JPH04329319A - Liquid level measuring by heat radiating type level sensor - Google Patents

Liquid level measuring by heat radiating type level sensor

Info

Publication number
JPH04329319A
JPH04329319A JP3100017A JP10001791A JPH04329319A JP H04329319 A JPH04329319 A JP H04329319A JP 3100017 A JP3100017 A JP 3100017A JP 10001791 A JP10001791 A JP 10001791A JP H04329319 A JPH04329319 A JP H04329319A
Authority
JP
Japan
Prior art keywords
sensor
output voltage
initial
voltage
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3100017A
Other languages
Japanese (ja)
Other versions
JP2504632B2 (en
Inventor
Ichiro Kataoka
一郎 片岡
Naoto Ishikawa
直人 石川
Hiroyuki Ogura
広幸 小倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yazaki Corp
Original Assignee
Yazaki Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yazaki Corp filed Critical Yazaki Corp
Priority to JP3100017A priority Critical patent/JP2504632B2/en
Priority to US07/877,284 priority patent/US5228340A/en
Publication of JPH04329319A publication Critical patent/JPH04329319A/en
Application granted granted Critical
Publication of JP2504632B2 publication Critical patent/JP2504632B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Measurement Of Levels Of Liquids Or Fluent Solid Materials (AREA)

Abstract

PURPOSE:To compensate an error caused by a difference between a sensor temperature and an ambient temperature. CONSTITUTION:In a liquid level measuring method by a heat radiating type level sensor, constant current is passed intermittently through a sensor FL which is a resistor submerged in the liquid so as to store the initial output voltage which is outputted from the sensor FL. The voltage outputted in lapse of a prescribed time from the initial condition is divided by the initial output voltage, and a steady output voltage stabilized from a rising inclination in proportion to the output time determined by the above division is computed for estimation. At the same time, the corrected steady output voltage V'' to for which a difference between a sensor temperature and the ambient temperature is compensated by the following corrective expression is calculated to be known so that it may be taken as the level measuring data of liquid. The correction expression is V''tc=Vtc+(V1-V'1)XG, in which V1 is the initial voltage, V'1 is the initial voltage in the previous measuring, Vtc is the abovementioned steady output voltage and G is a preset constant.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、例えば車両用燃料タン
ク内の燃料のレベルの検出に好適な放熱式レベルセンサ
による液体のレベル測定方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a liquid level measuring method using a heat dissipation type level sensor suitable for detecting the level of fuel in a vehicle fuel tank, for example.

【0002】0002

【従来の技術】放熱式レベルセンサは、抵抗体であるセ
ンサの液面に対する浸漬深さによって抵抗が変化するこ
とを利用したものである。パルス定電流を用いた方法に
付き略述すると、パルス方式において数秒間、一定の電
流を通電する。電流通電によりセンサ電圧は上昇し、そ
の上昇量は液面レベルに比例する。しかし、電流通電終
了時のFULLとEMPTYの電圧差は小さく、実用的
分解能が得られない。そこで前述の上昇量に代わり電圧
立上がりの平均的な傾きから液面レベルに比例した出力
を得ることにしたものである。具体的には数msecご
とにセンサ電圧をデジタル入力し、マイクロコンピュー
タにより一次近似処理を行い傾きを求め、出力分解能を
あげた。これを図12(a)、同図(b)により説明す
ると、図12(b)は横軸に時間をとり、縦軸に電流を
とった線図で、時間t0 でセンサONし、時刻t0 
′で安定し、時刻tf でOFFとなる定電流を間欠的
に繰り返すパルス電流を示す。図12(a)はこの通電
中のセンサ出力をサンプリングした状態を示し、時刻t
1 における初期電圧V1 、に始まりV2 、V3 
、……Vfが得られる。そこで各出力電圧を初期電圧V
1 で割り算し、周囲温度に対する温度補償を行う。そ
してこの出力の時間に対する上昇勾配を1次近似処理し
て図13に示すように傾きを求め、これから定常出力電
圧Vtc を求め、液体のレベル測定データとする。
2. Description of the Related Art A heat dissipation type level sensor utilizes the fact that the resistance of the sensor, which is a resistor, changes depending on the depth of immersion in the liquid level. To briefly describe the method using pulse constant current, a constant current is applied for several seconds in the pulse method. The sensor voltage increases as a result of current application, and the amount of increase is proportional to the liquid level. However, the voltage difference between FULL and EMPTY at the end of current supply is small, and practical resolution cannot be obtained. Therefore, it was decided to obtain an output proportional to the liquid level from the average slope of the voltage rise instead of the above-mentioned rise amount. Specifically, the sensor voltage was digitally input every few milliseconds, and a first-order approximation process was performed using a microcomputer to obtain the slope, thereby increasing the output resolution. This will be explained with reference to FIGS. 12(a) and 12(b). FIG. 12(b) is a diagram in which the horizontal axis represents time and the vertical axis represents current.
It shows a pulse current that intermittently repeats a constant current that becomes stable at tf and turns off at time tf. FIG. 12(a) shows a sampled state of the sensor output during this energization, and shows a state in which the sensor output is sampled at time t.
Starting from the initial voltage V1 at 1, V2, V3
,...Vf is obtained. Therefore, each output voltage is set to the initial voltage V
Divide by 1 to compensate for the ambient temperature. Then, the rising slope of this output with respect to time is subjected to first-order approximation processing to obtain the slope as shown in FIG. 13, and from this, the steady output voltage Vtc is obtained and used as liquid level measurement data.

【0003】また、上記出力につき説明すると、図4(
a)、同図(b)は周囲温度が高い場合における通電に
よるセンサ抵抗(出力電圧と同じ意味である)変化の勾
配aと、周囲温度が低い場合のセンサ抵抗変化の勾配b
とを示すもので、通電初期においては、センサの温度は
周囲温度と同じと考えられるので、周囲温度の高い方が
出力も大きくなる。
[0003] Also, to explain the above output, Fig. 4 (
a) and (b) show the slope a of the change in sensor resistance (which has the same meaning as the output voltage) due to energization when the ambient temperature is high, and the slope b of the change in sensor resistance when the ambient temperature is low.
In the initial stage of energization, the temperature of the sensor is considered to be the same as the ambient temperature, so the higher the ambient temperature, the greater the output.

【0004】図5(a)、同図(b)は上述したように
、各出力を初期電圧で割り算し、図4に示す周囲温度の
違いを補償した場合の勾配cで、周囲温度が高い場合で
も、低い場合でも勾配はほぼ一致する。
As mentioned above, FIGS. 5(a) and 5(b) show the slope c when each output is divided by the initial voltage to compensate for the difference in ambient temperature shown in FIG. The slopes are almost the same regardless of whether it is high or low.

【0005】図6は周囲温度がセンサ温度と同じ場合の
抵抗変化の勾配dと、周囲温度がセンサ温度より低い場
合の抵抗変化の勾配eとを比較した線図で、周囲の温度
に対し両抵抗変化とも上述の補償がなされ、初期抵抗も
同じ場合であるが、勾配eの方が出力(抵抗)が低下す
ることが分かる。
FIG. 6 is a diagram comparing the slope d of resistance change when the ambient temperature is the same as the sensor temperature and the slope e of resistance change when the ambient temperature is lower than the sensor temperature. Although the above-mentioned compensation is performed for both resistance changes and the initial resistance is the same, it can be seen that the output (resistance) is lower with the slope e.

【0006】すなわち、上述した温度補償は、センサの
通電初期の温度と、周囲の温度とが常に一致している場
合の補償であって、例えば周囲の温度が急変したような
場合は、センサの温度はその熱容量のためその変化に追
従せず、例えば図6のように出力が変化し、測定誤差が
発生する恐れがあった。
In other words, the above-mentioned temperature compensation is a compensation when the initial temperature of the sensor is always the same as the ambient temperature. For example, when the ambient temperature suddenly changes, the temperature of the sensor is Due to its heat capacity, the temperature does not follow the change, and the output changes as shown in FIG. 6, for example, and there is a possibility that a measurement error may occur.

【0007】[0007]

【発明が解決しようとする課題】上述したように、パル
ス式の放熱式レベルセンサによる液体のレベル測定方法
は、周囲温度の急変に対し、測定誤差が発生する恐れが
あった。
SUMMARY OF THE INVENTION As described above, the liquid level measuring method using a pulse-type heat dissipation type level sensor has the risk of generating measurement errors due to sudden changes in ambient temperature.

【0008】本発明は、上記問題点を解決するためにな
されたもので、周囲温度の急変に対しても測定誤差の発
生することのない放熱式レベルセンサによる液体のレベ
ル測定方法を提供することを目的とする。
The present invention has been made in order to solve the above-mentioned problems, and it is an object of the present invention to provide a liquid level measuring method using a heat dissipation type level sensor that does not cause measurement errors even when the ambient temperature suddenly changes. With the goal.

【0009】[0009]

【課題を解決するための手段】上記目的を達成するため
、本発明は、液体に浸漬された抵抗体であるセンサに間
欠的に定電流を流し、前記センサから出力される初期出
力電圧を記憶し、初期状態から所定時間経過までの出力
電圧を前記初期出力電圧で割り算し、この割り算により
得られた出力の時間に対する上昇勾配から定常状態とな
る定常出力電圧を演算予測しかつ下記の修正式によりセ
ンサ温度と周囲温度との差を補償した修正定常出力電圧
V″tc を演算して求めこれを液体のレベル測定デー
タとすることを特徴とする放熱式レベルセンサによる液
体のレベル測定方法。
[Means for Solving the Problems] In order to achieve the above object, the present invention intermittently supplies a constant current to a sensor, which is a resistor immersed in a liquid, and stores the initial output voltage output from the sensor. Then, divide the output voltage from the initial state until a predetermined time elapses by the initial output voltage, calculate and predict the steady output voltage that will be in the steady state from the rising slope of the output obtained by this division with respect to time, and use the following modified formula. A liquid level measuring method using a heat dissipation type level sensor, characterized in that a corrected steady output voltage V″tc which compensates for the difference between the sensor temperature and the ambient temperature is calculated and used as liquid level measurement data.

【0010】     V″tc =Vtc +(V1 −V′1 )
×G    ………修正式ただし、前記初期電圧をV1
 、前回の測定における初期電圧をV′1 、前記定常
出力電圧をVtc 、予め設定した定数をGとする。
[0010]V″tc=Vtc+(V1−V′1)
×G……Modified formula However, the above initial voltage is V1
, the initial voltage in the previous measurement is V'1, the steady output voltage is Vtc, and a preset constant is G.

【0011】[0011]

【作用】上記修正式に付き、詳述すると、センサ温度と
周囲温度の差により発生する誤差については、周囲温度
の変化とその速さを判断して出力の補償量を決める必要
がある。温度一定の空気に温度が違う物体を挿入するこ
とを考える。このとき、熱の移動すなわち熱流速(単位
体積、単位長さ当たりの熱の移動量)は物体と周囲媒体
(空気)の温度差に比例する。その物体の温度を一定の
時間間隔で測定することで、その時点(正確には各測定
の間)における周囲媒体と物体の温度差を推測できる。 例えば、測定した時間2点での物体の温度差が大きいほ
ど周囲と物体の温度が違う。検討するに際し、物体(セ
ンサ)の温度は、初期抵抗から求め、物体(センサ)と
周囲の温度差すなわち周囲温度の変化とその速さは、前
回計測した初期抵抗値と、今回計測した初期抵抗値の差
から判断した。そして、初期抵抗の差に実験から求めた
定数Gを掛け、センサ出力(定常出力電圧)に加え補償
した。この定数については、センサ形状、熱容量、コー
テイングの素材などにより変わるので、実験により求め
なければならない。
[Operation] To explain the above correction formula in detail, for errors caused by the difference between the sensor temperature and the ambient temperature, it is necessary to determine the amount of compensation for the output by determining the change in ambient temperature and its speed. Consider inserting an object at a different temperature into air at a constant temperature. At this time, the heat transfer, that is, the heat flow rate (the amount of heat transferred per unit volume and unit length) is proportional to the temperature difference between the object and the surrounding medium (air). By measuring the temperature of the object at regular time intervals, it is possible to estimate the temperature difference between the surrounding medium and the object at that point in time (more precisely, between each measurement). For example, the larger the difference in temperature of an object at two measured points in time, the different the temperature of the object from the surroundings. When considering this, the temperature of the object (sensor) is determined from the initial resistance, and the temperature difference between the object (sensor) and the surroundings, that is, the change in ambient temperature and its speed, are calculated using the initial resistance value measured last time and the initial resistance measured this time. Judgment was made from the difference in values. Then, the difference in initial resistance was multiplied by a constant G obtained from experiments, and added to the sensor output (steady output voltage) for compensation. This constant must be determined through experiments, as it varies depending on the sensor shape, heat capacity, coating material, etc.

【0012】(1)  センサ温度と周囲温度の差の検
出に付いて述べる。
(1) Detection of the difference between the sensor temperature and the ambient temperature will be described.

【0013】図7はセンサ温度と周囲温度とが等しく、
かつ温度が一定の場合には、センサ温度すなわち初期抵
抗値は変化しないことを示している。図8は周囲温度が
変化した場合のセンサ温度の追従性を示したもので、T
1 、T2 、……は周囲温度を示し、Ts1 、Ts
2 、……はセンサの温度(初期抵抗値R)を示す。周
囲温度が変化している時はセンサに温度差が生じる。
FIG. 7 shows that the sensor temperature and the ambient temperature are equal;
Moreover, when the temperature is constant, the sensor temperature, that is, the initial resistance value does not change. Figure 8 shows the followability of the sensor temperature when the ambient temperature changes.
1, T2, ... indicate the ambient temperature, Ts1, Ts
2, . . . indicate the temperature of the sensor (initial resistance value R). When the ambient temperature changes, a temperature difference occurs in the sensor.

【0014】図9(a)は縦軸にセンサ温度と周囲温度
との差(センサ温度−周囲温度)をとり、図9(b)は
縦軸に初期抵抗値の差、すなわち今回の測定の初期抵抗
値をR2 、前回の測定の初期抵抗値をR1 とし、そ
の差R2 −R1 を図9(a)の温度差の位置に対応
させて記してある。
In FIG. 9(a), the vertical axis shows the difference between the sensor temperature and the ambient temperature (sensor temperature - ambient temperature), and in FIG. 9(b), the vertical axis shows the difference in initial resistance value, that is, the difference in the current measurement. The initial resistance value is R2, the initial resistance value of the previous measurement is R1, and the difference R2 - R1 is shown corresponding to the temperature difference position in FIG. 9(a).

【0015】これらの対応によれば、センサ温度と周囲
温度との差は、初期抵抗値の差にほぼ比例する。
According to these correspondences, the difference between the sensor temperature and the ambient temperature is approximately proportional to the difference in initial resistance values.

【0016】(2)  センサ温度と周囲温度の差と出
力変化に付いて述べる。
(2) The difference between the sensor temperature and the ambient temperature and the output change will be described.

【0017】温度差がある場合は、ない場合に比べて出
力は変化する。すなわち、図5、図6から分かるように
、温度の差に比例して出力が変わる。
When there is a temperature difference, the output changes compared to when there is no temperature difference. That is, as can be seen from FIGS. 5 and 6, the output changes in proportion to the difference in temperature.

【0018】以上のことから、図10に示すように、セ
ンサ温度と周囲温度との差は初期抵抗値の差に比例し、
図11に示すように、センサ温度と周囲温度との差は、
出力変化に比例する。したがって、前回測定時の初期電
圧と今回の初期電圧との差に、実験により求めた定数G
を掛け、これを今回の測定で計算した定常出力電圧に加
えることで、センサ温度と周囲温度との差が出力に与え
る影響を補償できる。(この場合Gは負となる。)
From the above, as shown in FIG. 10, the difference between the sensor temperature and the ambient temperature is proportional to the difference in initial resistance value,
As shown in Figure 11, the difference between the sensor temperature and the ambient temperature is
Proportional to output change. Therefore, the difference between the initial voltage at the previous measurement and the current initial voltage is determined by the constant G
By multiplying by and adding this to the steady-state output voltage calculated in this measurement, it is possible to compensate for the effect that the difference between the sensor temperature and the ambient temperature has on the output. (In this case, G is negative.)

【0
019】
0
019]

【実施例】以下、本発明の詳細を図面を参照しながら実
施した装置とともに説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The details of the present invention will be explained below with reference to the drawings and an apparatus in which it was carried out.

【0020】最初に本発明方法を実施した装置につき図
1ないし図3を参照しながら説明し、その作用とともに
本発明の実施例として実施態様を説明する。
First, an apparatus implementing the method of the present invention will be described with reference to FIGS. 1 to 3, and its operation and embodiments will be described as examples of the present invention.

