JP H04329852A JP 10166191 A JP10166191 A JP 10166191A JP 10166191 A JP10166191 A JP 10166191A JP H04329852 A JPH04329852 A JP H04329852A
Authority
JP
Japan
Prior art keywords
alloy
steel tube
boiler
multiple layered
corrosion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10166191A
Other languages
Japanese (ja)
Other versions
JP2561567B2 (en
Inventor
Tetsuo Ishizuka
哲夫 石塚
Kozo Denpo
伝宝 幸三
Hiroyuki Ogawa
小川 洋之
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP3101661A priority Critical patent/JP2561567B2/en
Publication of JPH04329852A publication Critical patent/JPH04329852A/en
Application granted granted Critical
Publication of JP2561567B2 publication Critical patent/JP2561567B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Laminated Bodies (AREA)

Abstract

PURPOSE:To offer a multiple layered steel tube constituted of an alloy for a waste incineration furnace boiler having high corrosion resistance and wear resistance and usable in the range up to 500 deg.C steam temp. in every combustion system waste incineration furnace, and a multiple layered steel tube constituted of the above alloy, at low cost. CONSTITUTION:This is an alloy contg., by weight, 0.02 to 0.1% C, 1 to 5% Si, <=5% Mn, >10 to 20% Cr, 30 to 50% Ni, 0.5 to 3% Mo, 10 to 40% Co and 0.5 to 5% W, furthermore contg. both items or either of one or two kinds of 0.05 to 0.4% N, 0.2 to 0.5% Cu, one or two kinds of 0.05 to 2% Nb, 0.02 to 0.5% Ti and the balance Fe with inevitable impurities, and a multiple layered steel tube using the above alloy as an outer tube and using a well-known steel tube for boiler as an inner tube is obtained.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、蒸気温度500℃まで
使用可能な、ごみ焼却炉ボイラ用合金および複層鋼管に
関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an alloy for waste incinerator boilers and multilayer steel pipes that can be used at steam temperatures up to 500°C.

【0002】0002

【従来の技術】都市ごみ焼却炉では、燃焼によって生じ
る排熱をエネルギー源として有効利用するために、排熱
ボイラを設置し、発電を行う例が多くなってきている。 発電ボイラの熱効率は、蒸気条件が高温高圧になるほど
向上することは自明であるが、例えば「火力発電」昭和
45年第21巻第5号489頁で公知のごとく、ごみ焼
却炉では、ごみ中に多く含まれる塩化ビニル等の燃焼に
よって、腐食性の高いHClガスが高濃度に発生し、さ
らに塩化物系の低融点共晶化合物が管に付着するため、
蒸気温度が300℃を越えると、著しく腐食が加速され
、腐食を避けるため、やむなく蒸気条件を300℃以下
に抑えて低効率操業をしているのが現状である。しかし
ながら、エネルギーの有効利用の観点から、ごみ発電の
高温高圧化は強く望まれている課題である。
2. Description of the Related Art In order to effectively utilize waste heat generated by combustion as an energy source, municipal waste incinerators are increasingly equipped with waste heat boilers to generate electricity. It is obvious that the thermal efficiency of a power generation boiler improves as the steam conditions become higher temperature and higher pressure. Due to the combustion of vinyl chloride, etc., which is contained in large amounts in
When the steam temperature exceeds 300°C, corrosion is significantly accelerated, and in order to avoid corrosion, the current situation is that steam conditions are forced to be kept below 300°C for low-efficiency operation. However, from the perspective of effective energy use, increasing the temperature and pressure of waste power generation is strongly desired.

【0003】塩化水素ガス、溶融塩酸塩環境では、Cr
が蒸気圧の高い塩化物を形成するため、ステンレス鋼等
の従来からの耐食合金では十分な耐食効果が得られず、
現状のごみ焼却ボイラでは蒸気温度300℃以下で、C
r−Mo系低合金鋼が使用されている。これに対し本発
明者らは、特願平2−107147号において、当該腐
食環境で蒸気温度500℃まで耐食性を有するボイラ用
合金を提案している。
In the environment of hydrogen chloride gas and molten hydrochloride, Cr
forms chlorides with high vapor pressure, so conventional corrosion-resistant alloys such as stainless steel cannot provide sufficient corrosion resistance.
In the current waste incineration boiler, the steam temperature is below 300℃, and the C
r-Mo based low alloy steel is used. In response, the present inventors have proposed, in Japanese Patent Application No. 2-107147, an alloy for boilers that has corrosion resistance in the corrosive environment up to a steam temperature of 500°C.

