JPH0432761B2 - - Google Patents

Info

Publication number
JPH0432761B2
JPH0432761B2 JP58248967A JP24896783A JPH0432761B2 JP H0432761 B2 JPH0432761 B2 JP H0432761B2 JP 58248967 A JP58248967 A JP 58248967A JP 24896783 A JP24896783 A JP 24896783A JP H0432761 B2 JPH0432761 B2 JP H0432761B2
Authority
JP
Japan
Prior art keywords
group
acid
region
formula
acceptor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58248967A
Other languages
Japanese (ja)
Other versions
JPS60137820A (en
Inventor
Fumiaki Kawakami
Takafumi Yamamizu
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd filed Critical Asahi Chemical Industry Co Ltd
Priority to JP58248967A priority Critical patent/JPS60137820A/en
Publication of JPS60137820A publication Critical patent/JPS60137820A/en
Publication of JPH0432761B2 publication Critical patent/JPH0432761B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、3B族元素を含む混合物から、3B族
元素を分離、精製する方法のうち、キレート樹脂
を充填した充填塔を用いるものに関する。 3B族元素とは、B、Al、Ga、In、Tlである。
これらの元素を分離、精製する必要は工業的に至
るところで生じる。例えばマグネシアクリシカー
中のボロンの分離、バイヤー液中におけるアルミ
ニウムとガリウムの分離、天然の原石中からのイ
ンジウム、タリウムの分離などである。これらの
工業的意味は、近年の電子産業を始とする高純度
元素応用技術の急速な発展などにより益々大きく
なりつつある。 このような状況にあつて、これまで色々な分離
精製法が試みられて来た。 沈澱法などを始とする化学分離法、溶媒抽出法
などは代表的であるが、これらは高純度化と云う
点からは極めて振な技術である。又、特定の構造
を有するキレート樹脂を用いてバツチ的に所望元
素を吸着分離する方法も知られている。しかしな
がら、これらの方法も極めて分離効率の悪いもの
であり、高純度のものを得ることは困難であつ
た。 本発明者らは、3B族元素を高純度で分離する
方法について鋭意研究をかさねた結果、キレート
樹脂を用い、受容化剤及び脱離液を用いたクロマ
トグラフイにより3B族元素を効率良く分離でき
ることを見いだし、本発明を完成するに至つた。 本発明におけるキレート樹脂とは、3B族元素
とキレート化合物を形成し得る官能基を有する樹
脂であり、官能基はポリミノカルボン酸の構造を
その分子中に有するもので、ポリアミノカルボン
酸の例としては、一般には下記構造式()で示
される化合物及び()式における任意の水素原
子を炭化水素基により置換した化合物である。 〔但し、R1、R2、R3はそれぞれ水素基は−
CH2COOR5を表し、R5は水素、金属又は炭素数
1〜4の炭化水素化合物基を表す。A1、A2、A3
は夫々
The present invention relates to a method of separating and purifying a group 3B element from a mixture containing the group 3B element, using a packed column filled with a chelate resin. Group 3B elements are B, Al, Ga, In, and Tl.
The need to separate and purify these elements arises throughout industry. Examples include the separation of boron in magnesia chrysicar, the separation of aluminum and gallium in Bayer's liquid, and the separation of indium and thallium from natural raw stones. These industrial meanings are becoming more and more important due to the rapid development of high-purity element application technology in recent years, including the electronic industry. Under these circumstances, various separation and purification methods have been attempted. Chemical separation methods such as precipitation methods and solvent extraction methods are representative, but these are extremely slow techniques from the standpoint of achieving high purity. Also known is a method of adsorbing and separating desired elements in batches using a chelate resin having a specific structure. However, these methods also have extremely poor separation efficiency, making it difficult to obtain highly pure products. As a result of extensive research into methods for separating Group 3B elements with high purity, the present inventors have discovered that Group 3B elements can be efficiently separated by chromatography using a chelate resin, an acceptor, and a desorbing liquid. They discovered what they could do and completed the present invention. The chelate resin in the present invention is a resin that has a functional group that can form a chelate compound with a group 3B element, and the functional group has a polyaminocarboxylic acid structure in its molecule, and is an example of a polyaminocarboxylic acid. is generally a compound represented by the following structural formula () and a compound in which any hydrogen atom in the formula () is replaced with a hydrocarbon group. [However, each of R 1 , R 2 , and R 3 is a hydrogen group -
CH 2 COOR 5 is represented, and R 5 represents hydrogen, a metal, or a hydrocarbon compound group having 1 to 4 carbon atoms. A1 , A2 , A3
are each

【式】又は[Formula] or

【式】を表し、i、j、 kは夫々0、1、2又は3を表す。但し、化合物
()は少なくとも1個の−CH2COOR5を含むも
のとする。〕 これらのポリアミノカルボン酸には、イミノ2
酢酸、N−メチルイミノ2酢酸、N−シクロヘキ
シルイミノ2酢酸、N−フエニルイミノ2酢酸等
の置換基を有するイミノ2酢酸及びニトリロ3酢
酸等の窒素原子1個を有するポリアミノカルボン
酸、エチレンジアミン−N,N,N′,N′4酢酸、
1,2−プロピレンジアミン−N,N,N′,N′4
酢酸、1−フエニルエチレンジアミン−N,N,
N′,N′4酢酸、シクロヘキシルジアミン−N,
N,N′,N′4酢酸等の置換基を有するエチレンジ
アミン−N,N,N′,N′、4酢酸及び窒素原子
2個を有するポリアミノカルボン酸、ジエチレン
トリアミン−N,N,N′,N″,N″5酢酸、ジエ
チレントリアミンN,N,N″,N″4酢酸 ジエチレントミアミン−N,N′,N″,N″4酢
等及びこれらに種々の置換基を導入した置換体及
びトリエチレンテトラミン−N,N,N′N″,N
〓,N〓6酢酸、ポリエチレンイミン、又は酢酸
基を導入したポリエチレンイミン等の窒素原子3
個以上を有するポリアミノカルボン酸基等があ
る。さらにN−ヒドロキシエチレンジアミン−
N,N′,N′−3酢酸、1,3−ジアミノプロパ
ン−N,N,N′,N′4酢酸、1,4−ジアミノブ
タンN,N,N′,N′4酢酸等のアミノカルボン酸
も本質的に本発明に使用できる。このうち、さら
に好ましいポリアミノカルボン酸基は、イミノ2
酢酸、エチレンジアミン4酢酸、ジエチレントリ
アミン−N,N,N”,N”4酢酸、ジエチレン
トリアミン−N,N′,N″,N″4酢酸及びこれら
の置換体である。 これらのキレート化合物は、化合物より任意の
位置の一つ以上の水素原子を除いたラジカル基と
してキレート樹脂中に含有されている。 キレート樹脂を形成する骨格樹脂には、特に制
限はなく、天然に産する高分子化合物又は種々の
重合性単量体の単独又は共存下での付加重合体、
重縮合重合体、付加縮合重合体、重付加重合体、
開環重合体等があり、用いる媒体に不溶のもので
ある。例えば、スチレン−ジビニルベンゼン共重
合体等の公知の樹脂骨格が使用でき、好ましくは
スチレン−ジビニルベンゼン共重合体に種々の置
換基を導入した構造を有するものである。 本発明に用いる最も好ましいキレート樹脂の代
表的構造は、構造式()〜()で示される繰
り返し単位を含むものである。これらのキレート
樹脂の製造法の例は、クロロメチルスチレン−ジ
ビニルベンゼン共重合体とイミノ2酢酸エチルエ
ステルの反応による方法(構造式()、(1,2
−ジブロモエチル)スチレン−ジビニルベゼン共
重合体とイミノ2酢酸の反応による方法(構造式
())、クロロメチルスチレン−ジビニルベンゼ
ン共重合体と、ジエチレントリアミン、引続いて
クロロ酢酸との反応による方法(構造式())、
パラー(ジアミノエチル)アミノエチル)スチレ
ン−ジニルベンゼン共重合体とクロロ酢酸の反応
による方法(構造式())である。 構造式() 〔A1、A2
[Formula], and i, j, and k each represent 0, 1, 2, or 3. However, the compound () shall contain at least one -CH2COOR5 . ] These polyaminocarboxylic acids include imino 2
Polyaminocarboxylic acids having one nitrogen atom such as iminodiacetic acid and nitrilotriacetic acid having a substituent such as acetic acid, N-methyliminodiacetic acid, N-cyclohexyliminodiacetic acid, N-phenyliminodiacetic acid, N-phenyliminodiacetic acid, etc., ethylenediamine-N,N , N′, N′4 acetic acid,
1,2-propylenediamine-N,N,N',N'4
Acetic acid, 1-phenylethylenediamine-N,N,
N′, N′4acetic acid, cyclohexyldiamine-N,
N,N',N'4Ethylenediamine-N,N,N',N', having a substituent such as acetic acid, and polyaminocarboxylic acid having two nitrogen atoms, diethylenetriamine-N,N,N',N ″,N″5 acetic acid, diethylenetriamineN,N,N″,N″4 acetic acid Diethylenethomiamine-N,N′,N″,N″4acetic acid etc., substituted products with various substituents introduced therein, and triethylenetetramine-N, N, N'N'', N
〓,N〓6 Nitrogen atom 3 of acetic acid, polyethyleneimine, or polyethyleneimine with an acetic acid group introduced
There are polyaminocarboxylic acid groups having 1 or more. Furthermore, N-hydroxyethylenediamine-
Amino acids such as N,N',N'-3acetic acid, 1,3-diaminopropane-N,N,N',N'4acetic acid, 1,4-diaminobutaneN,N,N',N'4acetic acid, etc. Carboxylic acids can also be used per se in the present invention. Among these, a more preferable polyaminocarboxylic acid group is imino 2
These are acetic acid, ethylenediaminetetraacetic acid, diethylenetriamine-N,N,N'',N''4acetic acid, diethylenetriamine-N,N',N'',N''4acetic acid, and substituted products thereof. These chelate compounds are contained in the chelate resin as a radical group obtained by removing one or more hydrogen atoms at arbitrary positions from the compound. The skeleton resin forming the chelate resin is not particularly limited, and may include naturally occurring polymer compounds or addition polymers of various polymerizable monomers alone or in the coexistence;
Polycondensation polymers, addition condensation polymers, polyaddition polymers,
There are ring-opened polymers, etc., which are insoluble in the medium used. For example, a known resin skeleton such as a styrene-divinylbenzene copolymer can be used, and preferably one having a structure in which various substituents are introduced into a styrene-divinylbenzene copolymer. The most preferred typical structure of the chelate resin used in the present invention is one containing repeating units represented by structural formulas () to (). An example of a method for producing these chelate resins is a method by reacting a chloromethylstyrene-divinylbenzene copolymer with iminodiacetic acid ethyl ester (structural formula (), (1,2
-dibromoethyl)styrene-divinylbenzene copolymer and iminodiacetic acid (structural formula formula()),
This is a method (structural formula ()) based on the reaction of para(diaminoethyl)aminoethyl)styrene-dinylbenzene copolymer and chloroacetic acid. Structural formula() [ A1 , A2 :