【0021】1は燃料タンク、FLはタンク1内に浸漬
した抵抗体となるセンサである。このセンサFLの両端
には定電流パルス回路2を通じて定電流Iが流される。 この電流を流すことによりレベルセンサFLの両端に生
じた出力電圧VpはA/D変換器3を通じてCPU4に
取り込まれる。
1 is a fuel tank, and FL is a sensor serving as a resistor immersed in the tank 1. A constant current I is applied to both ends of the sensor FL through a constant current pulse circuit 2. The output voltage Vp generated across the level sensor FL by flowing this current is taken into the CPU 4 through the A/D converter 3.

【0022】パルス回路2から発生する電流Iは図2(
b)に示すように、t0 〜tf までの周期を有する
大周期が冷却時間をおいて繰り返す態様となっており、
その全体の周期は3秒程度に設定されている。したがっ
て、電圧Vpは、図2(a)に示すように、その周期ご
とに初期状態から液面のレベル(レベルが低いと勾配が
大きく、高いと勾配が小さい)に応じた勾配で上昇する
サイクルを繰り返し、順次CPU4内に取り込まれ、そ
の時刻データとともに、順次CPU4内の記憶部に記憶
される(図1の拡大部分)。
The current I generated from the pulse circuit 2 is shown in FIG.
As shown in b), a large period having a period from t0 to tf is repeated after a cooling time,
The entire period is set to about 3 seconds. Therefore, as shown in FIG. 2(a), the voltage Vp rises from the initial state at a gradient corresponding to the level of the liquid level (the lower the level, the higher the slope is, and the higher the level, the lower the slope). This is repeated, sequentially taken into the CPU 4, and sequentially stored in the storage section of the CPU 4 together with the time data (enlarged portion in FIG. 1).

【0023】ここで、初期電圧、すなわちt1 での出
力電圧V1は、電流IによってまだセンサFLが加熱さ
れていない状態の出力電圧と見なすことができる。
Here, the initial voltage, ie, the output voltage V1 at t1, can be regarded as the output voltage in a state where the sensor FL is not yet heated by the current I.

【0024】つまり、従来の温度補償用抵抗体と同様の
抵抗値に基づく出力電圧と見なすことができ、CPU4
はこの初期出力電圧V1 を記憶し、CPUからなる演
算手段により、続けて入力される電圧V2 〜Vnの値
をこの初期電圧V1 で割算を行い、これらの時間に対
する上昇勾配から定常状態となる定常出力電圧Vtcを
演算予測して求める。これは周囲温度を補償した液体の
レベル測定データであるが、さらに、今回の測定におけ
る初期電圧値(初期抵抗値)から前回の測定における初
期電圧値(初期抵抗値)を差し引いた値に、あらかじめ
設定された定数Gを乗じた値を、上記定常出力電圧Vt
c に加えて修正定常出力電圧V″tc を算出する。 そしてこれをもって、センサFLと周囲との温度差によ
る出力差を補償した液体のレベル測定データとし、これ
を表示部5で表示する。なお、センサFLの熱容量は大
きいのでV0 〜Vfまでのサンプリング電圧では定常
的な電圧レベルにまでは至らない。
In other words, it can be regarded as an output voltage based on a resistance value similar to that of a conventional temperature compensation resistor, and the CPU 4
stores this initial output voltage V1, and divides the values of successively input voltages V2 to Vn by this initial voltage V1 using an arithmetic means consisting of a CPU, and a steady state is reached from the rising slope with respect to these times. The steady-state output voltage Vtc is calculated and calculated. This is liquid level measurement data that has been compensated for the ambient temperature, but it has also been added to the value obtained by subtracting the initial voltage value (initial resistance value) from the previous measurement from the initial voltage value (initial resistance value) for this measurement. The value multiplied by the set constant G is the steady output voltage Vt.
In addition to c, a corrected steady output voltage V″tc is calculated. Then, this is used as liquid level measurement data that compensates for the output difference due to the temperature difference between the sensor FL and the surroundings, and this is displayed on the display unit 5. Since the heat capacity of sensor FL is large, sampling voltages from V0 to Vf do not reach a steady voltage level.

【0025】他方、例えばt1 〜tfまでの期間、例
えば3秒間で10msecのサンプリング間隔であると
、300ケのサンプリング電圧Vpを得られる。
On the other hand, if the period from t1 to tf is, for example, 3 seconds and the sampling interval is 10 msec, 300 sampling voltages Vp can be obtained.

【0026】したがって、CPU4には図3に示すよう
に、その1次近似直線の上昇勾配から定常状態となる時
間tcにおける近似的な定常出力電圧Vtcを算出する
プログラムと、修正式による修正定常出力電圧を算出す
る演算プログラムが内蔵されている。
Therefore, as shown in FIG. 3, the CPU 4 includes a program for calculating the approximate steady-state output voltage Vtc at the time tc when the steady state is reached from the rising slope of the first-order approximate straight line, and a program for calculating the approximate steady-state output voltage Vtc at the time tc when the steady state is reached, and the modified steady-state output using the correction formula. It has a built-in calculation program to calculate voltage.

【0027】[0027]

【発明の効果】以上詳述したように、本発明はセンサ温
度と周囲温度との違いによる出力変化を補償するので、
周囲温度の急変のような場合でも、信頼性の高い、精度
のよい液体のレベル測定データを得ることができる。
[Effects of the Invention] As detailed above, the present invention compensates for output changes due to differences in sensor temperature and ambient temperature.
Even in cases such as sudden changes in ambient temperature, highly reliable and accurate liquid level measurement data can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明の測定方法を実施した装置の構成図。FIG. 1 is a configuration diagram of an apparatus that implements the measurement method of the present invention.

【図2】同じく実施態様における定電流とセンサ出力と
の関係を示す線図。
FIG. 2 is a diagram showing the relationship between constant current and sensor output in the same embodiment.

【図3】同じく実施態様における定常出力電圧と勾配と
の関係説明線図。
FIG. 3 is a diagram illustrating the relationship between steady output voltage and slope in the same embodiment.

【図4】センサの抵抗変化と周囲温度との関係説明線図
FIG. 4 is a diagram illustrating the relationship between sensor resistance change and ambient temperature.

【図5】温度補償されたセンサの抵抗変化を示す線図。FIG. 5 is a diagram showing the resistance change of a temperature compensated sensor.

【図6】センサ温度と周囲温度が違っている場合の抵抗
変化を示す線図。
FIG. 6 is a diagram showing resistance changes when sensor temperature and ambient temperature are different.

【図7】周囲温度一定の場合の周囲温度とセンサ温度と
の関係説明図。
FIG. 7 is an explanatory diagram of the relationship between ambient temperature and sensor temperature when the ambient temperature is constant.

【図8】周囲温度の変化に対するセンサ温度の追従性を
説明する線図。
FIG. 8 is a diagram illustrating the followability of sensor temperature to changes in ambient temperature.

【図9】センサと周囲との温度差と、前後の初期抵抗値
の差との関係を示す線図。
FIG. 9 is a diagram showing the relationship between the temperature difference between the sensor and the surroundings and the difference in initial resistance values before and after.

【図10】センサと周囲との温度差が初期抵抗値の差に
比例することを示す線図。
FIG. 10 is a diagram showing that the temperature difference between the sensor and the surroundings is proportional to the difference in initial resistance values.

【図11】センサと周囲との温度差が出力変化に比例す
ることを示す線図。
FIG. 11 is a diagram showing that the temperature difference between the sensor and the surroundings is proportional to the output change.

【図12】センサ電流とセンサ出力電圧との関係説明図
FIG. 12 is an explanatory diagram of the relationship between sensor current and sensor output voltage.

【図13】同じく定常出力電圧の説明図。FIG. 13 is an explanatory diagram of steady output voltage.

【符号の説明】[Explanation of symbols]

FL  センサ V1 、V′1   初期出力電圧 V1 、V2 、……Vn   出力電圧Vtc  定
常出力電圧 V″tc  修正定常出力電圧
FL Sensor V1, V'1 Initial output voltage V1, V2,...Vn Output voltage Vtc Steady output voltage V''tc Modified steady output voltage

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  液体に浸漬された抵抗体であるセンサ
に間欠的に定電流を流し、前記センサから出力される初
期出力電圧を記憶し、初期状態から所定時間経過までの
出力電圧を前記初期出力電圧で割り算し、この割り算に
より得られた出力の時間に対する上昇勾配から定常状態
となる定常出力電圧を演算予測しかつ下記の修正式によ
りセンサ温度と周囲温度との差を補償した修正定常出力
電圧V″tc を演算して求めこれを液体のレベル測定
データとすることを特徴とする放熱式レベルセンサによ
る液体のレベル測定方法。     V″tc =Vtc +(V1 −V′1 )
×G  ………修正式ただし、前記初期電圧をV1 、
前回の測定における初期電圧をV′1 、前記定常出力
電圧をVtc 、予め設定した定数をGとする。
1. A constant current is intermittently applied to a sensor which is a resistor immersed in a liquid, an initial output voltage outputted from the sensor is memorized, and the output voltage from the initial state until a predetermined period of time has elapsed is stored as the initial output voltage. Corrected steady-state output by dividing by the output voltage, calculating and predicting the steady-state output voltage from the rising slope of the output over time obtained by this division, and compensating for the difference between the sensor temperature and the ambient temperature using the correction formula below. A liquid level measurement method using a heat dissipation type level sensor, characterized in that a voltage V″tc is calculated and obtained and this is used as liquid level measurement data.V″tc = Vtc + (V1 − V′1)
×G……Modified formula However, the initial voltage is V1,
Let V'1 be the initial voltage in the previous measurement, Vtc be the steady output voltage, and G be a preset constant.
JP3100017A 1991-05-01 1991-05-01 Liquid level measurement method using heat radiation type level sensor Expired - Fee Related JP2504632B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP3100017A JP2504632B2 (en) 1991-05-01 1991-05-01 Liquid level measurement method using heat radiation type level sensor
US07/877,284 US5228340A (en) 1991-05-01 1992-05-01 Method and apparatus for heat radiating type level sensor measurement of liquid level

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3100017A JP2504632B2 (en) 1991-05-01 1991-05-01 Liquid level measurement method using heat radiation type level sensor

Publications (2)

Publication Number Publication Date
JPH04329319A true JPH04329319A (en) 1992-11-18
JP2504632B2 JP2504632B2 (en) 1996-06-05

Family

ID=14262788

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3100017A Expired - Fee Related JP2504632B2 (en) 1991-05-01 1991-05-01 Liquid level measurement method using heat radiation type level sensor

Country Status (1)

Country Link
JP (1) JP2504632B2 (en)

Also Published As

Publication number Publication date
JP2504632B2 (en) 1996-06-05

Similar Documents

Publication Publication Date Title
US7392691B1 (en) Method and apparatus for detecting the level of a liquid
US4425795A (en) Device for the electric monitoring of the level of a liquid contained in a container
US5056047A (en) Method and device for measuring fluidic or calorimetric parameters
JPH0615980B2 (en) Liquid level monitor
JPH0255723B2 (en)
JPH0625560B2 (en) Engine controller
US20200088561A1 (en) Liquid level meter, vaporizer equipped with the same, and liquid level detection method
KR20200025784A (en) System and method for correcting current value of shunt resistor
US4825383A (en) Process and device for measuring the level of the free surface of a liquid
US4770037A (en) Method for determining the flow of a fluid
JPH04329319A (en) Liquid level measuring by heat radiating type level sensor
JP2839328B2 (en) Heat dissipation type level sensor
JP4093099B2 (en) Liquid leak detection device
JP2648535B2 (en) Liquid level measurement method using heat radiation type level sensor
JPH1073525A (en) Measuring apparatus for specific gravity
US6528738B2 (en) Electronic balance/scale
JP2557570B2 (en) Liquid level measurement method with heat radiation type level sensor
JP3539093B2 (en) Temperature control device for measuring equipment
JP2839349B2 (en) Liquid level measurement method of heat dissipation type level sensor
JP2548252Y2 (en) Liquid level detector
WO2022004001A1 (en) Thermal flow meter, flow rate control device, thermal flow rate measurement method, and program for thermal flow meter
JPH04297831A (en) Method and device for measuring level of liquid by radiation type level sensor
JP3123265B2 (en) an electronic pot
JPH04118573A (en) Temperature compensation to semiconductor sensor
JP2003222546A (en) Flow measuring method, flow measuring device and heater control device

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees