JPH04329209A - Electrically conductive paste - Google Patents

Electrically conductive paste

Info

Publication number
JPH04329209A
JPH04329209A JP12687991A JP12687991A JPH04329209A JP H04329209 A JPH04329209 A JP H04329209A JP 12687991 A JP12687991 A JP 12687991A JP 12687991 A JP12687991 A JP 12687991A JP H04329209 A JPH04329209 A JP H04329209A
Authority
JP
Japan
Prior art keywords
silver
titanium alloy
conductive paste
mercury
ceramic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12687991A
Other languages
Japanese (ja)
Inventor
Chinatsu Amamiya
千夏 雨宮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP12687991A priority Critical patent/JPH04329209A/en
Priority to US07/866,491 priority patent/US5288430A/en
Publication of JPH04329209A publication Critical patent/JPH04329209A/en
Pending legal-status Critical Current

Links

Landscapes

  • Paints Or Removers (AREA)
  • Ceramic Capacitors (AREA)
  • Conductive Materials (AREA)

Abstract

PURPOSE:To provide an electrically conductive paste capable of suppressing the occurrence of the exfoliation or cracking between the ceramic material and the internal electrode durning the burning step performance in manufacturing a laminate ceramic capacitor. CONSTITUTION:By kneading together a mercury-containing metal powder, an organic binder and a solvent and causing a mercury-titanium alloy to be contained into the thus kneaded mass, the degree of adhesion between the internal electrode and the ceramic material is improved to prevent exfoliation, cracking, etc. Preferably, titanium in the mercury-titanium alloy is contained 0.1 to 0.6wt.% with respect to mercury.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は導電性ペーストに関し、
特に積層セラミックコンデンサに用いられる内部電極用
の金属ペーストに関する。
[Industrial Application Field] The present invention relates to a conductive paste.
In particular, it relates to a metal paste for internal electrodes used in multilayer ceramic capacitors.

【0002】0002

【従来の技術】一般に積層セラミックコンデンサは、セ
ラミック混合粉末を有機バインダと混合してシート状に
加工した後、導電性の金属ペーストを用いて内部電極を
印刷し、これらを積層かつ圧着した後、切断及び焼成を
行い、内部電極につながる外部電極を形成することで製
造される。従来、この種の内部電極に用いられる導電性
の金属ペーストは、銀,パラジウム等の金属粉末と有機
バインダ及び溶剤からなるビヒクルを混合し、これを三
本ロールミル等により混練して製造される。
[Prior Art] Multilayer ceramic capacitors are generally manufactured by mixing ceramic powder with an organic binder, processing the mixture into a sheet, printing internal electrodes using conductive metal paste, laminating and press-bonding these, and then It is manufactured by cutting and firing to form an external electrode connected to an internal electrode. Conventionally, a conductive metal paste used for this type of internal electrode is manufactured by mixing metal powder such as silver or palladium with a vehicle consisting of an organic binder and a solvent, and kneading the mixture using a three-roll mill or the like.

【0003】0003

【発明が解決しようとする課題】上述した積層セラミッ
クコンデンサの製造工程では、焼成工程時にセラミック
粉末は互いに反応して焼結収縮し、セラミック部の緻密
化がなされる。これと同時に内部電極として塗布した導
電性ペースト中の金属粉末も焼結収縮し、内部電極層が
形成される。しかしながら、セラミックと金属は化学的
な結合が起きないため、セラミックと内部電極の結合は
弱く、焼成工程におけるセラミックの焼結収縮と内部電
極中の金属ペーストとの焼結収縮との差あるいは熱膨張
差によって、セラミックと内部電極間の剥離、或いはセ
ラミック内部の応力によるクラックが発生するという問
題があった。本発明の目的はセラミックと内部電極間の
剥離やセラミックのクラックを抑制した導電性ペースト
を提供することにある。
In the manufacturing process of the multilayer ceramic capacitor described above, the ceramic powders react with each other during the firing process to cause sintering shrinkage, thereby making the ceramic portion denser. At the same time, the metal powder in the conductive paste applied as the internal electrode is also sintered and shrunk, forming an internal electrode layer. However, since chemical bonding does not occur between ceramic and metal, the bond between ceramic and internal electrodes is weak, and the difference between sintering shrinkage of ceramic and sintering shrinkage of metal paste in internal electrodes during the firing process or thermal expansion Due to the difference, there is a problem in that peeling between the ceramic and the internal electrodes or cracks due to stress inside the ceramic occur. An object of the present invention is to provide a conductive paste that suppresses peeling between the ceramic and internal electrodes and cracks in the ceramic.

【0004】0004

【課題を解決するための手段】本発明の導電性ペースト
は、銀を含む金属粉末と有機バインダと溶剤を混練して
なる導電性ペーストに、銀チタン合金を含有させている
。この場合、銀チタン合金を銀に対して 0.1〜 6
.0重量%含有させることが好ましい。
[Means for Solving the Problems] The conductive paste of the present invention contains a silver-titanium alloy in a conductive paste made by kneading a metal powder containing silver, an organic binder, and a solvent. In this case, the ratio of silver titanium alloy to silver is 0.1 to 6
.. It is preferable to contain 0% by weight.

【0005】[0005]

【作用】本発明によれば、銀チタン合金を含有すること
で、導電性ペースト中の銀チタン合金が内部電極中では
銀チタン合金として存在し、セラミックとの接触部では
チタン部分が酸化されて酸化チタン部と銀チタン合金が
連続して形成され、セラミックと内部電極間の接合力が
高められる。
[Function] According to the present invention, by containing a silver-titanium alloy, the silver-titanium alloy in the conductive paste exists as a silver-titanium alloy in the internal electrode, and the titanium part is oxidized at the contact part with the ceramic. The titanium oxide portion and the silver-titanium alloy are formed continuously, increasing the bonding strength between the ceramic and the internal electrodes.

【0006】[0006]

【実施例】次に、本発明について説明する。表1に本発
明による実施例(組成I〜V)及び従来例(組成VI)
の導電性ペーストの構成を示す。
[Example] Next, the present invention will be explained. Table 1 shows examples according to the present invention (compositions I to V) and conventional examples (composition VI).
The composition of the conductive paste is shown below.

【0007】[0007]

【表1】[Table 1]

【0008】表1で示したパラジウム粉は粒径 0.1
〜 0.3μm、銀粉は粒径 0.2〜 0.5μのも
のを用いた。銀チタン合金粉には粒径 0.2〜 0.
5μのものを用いた。有機ビヒクルはエチルセルロース
樹脂とテレピネオール等の溶剤を混合したものを用いた
[0008] The palladium powder shown in Table 1 has a particle size of 0.1
~ 0.3 μm, and the silver powder used had a particle size of 0.2 to 0.5 μm. The silver titanium alloy powder has a particle size of 0.2 to 0.
A 5 μm one was used. The organic vehicle used was a mixture of ethyl cellulose resin and a solvent such as terpineol.

【0009】そして、表1に示す分量のパラジウム粉と
銀粉を予め混合し、かつ銀チタン合金粉を混合して混合
粉とした。更に、有機ビヒクルにその混合粉を混合し、
3本ロールミルにて混合して組成I〜Vの導電性ペース
トを得た。次に、厚さ20μmの鉛系の誘電体セラミッ
クのグリーンシート上に所定のパターンで各々の導電性
ペーストを印刷し、60層積層し、圧着、切断した未焼
成の積層セラミックコンデンサとした。未焼成の積層セ
ラミックコンデンサを 300℃〜 400℃でバイン
ダを飛ばした後、 100℃/Hrの速度で昇温し、1
000℃で2時間保持した後、 100℃/Hrで昇温
し、積層セラミックコンデンサ素子を得た。
[0009] Then, palladium powder and silver powder in the amounts shown in Table 1 were mixed in advance, and silver titanium alloy powder was mixed to obtain a mixed powder. Furthermore, mix the mixed powder in an organic vehicle,
The mixture was mixed in a three-roll mill to obtain conductive pastes having compositions IV to V. Next, each conductive paste was printed in a predetermined pattern on a lead-based dielectric ceramic green sheet with a thickness of 20 μm, and 60 layers were laminated, crimped, and cut to obtain an unfired multilayer ceramic capacitor. After removing the binder from an unfired multilayer ceramic capacitor at 300°C to 400°C, the temperature was raised at a rate of 100°C/Hr, and the temperature was increased to 1.
After holding at 000°C for 2 hours, the temperature was raised at 100°C/Hr to obtain a multilayer ceramic capacitor element.

【0010】得られた積層セラミックコンデンサ素子に
ついて 10000個中の剥離、クラックの発生を調べ
た。その結果を表2に示す。
The resulting laminated ceramic capacitor elements were examined for peeling and cracking among 10,000 pieces. The results are shown in Table 2.

【0011】[0011]

【表2】[Table 2]

【0012】表2に示すように、銀チタン合金粉を銀に
対して 0.1〜0.6重量%含有する導電性ペースト
を用いることによって、効果的に剥離やクラックを抑制
することができる。
As shown in Table 2, peeling and cracking can be effectively suppressed by using a conductive paste containing 0.1 to 0.6% by weight of silver titanium alloy powder based on silver. .

【0013】尚、表3及び図1に示すように、銀チタン
合金粉を 6.0重量%より多く含有すると、電極ぎれ
等が起き、電気的特性の悪化が見られる。
[0013] As shown in Table 3 and FIG. 1, if the silver titanium alloy powder is contained in an amount greater than 6.0% by weight, electrode breakage and the like occur, resulting in deterioration of electrical characteristics.

【0014】[0014]

【表3】[Table 3]

【0015】[0015]

【発明の効果】以上説明したように本発明は、銀チタン
合金を含有することで、導電性ペースト中の銀チタン合
金が内部電極中では銀チタン合金として存在し、セラミ
ックとの接触部ではチタン部分が酸化されて酸化チタン
部と銀チタン合金が連続して形成され、セラミックと内
部電極間の接合力が高められ、焼結収縮や熱膨張係数の
差による剥離やクラック等を防止することができる効果
がある。
Effects of the Invention As explained above, in the present invention, by containing a silver-titanium alloy, the silver-titanium alloy in the conductive paste exists as a silver-titanium alloy in the internal electrode, and the titanium alloy exists in the internal electrode as a titanium alloy in the contact area with the ceramic. The part is oxidized and the titanium oxide part and silver-titanium alloy are formed continuously, increasing the bonding strength between the ceramic and the internal electrode, and preventing peeling and cracking due to sintering shrinkage and differences in thermal expansion coefficients. There is an effect that can be done.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】本発明の実施例の銀に対する銀チタン合金の割
合とその電気特性の関係を示す図である。
FIG. 1 is a diagram showing the relationship between the ratio of silver titanium alloy to silver and its electrical properties in an example of the present invention.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】  銀を含む金属粉末と有機バインダと溶
剤を混練してなる導電性ペーストにおいて、銀チタン合
金を含有することを特徴とする導電性ペースト。
1. A conductive paste made by kneading a metal powder containing silver, an organic binder, and a solvent, the conductive paste containing a silver-titanium alloy.
【請求項2】  銀チタン合金を銀に対して 0.1〜
 6.0重量%含有してなる請求項1の導電性ペースト
[Claim 2] Silver-titanium alloy with a ratio of 0.1 to silver
The conductive paste according to claim 1, containing 6.0% by weight.
JP12687991A 1991-04-12 1991-04-30 Electrically conductive paste Pending JPH04329209A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP12687991A JPH04329209A (en) 1991-04-30 1991-04-30 Electrically conductive paste
US07/866,491 US5288430A (en) 1991-04-12 1992-04-10 Conductive pastes

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12687991A JPH04329209A (en) 1991-04-30 1991-04-30 Electrically conductive paste

Publications (1)

Publication Number Publication Date
JPH04329209A true JPH04329209A (en) 1992-11-18

Family

ID=14946111

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12687991A Pending JPH04329209A (en) 1991-04-12 1991-04-30 Electrically conductive paste

Country Status (1)

Country Link
JP (1) JPH04329209A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109830373A (en) * 2019-03-27 2019-05-31 大连海外华昇电子科技有限公司 A kind of multilayer ceramic capacitor slurry fast matching method for downstream producer slurry shrinking percentage

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109830373A (en) * 2019-03-27 2019-05-31 大连海外华昇电子科技有限公司 A kind of multilayer ceramic capacitor slurry fast matching method for downstream producer slurry shrinking percentage

Similar Documents

Publication Publication Date Title
JP3514117B2 (en) Multilayer ceramic electronic component, method of manufacturing multilayer ceramic electronic component, and conductive paste for forming internal electrode
JPH01273305A (en) Ceramic multilayer capacitor and its manufacture
KR970009772B1 (en) Multi-layer capacitor & manufacturing method for the same
JPH04320017A (en) Laminated ceramic capacitor and fabrication thereof, and external electrode paste used therefor
JPH053134A (en) Manufacture of outer electrode of laminated ceramic capacitor
JP2001284160A (en) Conductive paste and laminated ceramic electronic component using the same
JP3064659B2 (en) Manufacturing method of multilayer ceramic element
JP3241054B2 (en) Multilayer ceramic capacitor and method of manufacturing the same
JPH097878A (en) Ceramic electronic part and manufacture thereof
JPS6323646B2 (en)
JP2779896B2 (en) Manufacturing method of laminated electronic components
JPH11340090A (en) Manufacture of grain boundary insulated multilayer ceramic capacitor
JP2001291634A (en) Laminated ceramic capacitor and method of manufacturing the same
JPH04329209A (en) Electrically conductive paste
JPH11214240A (en) Laminated ceramic electronic component and their manufacture
JPH0512997Y2 (en)
JP3554957B2 (en) Multilayer ceramic electronic component and method of manufacturing the same
JPH08255509A (en) Conductive paste and laminated ceramic electronic part
EP0651408A2 (en) Method of manufacturing laminated ceramic capacitor
JPH08148369A (en) Conductive paste
JP2987995B2 (en) Internal electrode paste and multilayer ceramic capacitor using the same
JPH11232927A (en) Conductive paste
JP2735027B2 (en) Conductive paste for dielectric ceramic capacitors
JPH0982560A (en) Multilayer ceramic capacitor
JPH10144559A (en) Terminal electrode paste, laminated electronic component and its manufacture