【式】又は[Formula] or

【式】 R1、R2:H又は−CH2COOR5 i、j:0、1、2又は3 k:1、2又は3 R5:H、金属又は炭素数1〜4の炭化水素基但
し、本構造中に少なくとも、1個以上の−
CH2COOR5基を含む。〕 構造式() 〔A1、A2
[Formula] R 1 , R 2 : H or -CH 2 COOR 5 i, j: 0, 1, 2 or 3 k: 1, 2 or 3 R 5 : H, metal or hydrocarbon group having 1 to 4 carbon atoms However, in this structure, at least one -
Contains 5 CH 2 COOR groups. 〕 Structural formula() [ A1 , A2 :

【式】又は[Formula] or

【式】 R1、R2、R3、R4:H又は−CH2COOR5 i、j:0、1、1又は3 R5:水素、金属、または炭素数1〜4の炭化水
素但し、本構造中に少なくとも、1個以上の−
CH2COOR5基を含む。〕 本発明に用いるキレート樹脂の交換容量は、乾
燥樹脂1g当たりの銅イオン吸着量として0.5ミ
リモル以上である。それ以下では十分な分離が行
えない。又、その粒子径に特に制限はないが、5
メツシユ〜500メツシユ(直径4mm〜0.03mm)が
好ましく、さらに好ましくは50ないし400メツシ
ユである。粒子径が大きすぎるときには、分離の
効率が低下し、又、小さすぎると充填塔における
圧力損失を増大し実用的でない。 本発明において被分離元素は通常溶液状態で用
いる。 本発明で云う受容化剤とは、一般に目的とする
3B族元素よりもキレート樹脂に対する吸着性の
小さい物質であり、キレート樹脂に吸着した状態
で該元素との接触により容易に置返される物質を
総称する。又、脱離剤とは、一般に目的とする元
素よりも、キレート樹脂に対する吸着性の高い物
質であり、金属元素を吸着したキレート樹脂と接
触することで、金属元素を容易に置換、脱離する
物質である。 受容化剤及び脱離剤は、目的とする元素及び使
用するキレート樹脂の組合せにより、適宜選択す
ることができる。 受容化剤としては、ポリアミノカルボン酸型キ
レート樹脂で分離する際には、Li、Na、K、
Rb、Cs等の族金属、Be、Mg、Ca、Sr等の
族金属及びAg、Fe、Mn、Zn等の金属イオン、
又はアンモニウムカチオン及びその他の有機イオ
ンが使用できる。又、受容化剤を含む受容化剤溶
液のPHに特に制限はなく、使用する受容化剤との
組合せにより選択することができる。好ましい受
容化剤溶液は、受容化剤としてLi+、Na+、K+
NH4 +を単独または混合して含み、PH5〜10の範
囲の組成であり、この場合には、3B族元素のキ
レート樹脂への吸着量が増大し、分離効率の向上
が著しい。 脱離剤としては、Pb()、Pd()、Ni()、
Cu()、V()、V()、Ti()、Fe()等
の金属イオン又はH+イオンが使用出来、特にH+
イオンが好ましい。 本発明に用いる受容化剤溶液、3B族元素含有
溶液及び脱離剤溶液は、一般に水を溶媒に用いる
が、各種溶媒、安定化剤等の添加物を用いること
もできる。例えば、アセトン、メチルエチルケト
ン、ジオキサン、イミダゾール、2−メルカプト
エタノール、エチレンジアミン、チオグリコール
酸、メタンスルホン酸、アセトニルアセトン、ス
ルフアミン酸、ニトロメタン、ジメチルアセター
ル、ジエチレングリコール、ピコリン酸、エチレ
ングリコール、プロピルアルコール、テトラハイ
ドロフラン、ピリジン、モノエタノールアミン、
2−アミノピリジン、3−アミノ−1,2,4−
トリアゾール、ピペラジン、メチルセルソルブ、
t−ブチルアルコール、ジメチルホルムアミド、
N−メチルホルムアミド、アセトニトリル、アセ
チルアセトン、尿素、オキシン等である。さら
に、クエン酸、リンゴ酸等の錯形成剤を加えるこ
とも可能である。 次ぎに、分離の方法について述べる。 3B族元素を分離する本発明は、一般に置換ク
ロマトグラフイと呼ばれる方法で、代表的には一
連の次の操作により分離を行う。即ち、 ジヤケツト付き充填塔にキレート樹脂を充填
する。 受容化剤を含む受容化剤溶液を供給し、キレ
ート樹脂が被分離元素を受容、吸着できるよう
にする。 3B族元素を含む溶液を供給し、被分離物質
の吸着帯を形成させる。 脱離剤を含む脱離液を供給し、帯状の吸着帯
を形成させ、移動させる(この際吸着帯の前方
及び後方の両界面は明瞭なまま保持される。)。 脱離液の供給に従つて、充填塔下部より流出
する溶液を分取す。 このような所謂クロマトグラフイによつて被分
離物質は各々のキレート樹脂に対する選択性に応
じて吸着及び脱着を繰り返しながら移動して行
く。このようにして該充填塔より流出してくる液
を適宜分取して行くことにより、分離、精製の目
的を達成することができるものである。 本発明を実施する温度に特に制限はないが、通
常−10℃〜200℃の間で、好ましくは10℃〜120℃
の範囲である。 充填塔へ流す液体の速度については特に制限は
ないが、一般に線速度を大きくすると分離性能が
下がり、小さくすると処理液量が少なくなるので
工業的に不利である。 このような状況から好ましくは10〜100m/時
程度が好ましいと言える。 本発明の方法は従来の方法に比し一段で極めて
高純度の3B族元素を分離できる点優れた方法で
ある。 以下に実施例を示すが、これらは本発明の範囲
を制限するものではない。 実施例 パラ(ジアミノエチルアミノエチル)スチレン
−ジビニルベンゼン共重合体にクロロ酢酸の反応
により得たキレート樹脂(乾燥樹脂1g当たりの
銅イオン吸着量1.2ミリモル)約35mlを用い、パ
イレツクス製ガラスカラム(内径10mmφ×50cm)
によりガリウム−アルミニウムの分離実験を行つ
た。 上記カラムにキレート樹脂を充填した後、
NH4 +イオンを含む再生液(PH6)によりキレー
ト樹脂を受容体型とした。続いてガリウム5m
M、アルミニウム5mMを含む塩酸溶液、さらに
希塩酸溶液を脱離剤として展開分離を行つた。 溶出液を各フラツクシヨン毎に分割採取し、常
法によりガリウム及びアルミニウムを分析した結
果、前方のフラクシヨン液のうち最もアルミニウ
ム純度の高いフラクシヨンにおいて純度90%以
上、又後方のガリウム純度の最も高いフラクシヨ
ン液においても、純度90%以上で、それぞれ分離
回収を行つた。
[Formula] R 1 , R 2 , R 3 , R 4 : H or -CH 2 COOR 5 i, j: 0, 1, 1 or 3 R 5 : Hydrogen, metal, or hydrocarbon having 1 to 4 carbon atoms , at least one or more - in this structure
Contains 5 CH 2 COOR groups. ] The exchange capacity of the chelate resin used in the present invention is 0.5 mmol or more as the amount of copper ions adsorbed per gram of dry resin. If it is less than that, sufficient separation cannot be achieved. In addition, there is no particular restriction on the particle size, but 5
The mesh size is preferably 500 to 500 meshes (4 mm to 0.03 mm in diameter), and more preferably 50 to 400 meshes. If the particle size is too large, the separation efficiency will decrease, and if it is too small, the pressure loss in the packed column will increase, making it impractical. In the present invention, the element to be separated is usually used in a solution state. The acceptor referred to in the present invention generally refers to
A general term for substances that have lower adsorption to chelate resins than Group 3B elements, and which are easily displaced by contact with the element while adsorbed to the chelate resin. In addition, a desorption agent is a substance that generally has higher adsorption to the chelate resin than the target element, and easily replaces and desorbs the metal element by coming into contact with the chelate resin that has adsorbed the metal element. It is a substance. The acceptor and the desorbing agent can be appropriately selected depending on the desired element and the combination of the chelate resin used. When separating with a polyaminocarboxylic acid type chelate resin, acceptors include Li, Na, K,
Group metals such as Rb, Cs, group metals such as Be, Mg, Ca, Sr, and metal ions such as Ag, Fe, Mn, Zn,
Alternatively, ammonium cations and other organic ions can be used. Further, the pH of the acceptor solution containing the acceptor is not particularly limited and can be selected depending on the combination with the acceptor used. Preferred acceptor solutions include Li + , Na + , K + ,
It contains NH 4 + alone or in combination, and has a composition with a pH in the range of 5 to 10. In this case, the amount of Group 3B elements adsorbed to the chelate resin increases, and the separation efficiency is significantly improved. As desorption agents, Pb (), Pd (), Ni (),
Metal ions such as Cu(), V(), V(), Ti(), Fe() or H + ions can be used, especially H +
Ions are preferred. The acceptor solution, Group 3B element-containing solution, and release agent solution used in the present invention generally use water as a solvent, but various solvents and additives such as stabilizers can also be used. For example, acetone, methyl ethyl ketone, dioxane, imidazole, 2-mercaptoethanol, ethylene diamine, thioglycolic acid, methanesulfonic acid, acetonylacetone, sulfamic acid, nitromethane, dimethyl acetal, diethylene glycol, picolinic acid, ethylene glycol, propyl alcohol, tetrahydrocarbon Furan, pyridine, monoethanolamine,
2-aminopyridine, 3-amino-1,2,4-
triazole, piperazine, methylcellosolve,
t-butyl alcohol, dimethylformamide,
N-methylformamide, acetonitrile, acetylacetone, urea, oxine, etc. Furthermore, it is also possible to add complexing agents such as citric acid and malic acid. Next, the separation method will be described. The present invention, which separates Group 3B elements, uses a method generally called displacement chromatography, and typically performs separation by a series of the following operations. That is, a jacketed packed tower is filled with chelate resin. An acceptor solution containing an acceptor is supplied so that the chelating resin can accept and adsorb the element to be separated. A solution containing Group 3B elements is supplied to form an adsorption zone for the substance to be separated. A desorption liquid containing a desorption agent is supplied to form a band-shaped adsorption zone and move it (at this time, both the front and rear interfaces of the adsorption zone are kept clear). As the desorbed liquid is supplied, the solution flowing out from the bottom of the packed column is collected. By such so-called chromatography, the substance to be separated moves while repeating adsorption and desorption depending on the selectivity for each chelate resin. By appropriately fractionating the liquid flowing out from the packed column in this manner, the objectives of separation and purification can be achieved. There is no particular restriction on the temperature at which the present invention is carried out, but it is usually between -10°C and 200°C, preferably between 10°C and 120°C.
is within the range of There is no particular restriction on the velocity of the liquid flowing into the packed column, but generally speaking, increasing the linear velocity will reduce the separation performance, while decreasing it will reduce the amount of liquid to be treated, which is industrially disadvantageous. Under these circumstances, it can be said that the speed is preferably about 10 to 100 m/hour. The method of the present invention is superior to conventional methods in that it can separate Group 3B elements with extremely high purity in one step. Examples are shown below, but these are not intended to limit the scope of the present invention. Example Using approximately 35 ml of a chelate resin (copper ion adsorption amount per 1 g of dry resin: 1.2 mmol) obtained by reacting para(diaminoethylaminoethyl)styrene-divinylbenzene copolymer with chloroacetic acid, a Pyrex glass column (inner diameter 10mmφ×50cm)
A gallium-aluminum separation experiment was conducted using the following methods. After filling the above column with chelate resin,
The chelate resin was made into a receptor type using a regenerating solution (PH6) containing NH 4 + ions. Next, gallium 5m
M, a hydrochloric acid solution containing 5mM of aluminum, and a diluted hydrochloric acid solution were used as desorbing agents to perform development separation. The eluate was collected separately for each fraction and analyzed for gallium and aluminum using a conventional method. As a result, the purity of the front fraction with the highest aluminum purity was over 90%, and the rear fraction with the highest gallium purity was found. Separation and recovery were carried out at a purity of 90% or higher.

Claims (1)

【特許請求の範囲】 1 官能基として、下記の構造式()で表され
るポリアミノカルボン酸の構造を有し、乾燥樹脂
1g当たりの銅イオン吸着量が0.5ミリモル以上
であるキレート樹脂を充填した充填塔を用い、該
充填塔に受容化剤を含む溶液を供給し、続いて
3B族元素を含む溶液を供給し、さらに脱離剤を
含む脱離液を供給し、受容化剤の存在する領域及
び脱離剤の存在する領域との間に境界面を有する
3B族元素を含む液の帯状吸着領域を形成し、こ
の領域内で吸着反応を行わせながら、該領域を移
動させ、該充填塔より流出してくる液を分取する
ことを特徴とする3B族元素の分離・精製方法。 〔但し、R1、R2、R3はそれぞれ水素又は−
CH2COOR5を表し、R5は水素、金属又は炭素数
1〜4の炭化水素化合物基を表す。A1、A2、A3
は夫々【式】又は 【式】を表し、i、j、 kは夫々0、1、2又は3を表す。但し、化合物
()は少なくとも1個の−CH2COOR5含むもの
とする。〕
[Claims] 1. Filled with a chelate resin having a polyaminocarboxylic acid structure represented by the following structural formula () as a functional group, and having an adsorption amount of copper ions of 0.5 mmol or more per 1 g of dry resin. A packed column is used, the packed column is fed with a solution containing an acceptor, and then
Supplying a solution containing a group 3B element, further supplying a desorption liquid containing a desorption agent, and having an interface between a region where the acceptor exists and a region where the desorption agent exists.
3B, which is characterized by forming a band-shaped adsorption region for a liquid containing group 3B elements, moving the region while performing an adsorption reaction within this region, and fractionating the liquid flowing out from the packed column. Separation and purification method of group elements. [However, R 1 , R 2 , R 3 are each hydrogen or -
CH 2 COOR 5 is represented, and R 5 represents hydrogen, a metal, or a hydrocarbon compound group having 1 to 4 carbon atoms. A1 , A2 , A3
represents [Formula] or [Formula], respectively, and i, j, and k represent 0, 1, 2, or 3, respectively. However, the compound () shall contain at least one -CH 2 COOR 5 . ]
JP58248967A 1983-12-24 1983-12-24 New method for separation and purification Granted JPS60137820A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58248967A JPS60137820A (en) 1983-12-24 1983-12-24 New method for separation and purification

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58248967A JPS60137820A (en) 1983-12-24 1983-12-24 New method for separation and purification

Publications (2)

Publication Number Publication Date
JPS60137820A JPS60137820A (en) 1985-07-22
JPH0432761B2 true JPH0432761B2 (en) 1992-06-01

Family

ID=17186051

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58248967A Granted JPS60137820A (en) 1983-12-24 1983-12-24 New method for separation and purification

Country Status (1)

Country Link
JP (1) JPS60137820A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6153118A (en) * 1984-08-18 1986-03-17 Agency Of Ind Science & Technol Fractional recovery of gallium and indium
DE69918995T2 (en) * 1998-04-30 2005-07-28 Chelest Corp. CHELAT-FORMING FILTER AND METHOD FOR ITS MANUFACTURE

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53107152A (en) * 1977-03-01 1978-09-18 Unitika Ltd Method of neutralizing chelate resin passing water
JPS5415713A (en) * 1977-07-02 1979-02-05 Shinwa Shoko Kk Device for automatically winding tape in tape recorder
JPS5442356A (en) * 1977-09-09 1979-04-04 Nippon Koki Kk Dressed metal plate
JPS54162800A (en) * 1978-06-14 1979-12-24 Unitika Ltd Preparation of spherical chelate resin having excellent selective adsorptivity
JPS57197040A (en) * 1981-05-27 1982-12-03 Unitika Ltd Phenolic chelate resin, preparation thereof and adsorbing treatment

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53107152A (en) * 1977-03-01 1978-09-18 Unitika Ltd Method of neutralizing chelate resin passing water
JPS5415713A (en) * 1977-07-02 1979-02-05 Shinwa Shoko Kk Device for automatically winding tape in tape recorder
JPS5442356A (en) * 1977-09-09 1979-04-04 Nippon Koki Kk Dressed metal plate
JPS54162800A (en) * 1978-06-14 1979-12-24 Unitika Ltd Preparation of spherical chelate resin having excellent selective adsorptivity
JPS57197040A (en) * 1981-05-27 1982-12-03 Unitika Ltd Phenolic chelate resin, preparation thereof and adsorbing treatment

Also Published As

Publication number Publication date
JPS60137820A (en) 1985-07-22

Similar Documents

Publication Publication Date Title
JPH0416531B2 (en)
RU1831508C (en) Method of extraction of noble metals from alkaline cyan solutions
US5340380A (en) Recovery of precious metal
JPH0420930B2 (en)
CN113024539B (en) Preparation method of isaconazole onium sulfate
AU6903696A (en) Recovery of gold using extraction reagents having guanidyl functionality
JPH0432761B2 (en)
Shinohara et al. Synthesis of novel type resin based on calix [4] arene carboxylate and selective separation of lead from zinc
US8062526B2 (en) Separation of platinum group metals
JPS5842737A (en) Recovering method for gallium
CN114479109B (en) Preparation and application of N, S-containing metal organic framework material
JPH03291332A (en) Separation of rare earth element
JPS5855233B2 (en) Method for producing sebacic acid dimethyl ester
US6506706B1 (en) Polyamide-containing ligating agents bonded to inorganic and organic polymeric supports and methods of using the same for removing and concentrating desired metal ions from solutions
JPH0354118A (en) Method for recovering rhenium
JPH0313170B2 (en)
JPS61122119A (en) Purification of yttrium
EP4212228A1 (en) Method for separating lutetium and ytterbium using chromatography
JP4741789B2 (en) Synthesis method of polymer complex with adsorption performance
JPH0743358B2 (en) Packing material and column for liquid chromatography
JPH0134932B2 (en)
SU1731772A1 (en) Method for isolation of tetracycline-base from the aqueous solution
JPS632894B2 (en)
CN113117726A (en) Shaped catalyst for synthesizing phenylpropanoic acid and preparation and application thereof
JPH0725542B2 (en) Method for separating and refining rare earth elements