【0004】0004

【発明が解決しようとする課題】近年、従来の火格子式
焼却炉と比べて燃焼効率が優れるなどの利点を有する流
動床式ごみ焼却炉が普及しだしており、それに伴い、ご
み焼却炉ボイラ用材料には流動砂による耐摩耗特性も要
求されてきている。本発明は、あらゆる燃焼方式のごみ
焼却炉においても、蒸気温度500℃まで使用可能でか
つ安価な、ボイラ用合金および当該合金からなる複層鋼
管を提供することを目的とする。
[Problems to be Solved by the Invention] In recent years, fluidized bed waste incinerators, which have advantages such as superior combustion efficiency compared to conventional grate-type incinerators, have become popular. Abrasion resistance due to fluidized sand is also required for materials used for this purpose. An object of the present invention is to provide an alloy for a boiler, which can be used up to a steam temperature of 500° C. in any combustion type garbage incinerator, and is inexpensive, and a multilayer steel pipe made of the alloy.

【0005】[0005]

【課題を解決するための手段】本発明は上記課題を解決
すべく研究を行った結果、10%以上のCoの添加と0
.5%以上のWの添加が耐摩耗特性の向上に非常に有効
であり、かつ10%以上のCo添加により塩化水素ガス
、溶融塩酸塩による高温耐食性をも向上するという知見
が得られたことにより完成されたものであり、その要旨
とするところは重量%にて、C:0.02〜0.1%,
Si:1〜5%,Mn:5%以下,Cr10超〜20%
,Ni:30〜50%,Mo:0.5〜3%,Co:1
0〜40%,W:0.5〜5%を含有するか、さらに   (1)N:0.05〜0.4%,Cu:0.2〜0
.5%の1種または2種  (2)Nb:0.05〜2
%,Ti:0.02〜0.5%の1種または2種の一方
または両方を含有し、残部がFeおよび不可避的不純物
からなる合金と、それら合金を外管にし、公知のボイラ
用鋼管を内管とした複層鋼管にある。
[Means for Solving the Problems] As a result of research conducted to solve the above problems, the present invention has been developed by adding 10% or more Co and
.. It was discovered that adding 5% or more of W is very effective in improving wear resistance, and that adding 10% or more of Co also improves high-temperature corrosion resistance due to hydrogen chloride gas and molten hydrochloride. It has been completed, and its gist is that in weight percent, C: 0.02-0.1%,
Si: 1 to 5%, Mn: 5% or less, Cr more than 10 to 20%
, Ni: 30-50%, Mo: 0.5-3%, Co: 1
0-40%, W: 0.5-5%, or further (1) N: 0.05-0.4%, Cu: 0.2-0
.. 5% of one or two types (2) Nb: 0.05-2
%, Ti: 0.02 to 0.5% of one or both of them, the balance being Fe and unavoidable impurities, and an outer tube made of these alloys, known steel pipes for boilers. It is a multilayer steel pipe with an inner pipe.

【0006】[0006]

【作用】以下に成分の限定理由について説明する。Cは
塩化水素,溶融塩酸塩による耐食性には害を及ぼすもの
でありできるだけ少ない方が望ましいが、高温での強度
確保に必要であり、またオーステナイト相の安定化にも
有効であるため、各特性を損なわない範囲として、上限
を0.1%,下限を0.02%とした。
[Operation] The reasons for limiting the ingredients will be explained below. C is harmful to the corrosion resistance caused by hydrogen chloride and molten hydrochloride, so it is preferable to reduce it as much as possible, but it is necessary to ensure strength at high temperatures and is also effective in stabilizing the austenite phase, so it is important to reduce each characteristic. The upper limit was set at 0.1%, and the lower limit was set at 0.02% as a range that does not impair the properties.

【0007】Siは塩化水素,溶融塩酸塩環境における
耐食性確保にきわめて有効な元素である。しかし5%を
越えて含有させると加工性、溶接性の劣化を招き、1%
未満では十分な耐食効果が得られないため、上限を5%
,下限を1%とした。Mnはオーステナイト相形成に寄
与する元素であるが、過度の添加は溶製上、熱間加工上
のトラブルを生ずるため、上限を5%とした。
[0007]Si is an extremely effective element for ensuring corrosion resistance in a hydrogen chloride or molten hydrochloride environment. However, if the content exceeds 5%, it will cause deterioration of workability and weldability, and 1%
If it is less than 5%, sufficient corrosion resistance effect cannot be obtained, so the upper limit is set at 5%.
, the lower limit was set to 1%. Mn is an element that contributes to the formation of an austenite phase, but excessive addition causes problems in melting and hot working, so the upper limit was set at 5%.

【0008】Crは一般の高温酸化、高温腐食特性向上
には有効な元素であり、より多く含まれることが望まし
いが、塩化水素、溶融塩酸塩環境においては、Cr塩化
物の揮発により、添加量を20%以上にするとむしろ腐
食量が増加する。また、ボイラ停止時の結露による耐塩
酸露点腐食性や、ボイラ鋼管内面の耐水蒸気酸化性を確
保するために、10%を越えた添加は必要である。この
ため、上限を20%,下限を10%超とした。
Cr is an effective element for improving general high-temperature oxidation and high-temperature corrosion properties, and it is desirable to include it in a larger amount.However, in an environment of hydrogen chloride or molten hydrochloride, the amount added may be reduced due to the volatilization of Cr chloride. If it is more than 20%, the amount of corrosion will actually increase. Further, in order to ensure resistance to hydrochloric acid dew point corrosion caused by dew condensation when the boiler is stopped and resistance to steam oxidation on the inner surface of the boiler steel pipes, it is necessary to add more than 10%. For this reason, the upper limit was set to 20% and the lower limit was set to over 10%.

【0009】Niは塩化水素,溶融塩酸塩環境における
耐食性向上に特に好ましく、オーステナイト相形成のた
めにも必要な成分である。蒸気温度500℃でその効果
を得るためには少なくとも30%以上の添加が必要であ
る。一方、Ni量の上昇とともに合金価格も上昇するが
、50%を越えると価格に見合うだけの特性の向上が得
られない。このため、上限を50%、下限を30%とし
た。
Ni is particularly preferred for improving corrosion resistance in hydrogen chloride and molten hydrochloride environments, and is also a necessary component for forming an austenite phase. In order to obtain this effect at a steam temperature of 500°C, it is necessary to add at least 30% or more. On the other hand, as the amount of Ni increases, the price of the alloy also increases, but if it exceeds 50%, the improvement in properties commensurate with the price cannot be obtained. Therefore, the upper limit was set to 50% and the lower limit was set to 30%.

【0010】Moは高温での耐食性には効果がないが、
ボイラ停止時の結露によって生ずる塩酸露点腐食を防止
するために必要な成分であり、その目的のためには0.
5%以上の添加が必要である。しかし、オーステナイト
相を安定化するという面から3%を上限とした。Coは
本発明において最も重要な元素であり、図1、図2にみ
られるように、流動床環境における耐摩耗特性、塩化水
素、溶融塩酸塩環境における耐食性、およびそれらの複
合環境における耐ホットエロージョンコロージョン特性
向上に特に有効である。蒸気温度500℃でその効果を
得るには少なくとも10%以上の添加が必要である。一
方、40%を越えるとその効果は飽和する。このため、
上限を40%,下限を10%とした。
[0010] Although Mo has no effect on corrosion resistance at high temperatures,
This is a necessary component to prevent hydrochloric acid dew point corrosion caused by dew condensation when the boiler is stopped, and for that purpose, 0.
It is necessary to add 5% or more. However, in order to stabilize the austenite phase, the upper limit was set at 3%. Co is the most important element in the present invention, and as shown in Figures 1 and 2, it has excellent wear resistance in a fluidized bed environment, corrosion resistance in a hydrogen chloride and molten hydrochloride environment, and hot erosion resistance in a combined environment. It is particularly effective in improving corrosion characteristics. To obtain this effect at a steam temperature of 500°C, it is necessary to add at least 10%. On the other hand, when it exceeds 40%, the effect is saturated. For this reason,
The upper limit was set to 40% and the lower limit was set to 10%.

【0011】Wは耐摩耗特性向上に有効であり、その効
果を得るには0.5%以上の添加が必要である。また、
5%を越えて添加すると、金属間化合物が析出し、加工
性,耐食性の劣化が生ずる。このため、上限を5%,下
限を0.5%とした。本発明ではこの他に下記の成分も
添加してよい。Nは高温強度の向上、オーステナイト相
形成に有効な元素であり、Cr,Siの量により、必要
に応じて添加されるものであって、その効果を得るため
には0.05%以上の添加が必要である。しかし、0.
4%超の添加は、合金中に気泡を発生させるとともに、
窒化物の形成が著しくなり、靱性劣化を招くため、上限
を0.4%,下限を0.05%とした。
[0011] W is effective in improving wear resistance properties, and in order to obtain this effect, it is necessary to add 0.5% or more. Also,
If added in excess of 5%, intermetallic compounds will precipitate, resulting in deterioration of workability and corrosion resistance. Therefore, the upper limit was set to 5% and the lower limit was set to 0.5%. In the present invention, the following components may also be added. N is an element effective in improving high-temperature strength and forming an austenite phase, and is added as necessary depending on the amount of Cr and Si. To obtain this effect, it must be added in an amount of 0.05% or more. is necessary. However, 0.
Addition of more than 4% will generate bubbles in the alloy and
Since the formation of nitrides becomes significant and causes deterioration of toughness, the upper limit was set at 0.4% and the lower limit was set at 0.05%.

【0012】Nb,Tiは、特に高温強度が要求される
場合に添加されるものであり、その効果を得るためには
、Nbは0.05%以上、Tiは0.02%以上必要で
ある。しかし、Nb,Tiがそれぞれ2%,0.5%を
越えると、それらの炭化物、窒化物の生成量が過剰とな
り、逆に強度低下をもたらす。従って、Nb添加量は0
.05〜2%、Ti添加量は0.02〜0.5%とした
[0012] Nb and Ti are added when high-temperature strength is particularly required, and in order to obtain this effect, Nb needs to be at least 0.05% and Ti needs to be at least 0.02%. . However, if Nb and Ti exceed 2% and 0.5%, respectively, the amount of carbides and nitrides produced will be excessive, which will conversely cause a decrease in strength. Therefore, the amount of Nb added is 0.
.. The amount of Ti added was 0.02 to 0.5%.

【0013】Cuはオーステナイト相形成に有効な元素
である。また、耐酸性を向上させる効果もあり、特に塩
酸露点腐食等の低温での耐食性が要求される場合に0.
2〜0.5%添加する。下限を0.2%にしたのは、こ
れ未満では十分な効果が得られないからであり、また、
上限を0.5%としたのは、0.5%を越えて添加する
と熱間加工性が著しく損なわれるからである。
[0013] Cu is an element effective in forming an austenite phase. It also has the effect of improving acid resistance, especially when corrosion resistance at low temperatures such as hydrochloric acid dew point corrosion is required.
Add 2-0.5%. The reason why the lower limit was set at 0.2% is because sufficient effects cannot be obtained with less than this, and also,
The reason why the upper limit is set to 0.5% is that if added in excess of 0.5%, hot workability will be significantly impaired.

【0014】本発明は、蒸気条件500℃まで使用可能
な、ごみ焼却炉ボイラ用過熱器管として開発、発明され
た合金である。本発明合金は単独で管として使用できる
ことはもちろんであるが、管外面の耐食耐摩耗性を重視
して創案された合金であるだけに、その効果を効率的に
活かすために、複層鋼管の外管材として使用することも
可能である。この場合、高温強度、耐水蒸気酸化性は内
管でもたせることになり、要求される特性を有する公知
のボイラ用鋼管を適宜選定し使用する。
The present invention is an alloy developed and invented as a superheater tube for a waste incinerator boiler that can be used under steam conditions up to 500°C. Of course, the alloy of the present invention can be used alone as a pipe, but since it was created with emphasis on corrosion and wear resistance on the outer surface of the pipe, in order to efficiently utilize its effects, it was necessary to use it as a multilayer steel pipe. It is also possible to use it as an outer tube material. In this case, the inner tube must have high temperature strength and steam oxidation resistance, and a known boiler steel tube having the required properties is appropriately selected and used.

【0015】次に、本発明の複層鋼管の製造法の一例を
述べる。通常のステンレス鋼の溶製−鋳造プロセスで製
造された所定の内管用ステンレス鋼ビレットの表面に、
本発明の外管用合金の粉末を高温静水圧プレス法(HI
P法)を用いて圧着する。この二重管ビレットを均熱し
た後、熱間押出法により所定のサイズに成形する。外管
素材が板または管である場合は、上に述べたHIP法を
用いて粉末を圧着するプロセスの代わりに、内管用ステ
ンレス鋼ビレットの表面に、外管材の成分を有する板を
巻き付けるか、または管をはめ込む工程の後に、外管素
材と内管材ビレットを溶接により接合し、このように製
造された二重管ビレットを用いて先に述べた方法により
複層鋼管を製造する。
Next, an example of the method for manufacturing the multilayer steel pipe of the present invention will be described. On the surface of the stainless steel billet for the specified inner tube manufactured by the normal stainless steel melting and casting process,
The powder of the alloy for outer tubes of the present invention is prepared by high-temperature isostatic pressing (HI).
P method). After soaking this double-tube billet, it is formed into a predetermined size by hot extrusion. When the outer tube material is a plate or tube, instead of the process of compressing powder using the HIP method described above, a plate having the components of the outer tube material is wrapped around the surface of the stainless steel billet for the inner tube, or Alternatively, after the step of fitting the tube, the outer tube material and the inner tube material billet are joined by welding, and the thus produced double tube billet is used to manufacture a multilayer steel tube by the method described above.

【0016】本発明の複層鋼管の製造方法は前記の製造
方法に限定されるものではなく、公知の複合(複層)鋼
管の製造方法を採用し得ることは言うまでもない。本発
明は、本発明合金を、低圧プラズマ溶射等の溶射法によ
って鋼管または同様の形状を有する高温用資材(例えば
、流動床ボイラ用散気ノズル)を複層化することによっ
ても実施することが可能である。
[0016] It goes without saying that the method for manufacturing a multilayer steel pipe of the present invention is not limited to the above-described manufacturing method, and that any known method for manufacturing a composite (multilayer) steel pipe can be employed. The present invention can also be carried out by layering the alloy of the present invention into a steel pipe or a high-temperature material having a similar shape (for example, a diffuser nozzle for a fluidized bed boiler) using a thermal spraying method such as low-pressure plasma spraying. It is possible.

【0017】[0017]

【実施例】表1のNo.1〜10に示す請求項1〜4の
いずれかの組成を有する合金それぞれ20kgを真空誘
導加熱炉を用いて溶解した。これを鍛造にて10mmの
板にし、1150℃で60min加熱後急冷した後、1
5×25×4mmの試験片を作製した。従来材には、表
1に示す化学成分のJIS規格SUS304,SUS3
10を用いた。腐食試験は、KCl,NaCl,FeC
l2 をモル比3:3:4で混合した合成灰を試験片片
面に均一に40mg/cm2 塗布し、0.2%HCl
+20%H2 O+5%O2 +balN2 の混合ガ
ス気流中で600℃×48hr加熱することにより行っ
た。600℃は蒸気温度500℃の場合、管外表面とし
て考えられる温度である。腐食試験結果の評価は、脱ス
ケール後の腐食減量で行った。摩耗試験は、流動床加熱
炉で600℃×200hr保持することにより行った。 流動媒体には粒径0.1〜0.3mmのアルミナ粒子を
用いた。腐食試験結果および摩耗試験結果を同じく表1
に示す。従来材の腐食量が30mg/cm2 以上であ
るのに対し、本発明合金の腐食量は15mg/cm2 
以下とはるかに高い耐食性を示している。また、摩耗量
においても本発明合金は従来材と比較して一桁ほど少な
い。このように本発明合金は塩化水素ガス、溶融塩酸塩
環境で極めて高い耐食性を示し、流動床環境においても
極めて高い耐摩耗性を有することが明らかとなった。
[Example] No. of Table 1. 20 kg of each of the alloys having the compositions according to any one of Claims 1 to 4 shown in Claims 1 to 10 were melted using a vacuum induction heating furnace. This was made into a 10mm plate by forging, heated at 1150℃ for 60min, and then rapidly cooled.
A test piece of 5 x 25 x 4 mm was prepared. Conventional materials include JIS standard SUS304 and SUS3 with chemical components shown in Table 1.
10 was used. Corrosion tests include KCl, NaCl, FeC
40 mg/cm2 of synthetic ash mixed with l2 at a molar ratio of 3:3:4 was applied uniformly to one surface of the test piece, and 0.2% HCl was applied.
This was carried out by heating at 600° C. for 48 hours in a mixed gas flow of +20%H2O+5%O2+balN2. When the steam temperature is 500°C, 600°C is the temperature that can be considered as the outer surface of the tube. The corrosion test results were evaluated based on the corrosion weight loss after descaling. The wear test was carried out by holding the sample at 600° C. for 200 hours in a fluidized bed heating furnace. Alumina particles with a particle size of 0.1 to 0.3 mm were used as the fluidizing medium. Corrosion test results and wear test results are also shown in Table 1.
Shown below. While the amount of corrosion of the conventional material is 30 mg/cm2 or more, the amount of corrosion of the alloy of the present invention is 15 mg/cm2.
It shows much higher corrosion resistance than the following. Furthermore, the amount of wear of the alloy of the present invention is about an order of magnitude lower than that of conventional materials. As described above, it has been revealed that the alloy of the present invention exhibits extremely high corrosion resistance in a hydrogen chloride gas and molten hydrochloride environment, and also has extremely high wear resistance in a fluidized bed environment.

【0018】[0018]

【表1】[Table 1]

【0019】[0019]

【発明の効果】本発明によれば、500℃までの蒸気温
度で使用される、あらゆる燃焼方式のごみ焼却炉ボイラ
の過熱器管等に対して、塩化水素ガス、溶融塩酸塩によ
る耐食性に優れ、流動床環境における耐摩耗性にも優れ
た材料を提供することが可能になり、産業の発展に寄与
するところ極めて大なるものがある。
[Effects of the Invention] According to the present invention, superheater tubes of garbage incinerator boilers of all combustion methods used at steam temperatures up to 500°C have excellent corrosion resistance due to hydrogen chloride gas and molten hydrochloride. This makes it possible to provide a material with excellent wear resistance in a fluidized bed environment, which greatly contributes to the development of industry.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】塩化水素ガス、溶融塩酸塩環境における腐食量
に及ぼすCo含有量の影響を示すグラフである。
FIG. 1 is a graph showing the influence of Co content on the amount of corrosion in a hydrogen chloride gas and molten hydrochloride environment.

【図2】流動床環境における摩耗量に及ぼすCo含有量
の影響を示すグラフである。
FIG. 2 is a graph showing the effect of Co content on the amount of wear in a fluidized bed environment.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】  重量%にて C:0.02〜0.1%、 Si:1〜5%、 Mn:5%以下、 Cr:10超〜20%、 Ni:30〜50%、 Mo:0.5〜3%、 Co:10〜40%、 W:0.5〜5% とし、残部がFeおよび不可避的不純物からなることを
特徴とするごみ焼却炉ボイラ用合金
Claim 1: C: 0.02 to 0.1%, Si: 1 to 5%, Mn: 5% or less, Cr: more than 10 to 20%, Ni: 30 to 50%, Mo: 0.5-3%, Co: 10-40%, W: 0.5-5%, with the balance consisting of Fe and inevitable impurities.
【請求項2】  重量%にて C:0.02〜0.1%、 Si:1〜5%、 Mn:5%以下、 Cr:10超〜20%、 Ni:30〜50%、 Mo:0.5〜3%、 Co:10〜40%、 W:0.5〜5% に加えて、さらに N:0.05〜0.4%、 Cu:0.2〜0.5% の1種または2種を含有し、残部がFeおよび不可避的
不純物からなることを特徴とするごみ焼却炉ボイラ用合
Claim 2: C: 0.02 to 0.1%, Si: 1 to 5%, Mn: 5% or less, Cr: more than 10 to 20%, Ni: 30 to 50%, Mo: 0.5-3%, Co: 10-40%, W: 0.5-5%, and further N: 0.05-0.4%, Cu: 0.2-0.5%. An alloy for waste incinerator boilers, characterized in that it contains one or two species, and the remainder consists of Fe and inevitable impurities.
【請求項3】  重量%にて C:0.02〜0.1%、 Si:1〜5%、 Mn:5%以下、 Cr:10超〜20%、 Ni:30〜50%、 Mo:0.5〜3%、 Co:10〜40%、 W:0.5〜5% に加えて、さらに Nb:0.05〜2%、 Ti:0.02〜0.5% の1種または2種を含有し、残部がFeおよび不可避的
不純物からなることを特徴とするごみ焼却炉ボイラ用合
Claim 3: C: 0.02 to 0.1%, Si: 1 to 5%, Mn: 5% or less, Cr: more than 10 to 20%, Ni: 30 to 50%, Mo: In addition to 0.5-3%, Co: 10-40%, W: 0.5-5%, one of Nb: 0.05-2%, Ti: 0.02-0.5% or An alloy for a waste incinerator boiler, characterized in that it contains two types, and the remainder consists of Fe and unavoidable impurities.
【請求項4】  重量%にて C:0.02〜0.1%、 Si:1〜5%、 Mn:5%以下、 Cr:10超〜20%、 Ni:30〜50%、 Mo:0.5〜3%、 Co:10〜40%、 W:0.5〜5% を含有するとともに N:0.05〜0.04%、 Cu:0.2〜0.5% の1種または2種および Nb:0.05〜2%、 Ti:0.02〜0.5% の1種または2種を含有し、残部がFeおよび不可避的
不純物からなることを特徴とするごみ焼却炉ボイラ用合
4. C: 0.02 to 0.1%, Si: 1 to 5%, Mn: 5% or less, Cr: more than 10 to 20%, Ni: 30 to 50%, Mo: 0.5-3%, Co: 10-40%, W: 0.5-5%, and one of the following: N: 0.05-0.04%, Cu: 0.2-0.5% or 2 types and 1 type or 2 types of Nb: 0.05-2%, Ti: 0.02-0.5%, and the remainder consists of Fe and inevitable impurities. Alloy for boiler
【請求項5】  公知のボイラ用鋼管を内管とし、請求
項1ないし4のうちのいずれかに記載の合金を外管とし
たことを特徴とするごみ焼却炉ボイラ用複層鋼管
5. A multilayer steel pipe for a waste incinerator boiler, characterized in that the inner pipe is a known steel pipe for boilers, and the outer pipe is made of the alloy according to any one of claims 1 to 4.
JP3101661A 1991-05-07 1991-05-07 Waste incinerator boiler alloy and multi-layer steel pipe Expired - Lifetime JP2561567B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3101661A JP2561567B2 (en) 1991-05-07 1991-05-07 Waste incinerator boiler alloy and multi-layer steel pipe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3101661A JP2561567B2 (en) 1991-05-07 1991-05-07 Waste incinerator boiler alloy and multi-layer steel pipe

Publications (2)

Publication Number Publication Date
JPH04329852A true JPH04329852A (en) 1992-11-18
JP2561567B2 JP2561567B2 (en) 1996-12-11

Family

ID=14306559

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3101661A Expired - Lifetime JP2561567B2 (en) 1991-05-07 1991-05-07 Waste incinerator boiler alloy and multi-layer steel pipe

Country Status (1)

Country Link
JP (1) JP2561567B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014520241A (en) * 2011-04-28 2014-08-21 ノヴァ ケミカルズ(アンテルナショナル)ソシエテ アノニム Furnace coil with protrusions on the outer surface
US9063294B2 (en) 2011-01-30 2015-06-23 Sony Corporation Wavelength plate, polarization conversion device using the same, illumination optical system, and image display apparatus
CN111139415A (en) * 2019-12-14 2020-05-12 张家港广大特材股份有限公司 Forming method of ultrahigh-strength GH4169
CN114231841A (en) * 2021-11-25 2022-03-25 普瑞特机械制造股份有限公司 Stainless steel powder produced by waste leftover material and preparation method thereof
WO2022102183A1 (en) 2020-11-13 2022-05-19 日本製鉄株式会社 Double pipe and welded joint
CN115961219A (en) * 2021-10-12 2023-04-14 宁波匠心快速成型技术有限公司 Stainless steel material for 3D printing, and preparation method and application thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4677092B2 (en) 2000-12-04 2011-04-27 株式会社アルバック Electrode forming method for flat panel display

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54160512A (en) * 1978-06-09 1979-12-19 Daido Steel Co Ltd Heat resistant cast alloy
JPH02203092A (en) * 1989-01-31 1990-08-13 Nippon Steel Corp Double layer steel pipe having corrosion resistance in environment burning fuel containing v, na, s, cl

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54160512A (en) * 1978-06-09 1979-12-19 Daido Steel Co Ltd Heat resistant cast alloy
JPH02203092A (en) * 1989-01-31 1990-08-13 Nippon Steel Corp Double layer steel pipe having corrosion resistance in environment burning fuel containing v, na, s, cl

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9063294B2 (en) 2011-01-30 2015-06-23 Sony Corporation Wavelength plate, polarization conversion device using the same, illumination optical system, and image display apparatus
JP2014520241A (en) * 2011-04-28 2014-08-21 ノヴァ ケミカルズ(アンテルナショナル)ソシエテ アノニム Furnace coil with protrusions on the outer surface
CN111139415A (en) * 2019-12-14 2020-05-12 张家港广大特材股份有限公司 Forming method of ultrahigh-strength GH4169
WO2022102183A1 (en) 2020-11-13 2022-05-19 日本製鉄株式会社 Double pipe and welded joint
KR20230106174A (en) 2020-11-13 2023-07-12 닛폰세이테츠 가부시키가이샤 Double pipe and welded joint
CN115961219A (en) * 2021-10-12 2023-04-14 宁波匠心快速成型技术有限公司 Stainless steel material for 3D printing, and preparation method and application thereof
CN114231841A (en) * 2021-11-25 2022-03-25 普瑞特机械制造股份有限公司 Stainless steel powder produced by waste leftover material and preparation method thereof

Also Published As

Publication number Publication date
JP2561567B2 (en) 1996-12-11

Similar Documents

Publication Publication Date Title
WO1997039153A1 (en) Alloy having high corrosion resistance in environment of high corrosiveness, steel pipe of the same alloy and method of manufacturing the same steel pipe
US20080241580A1 (en) Filler Metal Composition and Method for Overlaying Low NOx Power Boiler Tubes
JP3343576B2 (en) Overlay welding material and overlay cladding material
JP7059198B2 (en) Ferrite alloy
JPH04329852A (en) Alloy for waste incineration furnace boiler and multiple layered steel tube
JP2004276035A (en) Welded joint excellent in resistance to caulking of metallic composite pipe
JP6918114B2 (en) Use of nickel-chromium-molybdenum alloy
JP3222307B2 (en) Alloy and multi-layer steel pipe having corrosion resistance in an environment in which a fuel containing V, Na, S, Cl is burned
JPH046247A (en) Steel for waste incineration furnace boiler
JPH07103438B2 (en) Alloys and multi-layer steel pipes that have corrosion resistance in combustion environments containing V, Na, S, and Cl
JP2006265580A (en) High corrosion resistance heat-resisting alloy
JP7492106B2 (en) Welding material for ferritic heat-resistant steel and manufacturing method for welded joint of ferritic heat-resistant steel
JPH08232031A (en) Waste incineration furnace boiler alloy and multilayer steel tube
JPS6376854A (en) Heat resistant ferritic steel having superior strength at high temperature
JPH046248A (en) Steel for waste incineration furnace boiler
JPH02203092A (en) Double layer steel pipe having corrosion resistance in environment burning fuel containing v, na, s, cl
JP3527640B2 (en) Weld metal for high Cr ferritic heat resistant steel
JPH02213449A (en) Highly corrosion resistant steel for waste incineration waste heat boiler tube
JP3375868B2 (en) Low hydrogen coated arc welding rod for high Cr ferritic heat resistant steel
CN116100192B (en) Flux-cored wire and method for manufacturing flux-cored wire
JPH04221034A (en) Alloy having corrosion resistance in combustion environment in which v, na, s and cl are present and multi-ply steel tube
JPH08337850A (en) Austenitic stainless steel for welding structural high temperature apparatus
JP7016283B2 (en) High temperature corrosion resistant heat resistant alloy, welding powder and piping with overlay welding layer on the outer peripheral surface
JPS643944B2 (en)
JP3239678B2 (en) Composite tube for heat transfer of boiler using waste heat from waste incinerator

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19960604