JPH043290B2 - - Google Patents
Info
- Publication number
- JPH043290B2 JPH043290B2 JP1270383A JP1270383A JPH043290B2 JP H043290 B2 JPH043290 B2 JP H043290B2 JP 1270383 A JP1270383 A JP 1270383A JP 1270383 A JP1270383 A JP 1270383A JP H043290 B2 JPH043290 B2 JP H043290B2
- Authority
- JP
- Japan
- Prior art keywords
- cavity
- resin
- pressure
- movable
- injection
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 239000011347 resin Substances 0.000 claims description 69
- 229920005989 resin Polymers 0.000 claims description 69
- 238000002347 injection Methods 0.000 claims description 42
- 239000007924 injection Substances 0.000 claims description 42
- 238000000748 compression moulding Methods 0.000 claims description 15
- 238000007906 compression Methods 0.000 description 20
- 238000000465 moulding Methods 0.000 description 19
- 230000006835 compression Effects 0.000 description 18
- 238000001746 injection moulding Methods 0.000 description 13
- 238000002834 transmittance Methods 0.000 description 10
- 230000002950 deficient Effects 0.000 description 6
- 230000005540 biological transmission Effects 0.000 description 4
- 239000004033 plastic Substances 0.000 description 4
- 239000004793 Polystyrene Substances 0.000 description 3
- 238000001125 extrusion Methods 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- 229920002223 polystyrene Polymers 0.000 description 3
- 238000012937 correction Methods 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 238000003780 insertion Methods 0.000 description 2
- 230000037431 insertion Effects 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 239000007791 liquid phase Substances 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 239000007790 solid phase Substances 0.000 description 2
- 239000011800 void material Substances 0.000 description 2
- 229910000831 Steel Inorganic materials 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 238000007493 shaping process Methods 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 239000002344 surface layer Substances 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C45/00—Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
- B29C45/17—Component parts, details or accessories; Auxiliary operations
- B29C45/76—Measuring, controlling or regulating
- B29C45/768—Detecting defective moulding conditions
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C45/00—Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
- B29C45/17—Component parts, details or accessories; Auxiliary operations
- B29C45/26—Moulds
- B29C45/2673—Moulds with exchangeable mould parts, e.g. cassette moulds
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C45/00—Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
- B29C45/17—Component parts, details or accessories; Auxiliary operations
- B29C45/46—Means for plasticising or homogenising the moulding material or forcing it into the mould
- B29C45/56—Means for plasticising or homogenising the moulding material or forcing it into the mould using mould parts movable during or after injection, e.g. injection-compression moulding
- B29C45/561—Injection-compression moulding
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C45/00—Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
- B29C45/17—Component parts, details or accessories; Auxiliary operations
- B29C45/76—Measuring, controlling or regulating
- B29C45/77—Measuring, controlling or regulating of velocity or pressure of moulding material
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C45/00—Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
- B29C45/17—Component parts, details or accessories; Auxiliary operations
- B29C45/76—Measuring, controlling or regulating
- B29C45/78—Measuring, controlling or regulating of temperature
Landscapes
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Mechanical Engineering (AREA)
- Injection Moulding Of Plastics Or The Like (AREA)
- Moulds For Moulding Plastics Or The Like (AREA)
- Casting Or Compression Moulding Of Plastics Or The Like (AREA)
Description
【発明の詳細な説明】
〔発明の利用分野〕
本発明は射出圧縮成形金型に係り、特にプラス
チツクレンズのように形状精度や表面精度が要求
され、かつ内部歪のない成形品を成形する射出圧
縮成形金型であつて、成形効率の向上を志向した
射出圧縮成形金型に関するものである。[Detailed Description of the Invention] [Field of Application of the Invention] The present invention relates to injection compression molding molds, and particularly to injection molding molds for molding molded products that require shape accuracy and surface accuracy, such as plastic lenses, and are free from internal distortion. This invention relates to an injection compression mold that is a compression mold and is aimed at improving molding efficiency.
まず従来の射出圧縮成形金型と、その動作を、
第1図を使用して説明する。
First, we will explain the conventional injection compression mold and its operation.
This will be explained using FIG.
第1図は、プラスチツクレンズの成形に供する
従来の射出圧縮成形金型の一例を示す側断面図で
ある。この第1図において、1は固定型、15は
固定型取付板、4は固定型1内の固定アダプタ1
4に嵌挿された固定入駒、2は可動型、20は可
動型取付板、5は可動型2内の可動アダプタ16
内に、摺動自在に嵌挿された可動入駒、3は、固
定入駒4と可動入駒5とで形成されるキヤビテ
イ、7は可動型2の後部に設置され、可動入駒5
を押し出すことができる加圧シリンダ、6は固定
入駒4および可動入駒5内にキヤビテイ表面に対
向して嵌挿された超音波送受信素子である。 FIG. 1 is a side sectional view showing an example of a conventional injection compression molding mold used for molding a plastic lens. In this FIG. 1, 1 is a fixed mold, 15 is a fixed mold mounting plate, and 4 is a fixed adapter 1 in the fixed mold 1.
4 is a fixed piece inserted into the movable mold, 2 is a movable mold, 20 is a movable mold mounting plate, 5 is a movable adapter 16 in the movable mold 2
A movable insert piece 3 is slidably inserted into the cavity, and 7 is a cavity formed by a fixed insert piece 4 and a movable insert piece 5.
A pressure cylinder 6 capable of pushing out an ultrasonic wave transmitting/receiving element is fitted into the fixed insert piece 4 and the movable insert piece 5 so as to face the cavity surface.
このようなプラスチツクレンズ(以下、成型品
という)を成形する射出圧縮成形金型では、キヤ
ビテイ3の表面を形成する金属を研磨し、表面精
度を高める必要から、固定入駒7、可動入駒8の
ような分割可能な型部品を使用し、また成形品の
大きさが変わり、キヤビテイ3の外形、形状が変
化してもある程度まで対処できるように、固定入
駒4は固定アダプタ14に、可動入駒5は可動ア
ダプタ16にそれぞれ嵌挿されており、形状変化
に対して、固定入駒4、固定アダプタ14、可動
入駒5、可動アダプタ16を交換すればよいよう
になつている。 In an injection compression mold for molding such a plastic lens (hereinafter referred to as a molded product), it is necessary to polish the metal forming the surface of the cavity 3 to improve surface precision, so the fixed insert piece 7 and the movable insert piece 8 are used. The fixed insert piece 4 is attached to the fixed adapter 14, so that it can be handled to some extent even if the size of the molded product changes and the external shape and shape of the cavity 3 change to some extent. The insert pieces 5 are respectively fitted into movable adapters 16, and the fixed insert pieces 4, the fixed adapter 14, the movable insert pieces 5, and the movable adapter 16 can be replaced if the shape changes.
まず、射出成形機を出た樹脂(図示せず)は、
固定型1内にせん孔されたスプル11から射出圧
縮成形金型内に導びかれ、ランナ12、ゲート1
3を経て、キヤビテイ3内に充填される。充填終
了後、一定時間を経て、信号制御器9からの指令
により、油圧発生器10で発生した油圧が、加圧
シリンダ7の加圧シリンダピストン8を進出させ
ると、シリンダピストン8前面の、押出板B19
および押出板A18に固定結合された可動入駒5
が前進し、キヤビテイ3内の樹脂を圧縮する。こ
の圧縮に伴ない、超音波送受信兼用素子(以下超
音波素子という)6Aおよび6Dが、キヤビテイ
3内樹脂と、固定入駒4および可動入駒5の接触
状況を検出する。 First, the resin (not shown) exiting the injection molding machine is
A sprue 11 drilled in a fixed mold 1 is guided into an injection compression molding mold, and a runner 12 and a gate 1 are formed.
3 and is filled into the cavity 3. After a certain period of time has elapsed after the completion of filling, when the hydraulic pressure generated by the hydraulic pressure generator 10 advances the pressure cylinder piston 8 of the pressure cylinder 7 according to a command from the signal controller 9, the front surface of the cylinder piston 8 is pushed out. Board B19
and a movable input piece 5 fixedly connected to the extrusion plate A18.
moves forward and compresses the resin inside the cavity 3. Along with this compression, ultrasonic transmitting/receiving elements (hereinafter referred to as ultrasonic elements) 6A and 6D detect the state of contact between the resin inside the cavity 3 and the fixed insert piece 4 and the movable insert piece 5.
ここで超音波素子6A,6Dの機能について、
6Aを主に説明する。信号制御器9で発生した信
号波(図示せず)が、接続ケーブル21を介して
超音波素子6Aに入り、ここでキヤビテイ3方向
に発信されると、この信号波は、可動入駒5の表
面とキヤビテイ3内樹脂が接触している場合に
は、超音波素子6A方向には戻らず、そのままキ
ヤビテイ方向に進行し、固定入駒4内の超音波素
子6Dに受信される。一方、可動入駒5の表面
と、キヤビテイ3内樹脂が接触していない場合に
は、超音波素子6Aより発信された信号波は、可
動入駒5の表面で反射し、キヤビテイ3方向へは
進行せず、可動入駒4内の超音波素子6Dにも受
信されず、超音波素子6A方向へ戻り、信号波は
再び超音波素子6Aで捉えられる。このように、
入駒表面とキヤビテイ3内樹脂が接触している場
合には、反射波がなく、自ら信号波を発信した超
音波素子6Aには信号波は戻らず、対向する超音
波素子6Dに受信される。入駒表面とキヤビテイ
3内樹脂が接触していない場合には、反射波が超
音波素子6Aに戻り、対向する超音波素子6Dに
は達せず、受信もされない。また超音波素子6D
から発信した場合も、6A側から発信した場合と
全く同様であつて、固定入駒4表面とキヤビテイ
3内樹脂が接触している場合には、反射波がな
く、信号波は超音波素子6Dには戻らず6Aに捉
えられ、接触していない場合は、反射波が6Dで
捉えられ6Aには受信されない。なおキヤビテイ
を通らず、金型の他の部分をまわり込んで伝わる
信号波もあるため、キヤビテイ3内樹脂と入駒表
面との接触状況は、信号波の強弱として検出され
る。このように、捉えられる信号波の強弱によ
り、キヤビテイ3内樹脂と固定入駒4および可動
入駒5との接触状況を検出することができる。 Here, regarding the functions of the ultrasonic elements 6A and 6D,
6A will be mainly explained. When a signal wave (not shown) generated by the signal controller 9 enters the ultrasonic element 6A via the connection cable 21 and is emitted here in the direction of the cavity 3, this signal wave is transmitted to the movable input piece 5. When the surface and the resin in the cavity 3 are in contact, the beam does not return to the direction of the ultrasonic element 6A, but continues in the direction of the cavity, and is received by the ultrasonic element 6D in the fixed input piece 4. On the other hand, when the surface of the movable insert piece 5 and the resin inside the cavity 3 are not in contact, the signal wave emitted from the ultrasonic element 6A is reflected on the surface of the movable insert piece 5 and is not transmitted in the direction of the cavity 3. It does not advance, is not received by the ultrasonic element 6D in the movable input piece 4, returns to the direction of the ultrasonic element 6A, and the signal wave is captured by the ultrasonic element 6A again. in this way,
When the entering piece surface and the resin inside the cavity 3 are in contact, there is no reflected wave, and the signal wave does not return to the ultrasonic element 6A that itself transmitted the signal wave, but is received by the opposing ultrasonic element 6D. . If the entering piece surface and the resin inside the cavity 3 are not in contact, the reflected wave returns to the ultrasonic element 6A, does not reach the opposing ultrasonic element 6D, and is not received. Also, ultrasonic element 6D
The transmission from the 6A side is exactly the same as the transmission from the 6A side, and if the surface of the fixed input piece 4 is in contact with the resin inside the cavity 3, there is no reflected wave and the signal wave is transmitted to the ultrasonic element 6D. If there is no contact, the reflected wave will be captured by 6D and not received by 6A. Note that some signal waves do not pass through the cavity but travel around other parts of the mold, so the contact status between the resin inside the cavity 3 and the surface of the inserted piece is detected as the strength or weakness of the signal wave. In this way, the contact status between the resin inside the cavity 3 and the fixed insert piece 4 and the movable insert piece 5 can be detected based on the strength of the captured signal wave.
さらに信号制御器9の機能について説明する
と、信号制御器9は、(1)超音波素子6Aおよび6
Dに、交互に、一定のサイクルで信号波を送り出
し、(2)各超音波素子で受信した信号波の強弱を、
予め設定記憶した信号波と比較演算し、(3)演算に
基づいて油圧発生器10を制御する、すなわち、
発信、記憶、比較演算、制御の機能を有する。 Further explaining the functions of the signal controller 9, the signal controller 9 includes (1) the ultrasonic elements 6A and 6;
D, alternately send out signal waves in a constant cycle, and (2) measure the strength of the signal waves received by each ultrasonic element.
(3) Control the hydraulic pressure generator 10 based on the calculation by comparing with the signal wave set and stored in advance, that is,
It has the functions of transmission, storage, comparison calculation, and control.
さて、キヤビテイ3内樹脂の圧縮に伴い、超音
波素子6Aおよび6Dにより、キヤビテイ3内樹
脂と固定入駒4および可動入駒5との接触が検知
された場合、信号制御器9は演算後、それ以上の
圧縮が不要と判断すれば、油圧発生器10の作動
を制御し、加圧シリンダ7の加圧シリンダピスト
ン8の作動を停止させる。また超音波素子6がキ
ヤビテイ3内樹脂と、固定入駒4および可動入駒
5との接触を検知できない場合には、引き続き加
圧シリンダ7で圧縮を継続し、一定時間内に接触
を検知できない場合には、不良品と判定し、キヤ
ビテイ3内樹脂を型外に排出する。これとは逆
に、一定時間内に接触が検知された場合には、前
記の如く加圧シリンダ7の作動が停止し、再び樹
脂の収縮が進行して接触が検知されなくなると、
加圧シリンダ7により圧縮が行なわれる。以上の
動作を繰り返し、圧縮成形を行なうようにしてい
た。 Now, when the contact between the resin in the cavity 3 and the fixed insert piece 4 and the movable insert piece 5 is detected by the ultrasonic elements 6A and 6D as the resin in the cavity 3 is compressed, the signal controller 9, after calculation, If it is determined that no further compression is necessary, the operation of the hydraulic generator 10 is controlled and the operation of the pressurizing cylinder piston 8 of the pressurizing cylinder 7 is stopped. Furthermore, if the ultrasonic element 6 cannot detect contact between the resin in the cavity 3 and the fixed insert piece 4 and the movable insert piece 5, the pressure cylinder 7 continues to compress the resin, and the contact cannot be detected within a certain period of time. If so, it is determined that the product is defective, and the resin inside the cavity 3 is discharged outside the mold. On the contrary, if contact is detected within a certain period of time, the operation of the pressurizing cylinder 7 is stopped as described above, and when the resin shrinks again and contact is no longer detected,
Compression is performed by a pressurizing cylinder 7. The above operations were repeated to perform compression molding.
しかしながら、これまで述べてきたような圧縮
成形時のみの制御では、射出保圧時に生じた欠陥
は、ほとんど補償することができなかつた。この
ため、不良品については、射出開始から、圧縮力
をかけても補償し得ないと判定されるまでの時間
が、すべて無駄時間となつていた。また、固定入
駒4、可動入駒5とも各1個づつの超音波素子し
か嵌挿していないため、成形品の一部分の状況し
か捉えることができず、これをキヤビテイ全体の
状況として捉えていたため、部分的に過大な内部
応力を生じたり、あるいは部分的に圧縮不足を生
じる等、不都合であつた。例えば、射出保圧力の
不足により、キヤビテイ3中央部にヒケ、即ち樹
脂収縮に起因する凹部が生じた場合、射出保圧時
には凹部のあることは発見できても、射出保圧力
の制御を行なつていないため、そのまま次の圧縮
工程に移行する。圧縮工程では、既に発生してし
まつている前工程でのキヤビテイ3中央部ヒケ
を、超音波素子6A,6Dが検知し、信号制御器
9が、キヤビテイ全面換算の信号を油圧発生器1
0を通じて加圧シリンダ7に送るため、キヤビテ
イ3内樹脂のヒケ以外の部分には、過大な圧縮力
がかかり内部応力が増したり、樹脂表面層が金型
に接着する表面剥離現象が生じたりした。また圧
縮によつても、一定時間内に、ヒケの修正補償が
できない場合、キヤビテイ内樹脂は欠陥品として
取り出され、それまでに要した時間は無駄時間と
なり、成形効率が低下するという欠点があつた。 However, with the control only during compression molding as described above, it has been almost impossible to compensate for defects that occur during injection and holding pressure. For this reason, for defective products, the entire time from the start of injection until it is determined that compensation cannot be achieved even by applying compressive force is wasted time. In addition, because only one ultrasonic element was inserted into each of the fixed insertion piece 4 and the movable insertion piece 5, it was possible to grasp the situation of only a part of the molded product, which was considered as the situation of the entire cavity. This is disadvantageous in that excessive internal stress is generated in some areas, or insufficient compression occurs in some areas. For example, if a sink mark, that is, a recess due to resin shrinkage, occurs in the center of the cavity 3 due to insufficient injection holding pressure, the injection holding pressure may be controlled even if the presence of the recess is discovered during injection holding pressure. Therefore, the next compression process is carried out. In the compression process, the ultrasonic elements 6A and 6D detect the sink mark in the center of the cavity 3 that has already occurred in the previous process, and the signal controller 9 sends a signal equivalent to the entire cavity surface to the hydraulic generator 1.
0 to the pressure cylinder 7, excessive compressive force was applied to the parts of the resin inside the cavity 3 other than the sink, increasing internal stress and causing a surface peeling phenomenon where the resin surface layer adhered to the mold. . Compression also has the disadvantage that if sink marks cannot be corrected and compensated for within a certain amount of time, the resin inside the cavity will be taken out as a defective product, and the time required until then will be wasted time, reducing molding efficiency. Ta.
本発明は、前記した従来技術の欠点を除去し、
条件設定のための時間を短縮して成形の効率を向
上するとともに、射出保圧力、圧縮力の大きさを
適正に制御して形状精度、表面精度等品質に優
れ、内部歪のない成形品を成形することができる
射出圧縮成形金型の提供をその目的とするもので
ある。
The present invention eliminates the drawbacks of the prior art described above,
In addition to improving molding efficiency by shortening the time required to set conditions, it also appropriately controls the injection holding force and compression force to produce molded products with excellent shape accuracy, surface accuracy, and other qualities, and no internal distortion. The object is to provide an injection compression molding mold that can perform molding.
本発明の構成は、少なくとも固定型、この固定
型内に嵌挿された固定入駒、可動型、この可動型
内に摺動自在に嵌挿された可動入駒を有し、前記
固定入駒と可動入駒とで形成されるキヤビテイ内
へ樹脂を充填し、加圧シリンダによつて前記可動
入駒を押出すことにより、前記樹脂を圧縮して賦
形を行なうようにした射出圧縮成形金型におい
て、この射出圧縮成形金型内に、キヤビテイ内樹
脂とキヤビテイ表面との接触状態を検出すること
のできる、複数個の超音波送受信兼用素子と、キ
ヤビテイ内樹脂の温度、圧力を検出するための温
度センサと圧力センサとを嵌挿し、前記超音波送
受信兼用素子が受信する前記接触状態に係る複数
の信号と、前記温度センサおよび圧力センサとで
検出したキヤビテイ内樹脂の温度、圧力に基づい
て、樹脂の充填圧力を制御する射出保圧力制御装
置と、前記加圧シリンダに加える油圧力を制御す
る油圧制御装置とを設けた射出圧縮成形型にあ
る。
The configuration of the present invention includes at least a fixed type, a fixed piece inserted into the fixed type, a movable type, and a movable piece fitted into the movable type so as to be slidable, the fixed piece being fitted into the fixed type. and a movable insert piece, and the resin is filled into a cavity formed by a movable insert piece, and the movable insert piece is extruded by a pressure cylinder, thereby compressing the resin and shaping the mold. In the injection compression mold, there are multiple ultrasonic transmitting/receiving elements that can detect the contact state between the resin inside the cavity and the surface of the cavity, as well as the temperature and pressure of the resin inside the cavity. A temperature sensor and a pressure sensor are inserted and inserted, and based on the plurality of signals related to the contact state received by the ultrasonic transmitting/receiving element and the temperature and pressure of the resin in the cavity detected by the temperature sensor and pressure sensor. , an injection compression molding mold provided with an injection holding pressure control device for controlling the resin filling pressure and a hydraulic control device for controlling the hydraulic pressure applied to the pressure cylinder.
以下、本発明を具体的な実施例によつて説明す
る。
The present invention will be explained below using specific examples.
第2図は、本発明の一実施例に係る射出圧縮成
形金型を示す側断面図である。この第2図におい
て、第1図と同一番号を付したものは同一部分で
ある。加えて、22は射出成形機射出制御部、2
3は射出成形機の射出部である。また、26は温
度センサ、27は圧力センサである。6は固定入
駒4および可動入駒5内に間隔をあけて複数嵌挿
された超音波送受信兼用素子(以下、超音波素子
という)である。この超音波素子6よりキヤビテ
イ3に向けて出された信号波は、キヤビテイ3内
樹脂と固定入駒4および可動入駒5との接触状況
により、接触のある場合にはキヤビテイ表面から
の反射波がなく、接触のない場合には、キヤビテ
イ表面からの反射波となつて超音波素子6で、再
び捉えられるようになつている。また9Aは統括
制御器であり(1)複数の超音波素子へ重複すること
なく順次信号を送り込み、(2)超音波素子より戻つ
た信号の強弱例えば、キヤビテイ表面と樹脂との
接触がない場合を100%としてキヤビテイの温度
と圧力に応じて設定%以上で、射出成形機制御部
22に保圧力増加のための信号を送り出す等、戻
つた信号の強弱に応じて、射出成形機制御部22
と、油圧発生器10に制御信号を送り出す、信号
送出、記憶、比較演算、制御の各機能を有してい
る。 FIG. 2 is a side sectional view showing an injection compression molding die according to an embodiment of the present invention. In FIG. 2, the same numbers as in FIG. 1 indicate the same parts. In addition, 22 is an injection molding machine injection control section;
3 is an injection section of an injection molding machine. Further, 26 is a temperature sensor, and 27 is a pressure sensor. Reference numeral 6 designates a plurality of ultrasonic transmitting/receiving elements (hereinafter referred to as ultrasonic elements) inserted into the fixed insert piece 4 and the movable insert piece 5 at intervals. The signal wave emitted from this ultrasonic element 6 towards the cavity 3 is reflected by the cavity surface depending on the contact status between the resin inside the cavity 3 and the fixed insert piece 4 and the movable insert piece 5. If there is no contact, the wave becomes a reflected wave from the cavity surface and is captured by the ultrasonic element 6 again. 9A is a general controller that (1) sequentially sends signals to multiple ultrasonic elements without duplication, and (2) the strength and weakness of signals returned from the ultrasonic elements. For example, when there is no contact between the cavity surface and the resin. When the temperature and pressure of the cavity are set as 100% or higher, a signal is sent to the injection molding machine control unit 22 to increase the holding pressure, etc.
It has the functions of sending control signals to the hydraulic pressure generator 10, signal sending, storage, comparison calculation, and control.
このように構成した射出圧縮成形金型の動作を
第2図、第3図を用いて説明する。 The operation of the injection compression mold constructed in this manner will be explained with reference to FIGS. 2 and 3.
第3図は、第2図の要部を示す部分拡大断面図
であり、第2図と同一符号を付したものは同一部
分である。そして、24はキヤビテイ内樹脂、2
5はキヤビテイ3内への樹脂の充填が不十分であ
つたり、充填後樹脂温度の低下とともに樹脂が収
縮したりして、キヤビテイ表面とキヤビテイ内樹
脂24との間にできる空隙である。6A〜6Fは
複数嵌挿された超音波素子であり、a〜cは入駒
およびキヤビテイ断面を概ね三分割した各領域を
示す。 FIG. 3 is a partially enlarged sectional view showing the main parts of FIG. 2, and the same parts are denoted by the same reference numerals as those in FIG. 2. 24 is resin inside the cavity, 2
A void 5 is formed between the cavity surface and the resin 24 inside the cavity due to insufficient filling of the resin into the cavity 3 or due to the resin shrinking as the resin temperature decreases after filling. Reference numerals 6A to 6F indicate a plurality of ultrasonic elements inserted, and a to c indicate regions obtained by roughly dividing the cross section of the input piece and cavity into three.
このように構成した射出成形金型において、成
形開始により、まず固定型1と可動型2が閉じる
と、射出成形機射出部23より射出された樹脂
(図示せず)は、スプル11、ランナ12、ゲー
ト13を通り、キヤビテイ3内に充填される。充
填に伴い、超音波素子6A,6B,6Cは、それ
ぞれ対向するキヤビテイエリア(以下、エリアと
いう)a,b,cのキヤビテイ内樹脂24と、キ
ヤビテイ表面との接触状況を検出する。そして、
ゲート13に近いエリアaと、中央部のエリアb
と、ゲートから離れたエリアcの情報がそれぞれ
統括制御器9Aに送り込まれ、比較、演算が行な
われる。 In the injection molding mold configured in this way, when the fixed mold 1 and the movable mold 2 close at the start of molding, the resin (not shown) injected from the injection part 23 of the injection molding machine flows through the sprue 11 and the runner 12. , passes through the gate 13 and is filled into the cavity 3. During filling, the ultrasonic elements 6A, 6B, and 6C detect the state of contact between the resin 24 in the cavity and the cavity surface in the opposing cavity areas (hereinafter referred to as areas) a, b, and c, respectively. and,
Area a near gate 13 and area b in the center
and information on area c away from the gate are respectively sent to the overall controller 9A, where comparisons and calculations are performed.
ここで、統括制御器9Aの比較、演算内容につ
いて説明すると、いま仮に超音波素子6Bより出
た超音波は、金型内を進み、キヤビテイ表面でキ
ヤビテイ内樹脂24もしくは間隙25に入射する
と超音波の音響特性から、次式により透過もしく
は反射を生ずる。 Here, to explain the comparison and calculation contents of the general controller 9A, if the ultrasonic wave emitted from the ultrasonic element 6B travels inside the mold and enters the resin 24 in the cavity or the gap 25 on the cavity surface, it becomes an ultrasonic wave. Based on the acoustic characteristics of , transmission or reflection occurs according to the following equation.
反射率βr=反射波強度/入射波強度
=〔(ρ1c1-ρ2c2)/(ρ1c1+ρ2c2)〕2
透過率βt=透過波強度/入射波強度
=1−βt=(4ρ1c1ρ2c2)/(ρ1c1+ρ2c2)2
ρ1:超音波を伝達する媒質1の密度
c1:媒質1内での超音波縦波速度
ρ2:超音波を伝達する媒質2の密度
c2:媒質2内での超音波縦波速度
金型を鋼材(ρ1=7.8g/cm3,c1=5.81×105
cm/s)、キヤビテイ内樹脂24をポリスチレン
(ρ2=1.1g/cm3、c2=2.67×105cm/s)、さらに
空隙25を空気(ρ2=0.0012g/cm3、c2=0.331×
105cm/s)として、金型キヤビテイ表面とキヤ
ビテイ内樹脂が密着している場合には、上式より
透過率が23%となる。またキヤビテイ内樹脂がキ
ヤビテイ表面から完全に離れている場合には、同
じく上式より透過率が0%となる。 Reflectance βr = Reflected wave intensity / Incident wave intensity = [(ρ 1 c 1 - ρ 2 c 2 )/(ρ 1 c 1 +ρ 2 c 2 )] 2 Transmittance βt = Transmitted wave intensity / Incident wave intensity = 1−βt=(4ρ 1 c 1 ρ 2 c 2 )/(ρ 1 c 1 +ρ 2 c 2 ) 2 ρ 1 : Density of medium 1 that transmits ultrasonic waves c 1 : Ultrasonic wave length within medium 1 Wave velocity ρ 2 : Density of medium 2 that transmits ultrasonic waves c 2 : Ultrasonic longitudinal wave velocity in medium 2 The mold is made of steel (ρ 1 = 7.8 g/cm 3 , c 1 = 5.81×10 5
cm/s), the resin 24 in the cavity is filled with polystyrene (ρ 2 = 1.1 g/cm 3 , c 2 = 2.67×10 5 cm/s), and the cavity 25 is filled with air (ρ 2 = 0.0012 g/cm 3 , c 2 =0.331×
10 5 cm/s), and when the mold cavity surface and the resin inside the cavity are in close contact, the transmittance is 23% from the above equation. Further, when the resin inside the cavity is completely separated from the cavity surface, the transmittance is 0% from the above equation.
次に射出成形機から射出される樹脂は、液状も
しくは半液体半固体の半溶融状態であつて、その
後金型内において冷却によつて固化が進行し、最
終的に固体となるのであるが、一般に媒質の状態
が変化すると、音響インピーダンスρ×cも変化
し、このため、超音波の反射率、透過率も変化す
る。液相と固相とで音響インピーダンスが約50%
変化する(一般に液相が固相の音響インピーダン
スの50%である。)から、ポリスチレンの溶融状
態での金型からの透過率は12%、反射率88%とな
り、固体化するに従い、温度、圧力の変化ととも
に音響インピーダンスは大きくなり、反射率は低
下する。したがつて、超音波の透過率および反射
率は樹脂温が高く、樹脂が溶融状態にある場合
と、樹脂が固化して、キヤビテイ表面との間に一
部空隙が生じた場合と同一の値を示すことにな
る。そこで、キヤビテイ3近傍に設置した温度セ
ンサ26、圧力センサ27によつて、キヤビテイ
内樹脂24の温度と圧力を取り出せば、樹脂が溶
融状態にあるかあるいは固化してキヤビテイ表面
との間に一部空隙を生じたものかが容易に判別で
きる。 Next, the resin injected from the injection molding machine is in a liquid or semi-liquid/semi-solid semi-molten state, and then solidifies as it is cooled in the mold and finally becomes solid. Generally, when the state of the medium changes, the acoustic impedance ρ×c also changes, and therefore the reflectance and transmittance of ultrasonic waves also change. Acoustic impedance is approximately 50% between liquid phase and solid phase
(In general, the liquid phase has 50% of the acoustic impedance of the solid phase.) When polystyrene is in the molten state, the transmittance from the mold is 12% and the reflectance is 88%.As it solidifies, the temperature and Acoustic impedance increases and reflectance decreases as pressure changes. Therefore, the transmittance and reflectance of ultrasonic waves are the same when the resin temperature is high and the resin is in a molten state, and when the resin is solidified and there is a gap between it and the cavity surface. will be shown. Therefore, if the temperature and pressure of the resin 24 inside the cavity are detected using a temperature sensor 26 and a pressure sensor 27 installed near the cavity 3, it is possible to find out whether the resin is in a molten state or solidified and there is a portion between it and the cavity surface. It can be easily determined whether a void has been created or not.
そして、完全な接触状態での、媒質すなわちキ
ヤビテイ内樹脂の超音波透過率、反射率を、温度
と圧力の関数として予備実験で求め、統括制御装
置9Aにこの値を予め入力しておくことにより、
温度センサ26、圧力センサ27から得られる樹
脂の温度、圧力の状態に対応した透過率、反射率
を算出することができる。 Then, in a preliminary experiment, the ultrasonic transmittance and reflectance of the medium, that is, the resin in the cavity in a state of complete contact, are determined as a function of temperature and pressure, and by inputting these values into the central control device 9A in advance. ,
Transmittance and reflectance corresponding to the temperature and pressure state of the resin obtained from the temperature sensor 26 and the pressure sensor 27 can be calculated.
さらに、この完全な接触状態での透過率、反射
率と、成形途上の透過率、反射率を比較演算して
その時点でのキヤビテイ表面と樹脂との接触度を
算出することができる。この接触度の上限値と下
限値を予め統括制御装置9Aに与えておき、これ
と検出値とを比較、演算して、常に限界内に入る
よう射出保圧力、圧縮加圧力の制御を行なうもの
である。その結果、ゲート13から離れたエリア
cが、ゲート13に近いエリアaに比べ接触の程
度が低く、樹脂の充填が不十分な場合や、中央部
のエリアbが他のエリアaやcに比べ接触度が低
く中央部にヒケが発生している場合、統括制御器
9Aは予め入力された接触度および接触パターン
との比較判定して、射出圧力不足と判定し、射出
成形機射出制御部22に射出保圧力の増加指示信
号を出し、これに従つて、射出成形機射出部23
より金型内にさらに樹脂が送り込まれ、充填不足
やヒケを解消し、接触度を限界値内に戻す。 Furthermore, the degree of contact between the cavity surface and the resin at that point can be calculated by comparing and calculating the transmittance and reflectance in this complete contact state and the transmittance and reflectance in the middle of molding. The upper and lower limits of this degree of contact are given in advance to the integrated control device 9A, and these are compared and calculated with the detected value to control the injection holding pressure and compression pressure so that they are always within the limits. It is. As a result, area c, which is far from gate 13, may have a lower degree of contact than area a, which is closer to gate 13, and may be insufficiently filled with resin, or area b in the center may have less contact than area a, which is closer to gate 13. If the degree of contact is low and a sink mark occurs in the center, the overall controller 9A compares the degree of contact and the contact pattern input in advance, determines that the injection pressure is insufficient, and then controls the injection molding machine injection control section 22. In accordance with this, the injection section 23 of the injection molding machine outputs an instruction signal to increase the injection holding force.
More resin is fed into the mold, eliminating insufficient filling and sink marks, and returning the degree of contact to within limits.
また、エリアa,b,cとも、すべて接触状況
が一定限度を超えて過剰であり、過充填が行なわ
れた場合、統括制御器9Aが予め設定された限界
値と比較判定を行ない、射出成形機制御部22に
減圧のための信号を送つて、射出成形機射出部2
3の射出保圧力を低下させ、過充填を防止して、
接触度が再び限界値内に入るようにする。 In addition, if the contact situation in all areas a, b, and c exceeds a certain limit and overfilling is performed, the overall controller 9A makes a comparison judgment with a preset limit value, and performs injection molding. A signal for depressurization is sent to the machine control section 22, and the injection section 2 of the injection molding machine is
By reducing the injection holding pressure in step 3 and preventing overfilling,
The degree of contact is brought back within the limits.
次に射出充填、保圧が完了すると続いて圧縮に
移り、統括制御器9Aより油圧発生器10に信号
が送出され、油圧発生器10で発生した油圧力
(図示せず)が加圧シリンダ7に供給され、加圧
シリンダピストン8を前進させると、シリンダピ
ストン8前面の押出板B19および押出板A18
に固定結合された可動入駒5が前進し、キヤビテ
イ3内の樹脂を圧縮する。圧縮に伴い、キヤビテ
イ表面とキヤビテイ内樹脂24との接触状況が、
射出充填、保圧時と同様に検出され、接触度が限
界値と比較判定され、限界値を超えた場合には、
統括制御器9Aより油圧発生器10に制御信号が
送られて、加圧シリンダ7の油圧力を制御し、キ
ヤビテイ内樹脂24にかかる圧縮力を限界値内に
戻す操作が継続して行なわれる。こうした圧縮力
の修正動作と並行して、キヤビテイ内樹脂24の
冷却も行なわれ、金型が所定の温度、例えばポリ
スチレンの場合60〜70℃に達したところで、可動
型取付板20を後退させて型開きを行なうと、固
定型1と可動型2の分割面が左右に開いて、キヤ
ビテイ3内に成形されている成形品が取り出され
る。 Next, when injection filling and pressure holding are completed, compression starts, and a signal is sent from the general controller 9A to the hydraulic pressure generator 10, and the hydraulic pressure (not shown) generated by the hydraulic pressure generator 10 is transferred to the pressurizing cylinder 7. When the pressurized cylinder piston 8 is advanced, the extrusion plate B19 and the extrusion plate A18 on the front surface of the cylinder piston 8 are
A movable inserting piece 5 fixedly coupled to moves forward and compresses the resin in the cavity 3. With compression, the contact situation between the cavity surface and the resin 24 inside the cavity changes.
It is detected in the same way as during injection filling and pressure holding, and the degree of contact is compared and determined with the limit value, and if the limit value is exceeded,
A control signal is sent from the general controller 9A to the hydraulic pressure generator 10 to control the hydraulic pressure of the pressurizing cylinder 7, and the operation of returning the compressive force applied to the resin 24 in the cavity to within the limit value is continuously performed. In parallel with this compressive force correction operation, the resin 24 inside the cavity is also cooled, and when the mold reaches a predetermined temperature, for example 60 to 70°C in the case of polystyrene, the movable mold mounting plate 20 is moved back. When the mold is opened, the dividing surfaces of the fixed mold 1 and the movable mold 2 are opened left and right, and the molded product molded in the cavity 3 is taken out.
次に可動型取付板20を前進させて型閉めを行
ない、第2図の状態に戻し、以後、前述の動作を
繰り返すことにより、成形を継続することができ
る。 Next, the movable mold mounting plate 20 is moved forward to close the mold and return to the state shown in FIG. 2. Thereafter, by repeating the above-described operations, molding can be continued.
なお、前述した動作において、修正を行なつた
にもかかわらず、接触度が限界内に入らず、また
接触パターンが改善されない場合には、一定時間
経過後、成形を中止して、その成形品を不良品と
して排出する。 In addition, in the above-mentioned operation, if the degree of contact does not fall within the limit or the contact pattern is not improved even after making corrections, stop molding after a certain period of time and remove the molded product. are disposed of as defective products.
以上説明した実施例によれば、予め統括制御器
9Aに接触度の許容値を、予め成形品の位置に対
応させて設定しておけば、超音波素子で刻々変化
する接触度および接触パターンを検出することに
より、直ちに射出保圧力および圧縮力の制御を行
なうことができるので、1サイクリ内で品質の良
い成形品が得られるようになり、条件設定のため
のテスト成形時間を大幅に減じることができ、成
形の効率が大幅に向上する。また本実施例によれ
ば、成形途上で成形品の良、不良が判定できるの
で、従来のように1サイクルが終了するまで待つ
ことなく不良品の射出ができ、成形の無駄時間を
なくすことができる。さらに接触パターンの検出
ができるようになつたので、ヒケ発生や内部歪の
分布状態も、成形途上で判定ができるようになり
射出保圧力、圧縮力を増減して、これらを補正す
ることができるようになり、より精度の高い、か
つ内部歪の少ない成形品を得ることができるよう
になつた。 According to the embodiment described above, if the permissible value of the degree of contact is set in advance in the integrated controller 9A in correspondence with the position of the molded product, the degree of contact and the contact pattern that change every moment with the ultrasonic element can be controlled. By detecting this, it is possible to immediately control the injection holding force and compression force, making it possible to obtain high-quality molded products within one cycle, and significantly reducing the test molding time for setting conditions. This greatly improves molding efficiency. Furthermore, according to this embodiment, since it is possible to determine whether a molded product is good or defective during the molding process, defective products can be injected without waiting until one cycle is completed as in the conventional method, and wasted time in molding can be eliminated. can. Furthermore, since it has become possible to detect contact patterns, it is now possible to judge the occurrence of sink marks and the distribution of internal distortion during the molding process, making it possible to correct these by increasing or decreasing the injection holding pressure and compression force. This has made it possible to obtain molded products with higher precision and less internal distortion.
以上詳細に説明したように、本発明によれば、
少なくとも、固定型、この固定型内に嵌挿された
固定入駒、可動型、この可動型内に摺動自在に嵌
挿された可動入駒を有し、前記固定入駒と可動入
駒とで構成されるキヤビテイ内へ樹脂を充填し、
加圧シリンダによつて前記可動入駒を押出すこと
によつて前記樹脂を圧縮して賦形を行なうように
した射出圧縮成形金型において、この射出圧縮成
形金型内に、キヤビテイ内樹脂とキヤビテイ表面
との接触状態を検出することができる複数個の超
音波送受信兼用素子と、キヤビテイ内樹脂の温
度、圧力を検出するための温度センサと圧力セン
サとを嵌挿し、この超音波送受信兼用素子が受信
する前記接触状態に係る複数の信号と前記温度セ
ンサおよび圧力センサとで検出したキヤビテイ内
樹脂の温度、圧力に基づいて、樹脂の充填圧力を
制御する射出保圧力制御装置と、前記加圧シリン
ダに加える油圧力を制御する油圧制御装置とを設
けるようにしたので、成形条件設定のための時間
を短縮して、成形の効率を向上するとともに、射
出保圧力、圧縮力の大きさを適正に制御して形状
精度、表面精度等品質に優れ、内部歪のない成形
品を成形することのできる射出圧縮成形金型を提
供することができる。
As explained in detail above, according to the present invention,
It has at least a fixed type, a fixed insert piece fitted into the fixed mold, a movable type, and a movable insert piece slidably inserted into the movable mold, and the fixed insert piece and the movable insert piece are connected to each other. Fill the resin into the cavity consisting of
In an injection compression molding mold that compresses and shapes the resin by extruding the movable inserting piece with a pressure cylinder, the injection compression molding mold includes a resin in the cavity and a resin in the cavity. A plurality of ultrasonic transmitting/receiving elements that can detect the state of contact with the cavity surface, and a temperature sensor and a pressure sensor for detecting the temperature and pressure of the resin inside the cavity are inserted, and this ultrasonic transmitting/receiving element is installed. an injection holding pressure control device that controls resin filling pressure based on the temperature and pressure of the resin in the cavity detected by the temperature sensor and the pressure sensor and the plurality of signals related to the contact state received by the A hydraulic control device is installed to control the hydraulic pressure applied to the cylinder, reducing the time required to set molding conditions, improving molding efficiency, and adjusting the injection holding pressure and compression force appropriately. It is possible to provide an injection compression molding mold that can be controlled to form a molded product with excellent shape accuracy, surface accuracy, etc., and no internal distortion.
第1図は、プラスチツクレンズの成形に供せら
れる、従来の射出圧縮成形金型の一例を示す側断
面図、第2図は、本発明の一実施例に係る射出圧
縮成形金型を示す側断面図、第3図は第2図にお
ける要部を示す部分拡大断面図である。
1……固定型、2……可動型、3……キヤビテ
イ、4……固定入駒、5……可動入駒、6……超
音波送受信兼用素子、7……加圧シリンダ、9A
……統括制御器、10……油圧発生器、22……
射出成形機射出制御部、24……キヤビテイ内樹
脂、26……温度センサ、27……圧力センサ。
FIG. 1 is a side sectional view showing an example of a conventional injection compression molding mold used for molding a plastic lens, and FIG. 2 is a side sectional view showing an injection compression molding mold according to an embodiment of the present invention. 3 is a partially enlarged sectional view showing the main parts in FIG. 2. 1... Fixed type, 2... Movable type, 3... Cavity, 4... Fixed insert piece, 5... Movable insert piece, 6... Ultrasonic transmitting/receiving element, 7... Pressure cylinder, 9A
...General controller, 10...Hydraulic pressure generator, 22...
Injection molding machine injection control section, 24...Resin in cavity, 26...Temperature sensor, 27...Pressure sensor.
Claims (1)
れた固定入駒、可動型、この可動型内に摺動自在
に嵌挿された可動入駒を有し、前記固定入駒と可
動入駒とで形成されるキヤビテイ内に樹脂を充填
し、加圧シリンダによつて前記可動入駒を押出す
ことにより前記樹脂を圧縮して賦形を行なうよう
にした圧縮成形金型において、この圧縮成形金型
内に、キヤビテイ内樹脂とキヤビテイ表面との接
触状態を検出することのできる複数個の超音波送
受信兼用素子と、キヤビテイ内樹脂の温度、圧力
を検出するための温度センサと圧力センサとを嵌
挿し、前記超音波送受信兼用素子が受信する前記
接触状態に係る複数の信号と前記温度センサおよ
び圧力センサとで検出したキヤビテイ内樹脂の温
度、圧力に基づいて、樹脂の充填圧力を制御する
射出保圧力制御装置と、前記加圧シリンダに加え
る油圧力を制御する油圧制御装置とを設けたこと
を特徴とする射出圧縮成形金型。1 At least a fixed type, a fixed piece inserted into the fixed type, a movable type, and a movable piece slidably inserted into the movable type, and the fixed piece and the movable piece. In the compression molding mold, the cavity formed by the resin is filled with resin, and the resin is compressed and shaped by extruding the movable insert piece using a pressure cylinder. A plurality of ultrasonic transmitting/receiving elements capable of detecting the contact state between the resin inside the cavity and the surface of the cavity, and a temperature sensor and a pressure sensor for detecting the temperature and pressure of the resin inside the cavity are installed in the mold. Injection for controlling the filling pressure of the resin based on the plurality of signals related to the contact state received by the ultrasonic transmitting/receiving element and the temperature and pressure of the resin in the cavity detected by the temperature sensor and the pressure sensor. An injection compression molding mold comprising: a holding force control device; and a hydraulic control device that controls hydraulic pressure applied to the pressurizing cylinder.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1270383A JPS59138427A (en) | 1983-01-31 | 1983-01-31 | Injection and compression mold |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1270383A JPS59138427A (en) | 1983-01-31 | 1983-01-31 | Injection and compression mold |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS59138427A JPS59138427A (en) | 1984-08-08 |
JPH043290B2 true JPH043290B2 (en) | 1992-01-22 |
Family
ID=11812761
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1270383A Granted JPS59138427A (en) | 1983-01-31 | 1983-01-31 | Injection and compression mold |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS59138427A (en) |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60120025A (en) * | 1983-12-02 | 1985-06-27 | Inoue Japax Res Inc | Molding device |
JPS61270131A (en) * | 1985-05-27 | 1986-11-29 | Hitachi Ltd | Manufacturing device of plastic optical information recording board |
JPS62198431A (en) * | 1986-02-27 | 1987-09-02 | Sumitomo Heavy Ind Ltd | Injection molder provided with cavity capacity regulating means |
JPS6394806A (en) * | 1986-10-09 | 1988-04-25 | Toshiba Mach Co Ltd | Controlling method for injection compression molding |
JPH0540984Y2 (en) * | 1988-07-15 | 1993-10-18 | ||
DE102004043443B3 (en) * | 2004-09-06 | 2006-02-02 | Priamus System Technologies Ag | Device for molding objects |
GB2498586B (en) * | 2012-01-23 | 2016-11-02 | Montanuniversitat Leoben | Acoustic noise sensing for controlling manufacture of a component part made of a flowable base material |
-
1983
- 1983-01-31 JP JP1270383A patent/JPS59138427A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS59138427A (en) | 1984-08-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4208176A (en) | Time independent cycle control for plastic injection molding machines | |
US5968439A (en) | Method for simultaneous injection and compression | |
JPH08108261A (en) | Pressurized casting method | |
US5922266A (en) | Injection molding | |
JPS6166623A (en) | Mold device for injection and compression molding | |
JPH043290B2 (en) | ||
EP0172536B1 (en) | Injection molding process for molten plastic | |
US6645417B1 (en) | Gateless molding | |
JPH0911288A (en) | Method for automatically setting injection molding speed condition for injection molding machine | |
JP3619431B2 (en) | Control method of injection molding machine | |
US12090697B2 (en) | Method of injection molding with down cavity detection | |
US4844847A (en) | Method and apparatus for controlling injection molding machines | |
JPH07256712A (en) | Molding method for injection molding machine | |
JPS60110419A (en) | Injection compression molding method | |
JPH0725103B2 (en) | Method of molding optical molded body having mirror surface | |
JP3293415B2 (en) | How to set the optimal filling resin amount for injection compression molding | |
JPH0331571B2 (en) | ||
JP3293019B2 (en) | Disc substrate molding method | |
JPS58215319A (en) | Mold for compression molding | |
JPH051729B2 (en) | ||
JP2976366B2 (en) | Control method of injection molding machine | |
JP2920733B2 (en) | Control method of injection molding machine | |
JPS5849172B2 (en) | Plastic injection molding control method | |
JP2913248B2 (en) | Control method of injection molding machine | |
JP2799669B2 (en) | Control method of injection molding machine |