JPH04329263A - Lithium secondary battery - Google Patents

Lithium secondary battery

Info

Publication number
JPH04329263A
JPH04329263A JP3128565A JP12856591A JPH04329263A JP H04329263 A JPH04329263 A JP H04329263A JP 3128565 A JP3128565 A JP 3128565A JP 12856591 A JP12856591 A JP 12856591A JP H04329263 A JPH04329263 A JP H04329263A
Authority
JP
Japan
Prior art keywords
active material
positive electrode
battery
electrode active
lithium secondary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3128565A
Other languages
Japanese (ja)
Inventor
Hiromitsu Mishima
洋光 三島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yuasa Corp
Original Assignee
Yuasa Corp
Yuasa Battery Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yuasa Corp, Yuasa Battery Corp filed Critical Yuasa Corp
Priority to JP3128565A priority Critical patent/JPH04329263A/en
Publication of JPH04329263A publication Critical patent/JPH04329263A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To provide the positive electrode active material for lithium battery having the high operation voltage and a high active material utilization factor. CONSTITUTION:LiCoO2 obtained by immediately cooling after the burning is used as the positive electrode active material of a lithium secondary battery to improve the active material utilization factor. As a result, discharge voltage and discharge capacity are enlarged to improve the energy density of the battery remarkably.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明はリチウム二次電池に関す
るもので、さらに詳しくはその正極に関するものである
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a lithium secondary battery, and more particularly to a positive electrode thereof.

【0002】0002

【従来の技術】リチウムを負極活物質として用いるリチ
ウム電池は、高電圧、高エネルギー密度及び高信頼性を
有する特徴から広く一般に用いられるようになってきた
が、これらは1次電池である。最近では、2次電池の研
究も盛んに行なわれ、一部では実用化もされている。し
かし、これらの電池の特性は未だに十分ではない。
2. Description of the Related Art Lithium batteries using lithium as a negative electrode active material have come to be widely used because of their characteristics of high voltage, high energy density, and high reliability, and these are primary batteries. Recently, research on secondary batteries has been actively conducted, and some have even been put into practical use. However, the characteristics of these batteries are still not sufficient.

【0003】最近、リチウム電池の一つの特徴である高
電圧を有した電池として、動作電圧が4V前後である電
池が発表され注目を集めている。動作電圧が4V前後を
示す活物質としてはK.Mizushimaらによって
Mat.Res.Bull.,Vol.15,pp.7
83,1980.の中で報告されたLiCoO2 が知
られている。
[0003] Recently, a battery with an operating voltage of around 4V has been announced and is attracting attention as a battery having high voltage, which is one of the characteristics of lithium batteries. As an active material whose operating voltage is around 4V, K. Mat. by Mizushima et al. Res. Bull. , Vol. 15, pp. 7
83, 1980. LiCoO2, which was reported in

【0004】0004

【発明が解決しようとする課題】そこで、本発明者はL
iCoO2 について鋭意研究を行なったところ、Mi
zushimaらの方法に従い焼成したものを室温まで
徐冷して得られたLiCoO2 は利用度が低く、電圧
が高いにもかかわらずエネルギー密度が比較的小さいと
いう問題点があることがわかった。
[Problem to be solved by the invention] Therefore, the inventors of the present invention
After conducting intensive research on iCoO2, we found that Mi
It has been found that LiCoO2 obtained by firing and slowly cooling to room temperature according to the method of Zushima et al. has a problem of low utilization and relatively low energy density despite high voltage.

【0005】本発明は上記問題点を解消するために、利
用率の高いLiCoO2 を得ることを目的とする。
[0005] In order to solve the above-mentioned problems, the present invention aims to obtain LiCoO2 with a high utilization rate.

【0006】[0006]

【課題を解決するための手段】本発明は、焼成後急冷し
て得られたLiCoO2 を正極活物質として用いたリ
チウム二次電池である。
[Means for Solving the Problems] The present invention is a lithium secondary battery using LiCoO2 obtained by rapid cooling after firing as a positive electrode active material.

【0007】[0007]

【作  用】焼成後急冷して得られたLiCoO2 は
徐冷して得られたLiCoO2 とは異なり、結晶性は
高いものの柔らかく粉砕が容易であり、粒度及び形状が
均一になり易い。また、電子伝導性が一桁高い値を示す
。このような変化は、急冷により大きな粒子に成長せず
、高い結晶性を有した小さい粒子が多く成長したためで
あると考えられる。徐冷した場合に生成するLiCoO
2 も高い結晶性を有しているものと考えられるが、粉
砕の際にかかる大きな力によって結晶性が低下し特性が
低下するものと考えられる。
[Operation] Unlike LiCoO2 obtained by slow cooling, LiCoO2 obtained by rapid cooling after firing has high crystallinity, but is soft and easy to crush, and the particle size and shape tend to be uniform. It also exhibits an order of magnitude higher electronic conductivity. This change is thought to be due to the fact that many small particles with high crystallinity grew instead of growing into large particles due to rapid cooling. LiCoO produced when slow cooling
2 is also considered to have high crystallinity, but it is thought that the large force applied during crushing reduces the crystallinity and deteriorates the properties.

【0008】[0008]

【実施例】以下本発明の詳細について実施例に基づき説
明する。
EXAMPLES The details of the present invention will be explained below based on examples.

【0009】(実施例)正極活物質の調製にあたっては
、市販特級試薬の炭酸リチウム37gと炭酸コバルト1
19gとをボールミルで粉砕しながら十分混合し、混合
物をアルミナ坩堝に入れ空気中にて650℃で5時間仮
焼成した後、950℃で20時間焼成した。焼成後坩堝
を空気中に取り出し、室温まで急冷し、粉砕したものを
正極活物質Aとした。
(Example) In preparing the positive electrode active material, 37 g of lithium carbonate, a commercially available special grade reagent, and 1 cobalt carbonate were used.
The mixture was thoroughly mixed while being crushed with a ball mill, and the mixture was placed in an alumina crucible and calcined in air at 650°C for 5 hours, and then at 950°C for 20 hours. After firing, the crucible was taken out into the air, rapidly cooled to room temperature, and the resulting material was pulverized, which was used as positive electrode active material A.

【0010】比較のために、上記と同様にして焼成した
ものを室温まで徐冷後、粉砕して正極活物質Bを得た。
For comparison, a material baked in the same manner as above was slowly cooled to room temperature and then pulverized to obtain positive electrode active material B.

【0011】得られた正極活物質A及びBのX線回折パ
ターンを図1に示す。図1より、得られた正極活物質が
LiCoO2 であることが判る。
The X-ray diffraction patterns of the obtained positive electrode active materials A and B are shown in FIG. From FIG. 1, it can be seen that the obtained positive electrode active material is LiCoO2.

【0012】このようにして得られた活物質A及びBの
電子伝導度の測定結果を表1に示す。表1から急冷して
得られた正極活物質Aは、徐冷して得られたBに比べ電
子伝導度が1桁高く、電子が流れ易いことが判る。
Table 1 shows the measurement results of the electronic conductivity of the active materials A and B thus obtained. From Table 1, it can be seen that the positive electrode active material A obtained by rapid cooling has an electronic conductivity one order of magnitude higher than that of B obtained by slow cooling, and electrons flow easily.

【0013】[0013]

【0014】このような正極活物質A及びBを用いて次
のようにしてボタン型リチウム電池を試作した。正極活
物質とアセチレンブラック及びポリテトラフルオロエチ
レン粉末とを重量比85:10:5で混合し、トルエン
を加えて十分混練した。これをローラープレスにより厚
み0.8mmのシート状に成形した。次にこれを16m
mの円形に打ち抜き減圧下200℃で15時間熱処理し
正極を得た。負極は厚み0.3mmのリチウム箔を直径
15mmの円形に打ち抜き、集電体を介して負極缶に圧
着して用いた。非水電解液にはγ−ブチロラクトンに1
mol/1のLiBF4 を溶解したものを用い、セパ
レータにはポリプロピレン製微孔薄膜を用いた。上記正
極、負極、電解液及びセパレータを用いて直径20mm
、厚さ1.6mmのボタン型のリチウム電池を作製した
A button-type lithium battery was prototyped using the positive electrode active materials A and B in the following manner. The positive electrode active material, acetylene black, and polytetrafluoroethylene powder were mixed at a weight ratio of 85:10:5, toluene was added, and the mixture was sufficiently kneaded. This was molded into a sheet with a thickness of 0.8 mm using a roller press. Next, add this to 16m
A positive electrode was obtained by punching out a circular shape with a diameter of m and heat-treating it under reduced pressure at 200° C. for 15 hours. The negative electrode was used by punching out a lithium foil with a thickness of 0.3 mm into a circular shape with a diameter of 15 mm, and press-fitting it to the negative electrode can via a current collector. The non-aqueous electrolyte contains γ-butyrolactone and 1
A solution containing mol/1 LiBF4 was used, and a microporous thin film made of polypropylene was used as a separator. Using the above positive electrode, negative electrode, electrolyte and separator, the diameter is 20 mm.
A button-shaped lithium battery with a thickness of 1.6 mm was manufactured.

【0015】このようにして作製した電池は、正極活物
質Aを用いたものを本発明電池、正極活物質Bを用いた
ものを比較電池とする。本発明電池及び比較電池を用い
て充放電試験を行った。試験条件は、充電電流3mA、
充電終止電圧4.5V、放電電流3mA、放電終止電圧
3.0Vとした。この試験で得られた放電電圧と放電容
量の関係を図2に示す。図2より本発明電池は比較電池
よりも大きな放電容量をもっていることが判る。このこ
とから本発明により得られた正極活物質Aは利用率が高
いことが判る。
[0015] Among the batteries thus produced, one using positive electrode active material A was used as a battery of the present invention, and one using positive electrode active material B was used as a comparison battery. A charge/discharge test was conducted using the battery of the present invention and the comparative battery. The test conditions were: charging current 3mA;
The final charge voltage was 4.5 V, the discharge current was 3 mA, and the final discharge voltage was 3.0 V. FIG. 2 shows the relationship between discharge voltage and discharge capacity obtained in this test. It can be seen from FIG. 2 that the battery of the present invention has a larger discharge capacity than the comparative battery. This shows that the positive electrode active material A obtained according to the present invention has a high utilization rate.

【0016】[0016]

【発明の効果】上述した如く、焼成後急冷して得られた
LiCoO2 を活物質とした正極は、徐冷して得られ
たLiCoO2 を活物質とした正極に比べて高い利用
率を示す。その結果、本発明による正極と負極及び電解
質とを具備したリチウム二次電池は、従来のリチウム二
次電池に比べ放電電圧が高く、さらに放電容量の大きな
ものとなり、エネルギー密度を大幅に改善することがで
きる。
As described above, a positive electrode using LiCoO2 as an active material obtained by rapid cooling after firing exhibits a higher utilization rate than a positive electrode using LiCoO2 as an active material obtained by slow cooling. As a result, a lithium secondary battery equipped with a positive electrode, a negative electrode, and an electrolyte according to the present invention has a higher discharge voltage and a larger discharge capacity than conventional lithium secondary batteries, and has a significantly improved energy density. Can be done.

【0017】なお、本発明は実施例に記載された活物質
の製造方法、正極、負極、電解質、セパレータ及び電池
形状などに限定されるものではなく、急冷過程を2段階
に分けたり、炉内で急冷速度をコントロールする場合に
も適用可能である。また負極に有機焼成体を用いるもの
や電解質、セパレータの代わりに固体電解質を用いるも
のなどにも適用可能である。
[0017] The present invention is not limited to the active material manufacturing method, positive electrode, negative electrode, electrolyte, separator, battery shape, etc. described in the examples, and the rapid cooling process may be divided into two stages or It can also be applied to control the quenching rate. It is also applicable to those that use an organic fired body for the negative electrode, those that use a solid electrolyte instead of an electrolyte, or a separator.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】正極活物質A及びBのX線回折パターンを示し
た図である。
FIG. 1 is a diagram showing X-ray diffraction patterns of positive electrode active materials A and B.

【図2】放電容量と放電電圧との関係図である。FIG. 2 is a relationship diagram between discharge capacity and discharge voltage.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  正極活物質として、焼成後急冷して得
られたLiCoO2 を用いたことを特徴とするリチウ
ム二次電池。
1. A lithium secondary battery characterized in that LiCoO2 obtained by rapid cooling after firing is used as a positive electrode active material.
JP3128565A 1991-04-30 1991-04-30 Lithium secondary battery Pending JPH04329263A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3128565A JPH04329263A (en) 1991-04-30 1991-04-30 Lithium secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3128565A JPH04329263A (en) 1991-04-30 1991-04-30 Lithium secondary battery

Publications (1)

Publication Number Publication Date
JPH04329263A true JPH04329263A (en) 1992-11-18

Family

ID=14987907

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3128565A Pending JPH04329263A (en) 1991-04-30 1991-04-30 Lithium secondary battery

Country Status (1)

Country Link
JP (1) JPH04329263A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6579475B2 (en) * 1999-12-10 2003-06-17 Fmc Corporation Lithium cobalt oxides and methods of making same
US6589499B2 (en) 1998-11-13 2003-07-08 Fmc Corporation Layered lithium cobalt oxides free of localized cubic spinel-like structural phases and method of making same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6589499B2 (en) 1998-11-13 2003-07-08 Fmc Corporation Layered lithium cobalt oxides free of localized cubic spinel-like structural phases and method of making same
US6620400B2 (en) 1998-11-13 2003-09-16 Fmc Corporation Method of producing layered lithium metal oxides free of localized cubic spinel-like structural phases
US7074382B2 (en) 1998-11-13 2006-07-11 Fmc Corporation Layered lithium metal oxides free of localized cubic spinel-like structural phases and methods of making same
US6579475B2 (en) * 1999-12-10 2003-06-17 Fmc Corporation Lithium cobalt oxides and methods of making same
US6932922B2 (en) 1999-12-10 2005-08-23 Fmc Corporation Lithium cobalt oxides and methods of making same

Similar Documents

Publication Publication Date Title
EP3296267A1 (en) Spherical or spherical-like lithium ion battery cathode material, preparation method and application thereof
EP0709906B1 (en) Non-aqueous electrolyte secondary cell
JP7271848B2 (en) Method for producing positive electrode active material for lithium ion secondary battery
CN114566646B (en) Nickel-doped lithium iron manganese phosphate positive electrode material and preparation method and application thereof
JPH0963590A (en) Nonaqueous electrolyte secondary battery
JPH02139861A (en) Non-aqueous electrolyte secondary battery
EP4397792A1 (en) Single crystal ternary positive electrode material, fabrication method therefor, and lithium-ion battery
JP2002151066A (en) Negative electrode material for lithium secondary battery
CN116706050A (en) Medium-low nickel monocrystal ternary positive electrode material, preparation method thereof and battery
JP2001297761A (en) Positive electrode activator for nonaqueous electrolyte secondary cell
CN116062797A (en) Positive electrode material and battery containing same
JPH04253162A (en) Lithium secondary battery
JP2001503186A (en) Li (lower) x CoO (lower 2) electrode of secondary lithium battery with high capacity and cycle stability
JP3268924B2 (en) Non-aqueous electrolyte battery
JPH04329263A (en) Lithium secondary battery
JP2989230B2 (en) Non-aqueous battery
JPH01221859A (en) Secondary battery
WO1994007275A1 (en) Lithium secondary cell
JPH0521066A (en) Lithium secondary battery
JPH05290851A (en) Nonaqueous electrolyte battery
CN117936776A (en) Graphite negative electrode active material, negative electrode sheet, secondary battery and device
JPH10228895A (en) Lithium secondary battery
JPH11126613A (en) Nonaqueous electrolyte secondary battery
CN118125508A (en) High-magnification ultrahigh-voltage lithium cobalt oxide positive electrode material, preparation and application
JPH06215773A (en) Lithium secondary battery