JPH04329219A - Oxide superconductor - Google Patents

Oxide superconductor

Info

Publication number
JPH04329219A
JPH04329219A JP3099239A JP9923991A JPH04329219A JP H04329219 A JPH04329219 A JP H04329219A JP 3099239 A JP3099239 A JP 3099239A JP 9923991 A JP9923991 A JP 9923991A JP H04329219 A JPH04329219 A JP H04329219A
Authority
JP
Japan
Prior art keywords
conductor
conductors
current
magnetic field
bundle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3099239A
Other languages
Japanese (ja)
Other versions
JP3282186B2 (en
Inventor
Nobuhiro Shibuta
渋田 信広
Kenichi Sato
謙一 佐藤
Hideto Mukai
向井 英仁
Toru Okazaki
岡▲崎▼ 徹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP09923991A priority Critical patent/JP3282186B2/en
Publication of JPH04329219A publication Critical patent/JPH04329219A/en
Application granted granted Critical
Publication of JP3282186B2 publication Critical patent/JP3282186B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

PURPOSE:To provide an oxide superconductor of which the electric superconductive characteristics are less deteriorated even when a large electric current is passed therethrough. CONSTITUTION:Conductors 1 and 4 are longitudinally disposed in a manner that they are circumferentially arranged in parallel. In each of the conductor arrangements 1 and 4, adjacent two of the conductors are alternately located so that one may be a forward current path and the other a backward current path.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】この発明は、酸化物超電導導体に
関するものであり、特に大電流を流すブスバー用導体な
どに用いることのできる酸化物超電導導体の構造に関す
るものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to oxide superconducting conductors, and more particularly to the structure of oxide superconducting conductors that can be used as conductors for bus bars through which large currents flow.

【0002】0002

【従来の技術】近年、より高い臨界温度を示す超電導材
料として、イットリウム系、ビスマス系、およびタリウ
ム系などの酸化物超電導体が注目されている。
2. Description of the Related Art In recent years, yttrium-based, bismuth-based, and thallium-based oxide superconductors have attracted attention as superconducting materials exhibiting higher critical temperatures.

【0003】これらは、液体窒素温度(77.3K)で
超電導状態となるため、ケーブル導体、コイルおよび超
電導マグネットへの電流リードなどとしての応用が期待
されている。
Since these become superconducting at liquid nitrogen temperature (77.3 K), they are expected to be used as current leads for cable conductors, coils, and superconducting magnets.

【0004】現在使用されている、あるいは将来使用が
予定されている大電流用ブスバー導体は、通電電流が3
0KA〜45KAのものなどがある。
[0004] The large current busbar conductors currently in use or scheduled to be used in the future have a current of 3.
There are those of 0KA to 45KA.

【0005】[0005]

【発明が解決しようとする課題】図1は、77.3Kに
おけるBi系超電導線材のJc(臨界電流密度)−B(
磁束密度)特性を示す図である。上述のような大電流が
、1本の導体に通電されると、自己磁場が3000〜5
000ガウスになる。図1から明らかなように、このよ
うな高い磁場の下では、臨界電流密度(Jc)は、1/
3〜1/5に低下してしまう。
[Problems to be Solved by the Invention] Figure 1 shows the Jc (critical current density) - B (
FIG. 2 is a diagram showing magnetic flux density characteristics. When a large current as described above is applied to a single conductor, the self-magnetic field increases from 3000 to 5
It becomes 000 Gauss. As is clear from Figure 1, under such a high magnetic field, the critical current density (Jc) is reduced to 1/
It drops to 3 to 1/5.

【0006】この発明の目的は、大電流が流れても超電
導特性の低下が少ない酸化物超電導導体を提供すること
にある。
An object of the present invention is to provide an oxide superconducting conductor whose superconducting properties are less degraded even when a large current flows.

【0007】[0007]

【課題を解決するための手段】この発明の酸化物超電導
導体は、長手方向に沿って周方向に環状に並んで導体が
配置されており、導体が隣接した導体間で電流の往路お
よび復路となるように交互に配置されていることを特徴
としている。
[Means for Solving the Problems] In the oxide superconducting conductor of the present invention, the conductors are arranged in a ring shape in the circumferential direction along the longitudinal direction, and the conductors are connected to the forward and backward paths of current between adjacent conductors. It is characterized by being arranged alternately so that

【0008】図2は、この発明の一実施例を示す断面図
である。図2を参照して、パイプ状の外部支持体2の外
周面には、等間隔に10本のフィン3が外方に突出して
形成されており、このフィン3の間に10本の外部導体
束1が配置されている。外部導体束1は、テープ状の線
材を横に3列に並べ、これを複数積層することによって
束に形成された導体である。
FIG. 2 is a sectional view showing an embodiment of the present invention. Referring to FIG. 2, ten fins 3 are formed at equal intervals on the outer circumferential surface of the pipe-shaped external support 2 and protrude outward, and ten external conductors are arranged between the fins 3. Bundle 1 is placed. The external conductor bundle 1 is a conductor formed into a bundle by arranging tape-shaped wires in three horizontal rows and stacking a plurality of these.

【0009】外部支持体2の中にも、またパイプ状の内
部支持体5が設けられている。内部支持体5の外周面に
は、10個のフィン6が外側に向かって突出して等間隔
で設けられている。このフィン6の間に、内部導体束4
が設けられており、合計10本の内部導体束4が内部支
持体5のまわりに配置されている。内部導体束4は、テ
ープ状の線材を横に2列並べ、これを複数層積重ねるこ
とにより束に構成されている。
A pipe-shaped internal support 5 is also provided within the external support 2 . On the outer peripheral surface of the internal support body 5, ten fins 6 are provided at equal intervals and protrude outward. Between these fins 6, an inner conductor bundle 4
A total of ten inner conductor bundles 4 are arranged around the inner support 5. The internal conductor bundle 4 is formed into a bundle by arranging two tape-shaped wires horizontally and stacking a plurality of layers.

【0010】図2に示すように、外部導体束1および内
部導体束4は、それぞれ隣接した導体間で電流の往路お
よび復路となるように交互に配置されている。
As shown in FIG. 2, the outer conductor bundle 1 and the inner conductor bundle 4 are arranged alternately so that the current flows between adjacent conductors in an outgoing and incoming path.

【0011】[0011]

【作用】図3は、半径aの線材における電流Iと磁界H
の関係を示す図である。導体の中心からの距離rが導体
の半径aよりも大きい場合には、以下の数1のような式
で表わされる磁界が発生する。
[Operation] Figure 3 shows the current I and magnetic field H in a wire with radius a.
FIG. When the distance r from the center of the conductor is larger than the radius a of the conductor, a magnetic field expressed by the following equation 1 is generated.

【0012】0012

【数1】[Math 1]

【0013】また導体の中心からの距離rが導体の半径
aよりも小さいときには、以下の数2の式で表わされる
磁界Hが発生する。
Further, when the distance r from the center of the conductor is smaller than the radius a of the conductor, a magnetic field H expressed by the following equation 2 is generated.

【0014】[0014]

【数2】[Math 2]

【0015】以上の数1および数2の式から線材の中心
からの距離rと磁界Hとの関係を図に表わすと、図4の
ようになる。
FIG. 4 shows the relationship between the distance r from the center of the wire and the magnetic field H from the above equations 1 and 2.

【0016】図4から明らかなように、導体の表面、す
なわちr=aの部分で、生ずる磁界が最も大きくなる。
As is clear from FIG. 4, the magnetic field generated is largest at the surface of the conductor, ie, at the portion where r=a.

【0017】たとえば、直径40mmの導体に、45K
Aの電流を通電すると、導体表面の磁界は、以下の数3
で表わされる。
For example, 45K is applied to a conductor with a diameter of 40mm.
When a current of A is applied, the magnetic field on the surface of the conductor is as follows:
It is expressed as

【0018】[0018]

【数3】[Math 3]

【0019】また磁束密度は、以下の数4で表わされる
Further, the magnetic flux density is expressed by the following equation 4.

【0020】[0020]

【数4】[Math 4]

【0021】発生する磁界を小さくするためには、電流
Iを小さくする必要があり、そのため、この発明のよう
に導体を複数に分割することが好ましい。
In order to reduce the generated magnetic field, it is necessary to reduce the current I, and therefore it is preferable to divide the conductor into a plurality of parts as in the present invention.

【0022】この発明では、さらに複数の分割した導体
を、隣接した導体間で電流の往路および復路となるよう
に交互に配置しており、これによって他の導体からの磁
界の影響を相殺するようにしている。
[0022] In the present invention, a plurality of divided conductors are further arranged alternately so that the current flows between adjacent conductors in an outgoing and incoming path, thereby canceling out the effects of magnetic fields from other conductors. I have to.

【0023】[0023]

【実施例】図2に示すような、この発明に従う酸化物超
電導導体を作成した。外部導体束1としては、6500
Aの導体を10本、内部導体束4としては、2500A
の導体を10本、図2に示すように隣接する導体間で電
流の往路(+)および復路(−)となるよう交互に配置
させる。この導体に45KAの電流を流したところ、導
体の最大磁束密度Bmは1600ガウスであった。
EXAMPLE An oxide superconducting conductor according to the present invention as shown in FIG. 2 was prepared. As the outer conductor bundle 1, 6500
10 conductors of A, the inner conductor bundle 4 is 2500A
As shown in FIG. 2, ten conductors are arranged alternately so that adjacent conductors form forward (+) and backward (-) current paths. When a current of 45 KA was passed through this conductor, the maximum magnetic flux density Bm of the conductor was 1600 Gauss.

【0024】比較として、図5に示すような導体を作成
した。図5に示す比較の導体では、外部導体束1および
内部導体束4の一方側に導体の往路(+)を集め、他方
側に導体の復路(−)をそれぞれ集め酸化物超電導導体
とした。この導体に、45KAの電流量を流したところ
、導体の最大磁束密度Bmは、3870ガウスであった
For comparison, a conductor as shown in FIG. 5 was prepared. In the comparative conductor shown in FIG. 5, the outward path (+) of the conductor was collected on one side of the outer conductor bundle 1 and the internal conductor bundle 4, and the return path (-) of the conductor was collected on the other side, making it an oxide superconducting conductor. When a current of 45 KA was passed through this conductor, the maximum magnetic flux density Bm of the conductor was 3870 Gauss.

【0025】図2に示す実施例および図5に示す比較例
の酸化物超電導導体について、磁束密度分布を解析した
ところ、図2に示す実施例では、1000ガウス以上の
磁束密度の部分が30%であったのに対し、図5に示す
比較例の超電導導体では、1000ガウス以上の磁束密
度となる部分が80%も存在した。
When the magnetic flux density distributions of the oxide superconducting conductors of the example shown in FIG. 2 and the comparative example shown in FIG. 5 were analyzed, it was found that in the example shown in FIG. On the other hand, in the superconducting conductor of the comparative example shown in FIG. 5, 80% of the portions had a magnetic flux density of 1000 Gauss or more.

【0026】表1は、図2に示す実施例における磁束密
度とその領域の割合を示している。
Table 1 shows the magnetic flux density and its area ratio in the embodiment shown in FIG.

【0027】[0027]

【表1】[Table 1]

【0028】表2は図5に示す比較例における磁束密度
とその領域の割合を示している。
Table 2 shows the magnetic flux density and its area ratio in the comparative example shown in FIG.

【0029】[0029]

【表2】[Table 2]

【0030】Bi系超電導線では、磁束密度が1000
ガウスの部分で、臨界電流密度(Jc)は、ゼロ磁場の
場合の1/2に低下する。また3500ガウスであると
、臨界電流密度は1/3に低下する。
[0030] Bi-based superconducting wire has a magnetic flux density of 1000
In the Gaussian section, the critical current density (Jc) drops to 1/2 of that in the zero field case. Further, at 3500 Gauss, the critical current density is reduced to 1/3.

【0031】したがって、表1より計算すると、この発
明に従う実施例の酸化物超電導導体の磁束密度は、ゼロ
磁場のときの特性の83%になる。
Accordingly, when calculated from Table 1, the magnetic flux density of the oxide superconducting conductor of the example according to the present invention is 83% of the characteristic at zero magnetic field.

【0032】これに対し、比較例の酸化物超電導体は、
表2から計算すると、ゼロ磁場のときの43%になる。
On the other hand, the oxide superconductor of the comparative example has
Calculating from Table 2, it is 43% of the zero magnetic field.

【0033】したがって、この発明に従うことにより、
性能をほぼ2倍にすることができ、2倍高い臨界電流密
度を得ることができる。このため、導体自体のコンパク
ト化を図ることもできる。
[0033] Therefore, by following this invention,
Performance can be almost doubled and twice as high critical current density can be obtained. Therefore, the conductor itself can be made more compact.

【0034】[0034]

【発明の効果】以上説明したように、この発明に従えば
、大電流を流した際にも、臨界電流密度の低下を著しく
抑制することができる。したがって、導体のコンパクト
化を図ることができる。
As explained above, according to the present invention, even when a large current is passed, a decrease in the critical current density can be significantly suppressed. Therefore, the conductor can be made more compact.

【0035】このため、この発明に従う酸化物超電導導
体は、ケーブル導体、ブスバー導体、コイルおよび超電
導マグネットへの電流リードなどとして有効に用いるこ
とができる。
Therefore, the oxide superconducting conductor according to the present invention can be effectively used as a cable conductor, a busbar conductor, a current lead to a coil, a superconducting magnet, and the like.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】77.3Kにおけるビスマス系超電導線の臨界
電流密度(Jc)−磁束密度(B)特性を示す図である
FIG. 1 is a diagram showing the critical current density (Jc)-magnetic flux density (B) characteristics of a bismuth-based superconducting wire at 77.3K.

【図2】この発明の一実施例を示す断面図である。FIG. 2 is a sectional view showing an embodiment of the invention.

【図3】半径aの線材における電流Iと磁界Hの関係を
示す図である。
FIG. 3 is a diagram showing the relationship between current I and magnetic field H in a wire with radius a.

【図4】線材の中心からの距離rと磁界Hとの関係を示
す図である。
FIG. 4 is a diagram showing the relationship between the distance r from the center of the wire and the magnetic field H.

【図5】比較例の超電導導体を示す断面図である。FIG. 5 is a sectional view showing a superconducting conductor of a comparative example.

【符号の説明】[Explanation of symbols]

1  外部導体束 2  外部支持体 3  フィン 4  内部導体束 5  内部支持体 6  フィン 1 Outer conductor bundle 2 External support 3 Fin 4 Internal conductor bundle 5 Internal support 6 Fin

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  長手方向に沿って周方向に環状に並ん
で配置された導体から構成された酸化物超電導導体にお
いて、前記導体が隣接した導体間で電流の往路および復
路となるように交互に配置されていることを特徴とする
、酸化物超電導導体。
1. An oxide superconducting conductor comprising conductors arranged in a ring shape in the circumferential direction along the longitudinal direction, wherein the conductors are arranged alternately so that the conductors serve as an outgoing path and a returning path for current between adjacent conductors. An oxide superconducting conductor, characterized in that:
JP09923991A 1991-04-30 1991-04-30 Oxide superconductor Expired - Fee Related JP3282186B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP09923991A JP3282186B2 (en) 1991-04-30 1991-04-30 Oxide superconductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP09923991A JP3282186B2 (en) 1991-04-30 1991-04-30 Oxide superconductor

Publications (2)

Publication Number Publication Date
JPH04329219A true JPH04329219A (en) 1992-11-18
JP3282186B2 JP3282186B2 (en) 2002-05-13

Family

ID=14242143

Family Applications (1)

Application Number Title Priority Date Filing Date
JP09923991A Expired - Fee Related JP3282186B2 (en) 1991-04-30 1991-04-30 Oxide superconductor

Country Status (1)

Country Link
JP (1) JP3282186B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006331984A (en) * 2005-05-30 2006-12-07 National Institute Of Advanced Industrial & Technology Radial collective conductor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006331984A (en) * 2005-05-30 2006-12-07 National Institute Of Advanced Industrial & Technology Radial collective conductor

Also Published As

Publication number Publication date
JP3282186B2 (en) 2002-05-13

Similar Documents

Publication Publication Date Title
US4103075A (en) Composite monolithic low-loss superconductor for power transmission line
US7633014B2 (en) Superconductor cable
US5235309A (en) Resistive current limiter
JP2005012927A (en) Phase branching structure of polyphase superconductive cable
US6005194A (en) A.C. cable with two concentric conductor configurations of stranded single conductors
KR20040110081A (en) Superconducting cable and Superconducting cable line using the same
CA2018681A1 (en) Process for reducing eddy currents in a superconductor strip, and a superconductor arrangement
EP0412442A2 (en) Superconductive conductor
AU604119B2 (en) High current conductors and high field magnets using anisotropic superconductors
US4409425A (en) Cryogenically stabilized superconductor in cable form for large currents and alternating field stresses
JP3541123B2 (en) Superconducting current lead
US4564564A (en) Superconducting magnet wire
CN110931162A (en) Self-shielding cold insulation direct current high-temperature superconducting current-limiting cable
JPH04329219A (en) Oxide superconductor
JP3647884B2 (en) Oxide superconducting conductor
Kitaguchi et al. Advances in Bi-Based High-Tc superconducting tapes and wires
JP2929622B2 (en) How to use oxide superconductor
JPH04355010A (en) Oxide superconductor
JPH0377607B2 (en)
US20230368946A1 (en) Superconducting wire material and superconducting cable
JPH04334814A (en) Oxide superconductive conductor
JP3286036B2 (en) Forced cooling type superconducting conductor
JPH0412412A (en) Superconductive conductor
JP2523630B2 (en) Superconducting cable
JP2001256841A (en) Superconductive cable and magnet using the same

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20020129

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090301

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090301

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100301

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees