JPH0432743A - Method for dissolving sample for analysis of inclusion - Google Patents

Method for dissolving sample for analysis of inclusion

Info

Publication number
JPH0432743A
JPH0432743A JP2138904A JP13890490A JPH0432743A JP H0432743 A JPH0432743 A JP H0432743A JP 2138904 A JP2138904 A JP 2138904A JP 13890490 A JP13890490 A JP 13890490A JP H0432743 A JPH0432743 A JP H0432743A
Authority
JP
Japan
Prior art keywords
sample
electron beam
film thickness
time
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2138904A
Other languages
Japanese (ja)
Other versions
JP2790361B2 (en
Inventor
Hiroyuki Ogawa
博之 小川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jeol Ltd
Original Assignee
Jeol Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jeol Ltd filed Critical Jeol Ltd
Priority to JP2138904A priority Critical patent/JP2790361B2/en
Publication of JPH0432743A publication Critical patent/JPH0432743A/en
Application granted granted Critical
Publication of JP2790361B2 publication Critical patent/JP2790361B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Investigating And Analyzing Materials By Characteristic Methods (AREA)
  • Sampling And Sample Adjustment (AREA)

Abstract

PURPOSE:To automate the operation for dissolution by setting control of an electron beam output, etc., in a film thickness control system of a film thickness gage provided in a vacuum vessel. CONSTITUTION:The value of the electron beam output P2 of a sample heating distribution is exactly set by building the rock crystal type film thickness gage 11 into the upper part of a hearth 3 in the vacuum vessel 2. The reason thereof lies in that the ample 6 (6a, 6b...) is heated and dissolved by the electron beam generated from an electron gun 9 and that the state just before the evaporation can be checked by the film thickness gage 11. The electron beam output P1 for preheating, the rising time T1 thereof, the preheating time T2, the rising time T3, the dissolving time T4 and the falling time T5 of the output are set by experiment, experience, etc. The data of the sample heating distribution is determined and this data is inputted to the film thickness control system 13. The control system 13 sends an output signal to a power source 10 of the electronic gun to control the electron beam output along the heating distribution data when a start button S is pushed in this state. The sample 6 is gradually heated up to the dissolving temp. in this way.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、メタル中に含まれている少量の介在物を効果
的に分析する技術分野において、分析する前のメタル試
料の溶解方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for dissolving a metal sample before analysis in the technical field of effectively analyzing small amounts of inclusions contained in metal.

[従来の技術] メタル試料の溶解を行う技術として、真空ベッセル内に
ハースを設置してこのハース内ヘメタル試料を入れ、試
料に電子ビームを照射して溶解し試料中の非金属介在物
を浮上分離させる装置が既に実用に供されている。
[Conventional technology] As a technique for melting metal samples, a hearth is placed in a vacuum vessel, the metal sample is placed inside the hearth, and the sample is irradiated with an electron beam to melt and float non-metallic inclusions in the sample. Separation devices are already in practical use.

ところで、このように試料中の微少介在物を浮上させる
試料溶解においては、微少介在物の形状を変えずに試料
中に含まれる介在物をできるだけ多く浮上させる必要が
あるため、通常の電子ビーム溶解方法とは異なり、電子
ビーム出力を厳密にコントロールすることが要求される
。例えば試料に高出力の電子ビームを照射して急激に加
熱(溶解)すると、試料中に溜まっていたガスが一度に
放出し、それに伴なって試料が飛散する恐れがある。
By the way, when dissolving a sample to levitate minute inclusions in the sample in this way, it is necessary to levitate as many inclusions as possible without changing the shape of the minute inclusions, so ordinary electron beam melting is method requires strict control of the electron beam output. For example, if a sample is irradiated with a high-power electron beam and rapidly heated (melted), the gas accumulated in the sample will be released all at once, which may cause the sample to scatter.

そこで、第2図に試料の加熱分布図(縦軸は電子ビーム
出力、横軸は時間)の関係を示すように電子ビームの出
力は、PlとP2の2段階に変化させて試料を照射する
。つまり試料をPlの電子ビーム出力によりT2の時間
予備加熱した後、電子ビーム出力をP2に変化してT4
の時間溶解し試料を急激に加熱しないようにする必要が
ある。
Therefore, the output of the electron beam is changed in two stages, Pl and P2, to irradiate the sample, as shown in Figure 2, which shows the relationship between the heating distribution of the sample (the vertical axis is the electron beam output, and the horizontal axis is time). . In other words, after preheating the sample for a time T2 using an electron beam output of Pl, the electron beam output is changed to P2 and then T4 is heated.
It is necessary to dissolve the sample for a period of time and avoid heating the sample rapidly.

また、予備加熱状態から溶解状態に移る際にも、電子ビ
ーム出力を急激に立上げると突沸現象が生じて試料が飛
散する恐れがあるため、立上げ時間T3で示すように徐
々に上昇させる必要がある。
Also, when moving from the preheating state to the melting state, if the electron beam output is suddenly raised, a bumping phenomenon may occur and the sample may be scattered, so it is necessary to gradually increase the output as shown in the start-up time T3. There is.

さらに、試料を溶解する電子ビーム出力P2としては、
蒸発が起こらないぎりぎりのところに設定して介在物を
効率良く浮上させる必要がある。このとき、溶解時間T
4が長くなると浮上した不純物が溶けるため、介在物が
溶ける手前で溶解を停止する必要がある。この試料溶解
の停止にあたっても、瞬時に電子ビームの照射を止める
と試料の温度が急激に低下し、それによってクラッカが
生じて浮上した介在物の形状が崩れる恐れがある。
Furthermore, the electron beam output P2 for melting the sample is as follows:
It is necessary to set the temperature to the limit where evaporation does not occur so that inclusions can be efficiently floated. At this time, the dissolution time T
If 4 becomes longer, the floating impurities will melt, so it is necessary to stop the dissolution before the inclusions melt. When stopping the sample melting, if the electron beam irradiation is stopped instantaneously, the temperature of the sample will drop rapidly, which may cause crackers to occur and the shape of the floating inclusions to collapse.

尚、試料の予備加熱にあたり、瞬時に電子ビーム出力P
1にて試料を照射すると試料に電流が流れ、それによっ
て試料が移動する恐れがあるため、立上げ時間T1で示
すように徐々に上昇させる必要がある。
In addition, when preheating the sample, the electron beam output P
When the sample is irradiated at step 1, a current flows through the sample, which may cause the sample to move. Therefore, it is necessary to gradually increase the rise time as shown by the start-up time T1.

[発明が解決しようとする課題] 従来においては、オペレータが試料を見ながら同図で示
す電子ビーム出力のコントロールを行っているため、試
料を蒸発させて無駄にすることが頻繁に生じる。また、
溶解条件に個人差がでるため、介在物の浮上する条件を
常に一定に持つことができない。
[Problems to be Solved by the Invention] Conventionally, since the operator controls the electron beam output shown in the figure while looking at the sample, the sample is often evaporated and wasted. Also,
Since the dissolution conditions vary from person to person, the conditions for inclusions to float cannot always be maintained constant.

そこで、本発明はかかる不都合を解決するため、溶解操
作を自動的に行うことのできる介在物分析試料溶解方法
を提供することを目的とするものである。
SUMMARY OF THE INVENTION In order to solve this problem, it is an object of the present invention to provide a method for dissolving a sample for inclusion analysis in which the dissolution operation can be performed automatically.

[課題を解決するための手段] 上記目的を達成するため、本発明の介在物分析試料溶解
方法は、真空ベッセル中に設けたハース上の試料に電子
ビームを照射して介在物をその表面に浮上させる介在物
分析試料溶解方法において、前記真空ベッセル内に膜厚
計を設け、前記試料を溶解するための電子ビーム出力の
立上げ時間、予備加熱時間、溶解時間及び出力の立下げ
時間の制御を前記膜厚計の膜厚コントローラ系に設定し
、溶解操作を自動的に行うことを特徴とするものである
[Means for Solving the Problems] In order to achieve the above object, the inclusion analysis sample dissolution method of the present invention irradiates an electron beam onto a sample on a hearth provided in a vacuum vessel to remove inclusions from the surface of the sample. In the inclusion analysis sample melting method by floating, a film thickness gauge is provided in the vacuum vessel, and control of the rise time, preheating time, melting time, and fall time of the electron beam output for melting the sample is performed. is set in the film thickness controller system of the film thickness meter, and the melting operation is automatically performed.

以下、本発明の原理について少しく説明する。The principle of the present invention will be briefly explained below.

ところで、真空蒸着装置等の成膜装置に使用される膜厚
コントローラ系には、加熱源(電子銃)の出力を予備加
熱モードと蒸発モードの2段階に制御することができる
ように構成されている。
By the way, a film thickness controller system used in a film forming apparatus such as a vacuum evaporation apparatus is configured to be able to control the output of a heating source (electron gun) into two stages: a preheating mode and an evaporation mode. There is.

つまり、蒸着物質の蒸発は、細く絞った電子ビームを蒸
着物質上で2次元的に走査して蒸着物質全体を均一に溶
解させる必要から蒸発開始時に高出力の電子ビームを蒸
着物質に照射すると、その照射部分のみが瞬時に加熱さ
れて飛散するため、電子ビームの出力を徐々に立上げて
いる。また、この立上がりによって蒸着物質を一気に加
熱して蒸発すると、蒸着物質内に溜まっていたガスが急
激に放出されるという突沸現象が発生して蒸着物質が飛
散するため、電子ビームの出力をあるところまで立上げ
た後、出力を一定に保ち蒸着物質を予備加熱しながらガ
ス抜きを行っている。その後、電子ビーム出力を蒸発出
力まで徐々に立上げて蒸発物質を蒸発させている。そし
て、所望の膜厚に達すると、電子ビームの出力を徐々に
低下(立下げ)して電子ビームの出力を停止するように
構成されている。
In other words, in order to evaporate a vapor deposited material, it is necessary to scan a narrowly focused electron beam over the vapor deposited material two-dimensionally to uniformly dissolve the entire vapor deposited material. Since only the irradiated part is instantaneously heated and scattered, the output of the electron beam is gradually increased. In addition, when the vapor deposition material is heated and evaporated all at once due to this rise, a bumping phenomenon occurs in which the gas accumulated in the vapor deposition material is suddenly released, causing the vapor deposition material to scatter. After startup, the output is kept constant and the vapor deposition material is preheated while degassing. Thereafter, the electron beam output is gradually increased to the evaporation output to evaporate the evaporated substance. Then, when a desired film thickness is reached, the output of the electron beam is gradually lowered (falling down) and the output of the electron beam is stopped.

かかる膜厚コントローラ系の電子ビーム出力の制御は、
本発明に係るメタル試料中の微少介在物を浮上させる試
料溶解法を実施する際の電子ビーム出力の制御と同様で
あることに着目して、本発明は膜厚コントローラ系を利
用して第2図で示す試料の加熱分布に沿った電子ビーム
出力の制御を行わせるようにしたものである。
Control of the electron beam output of such a film thickness controller system is as follows:
Focusing on the fact that it is similar to the control of the electron beam output when carrying out the sample melting method for levitating minute inclusions in a metal sample according to the present invention, the present invention utilizes a film thickness controller system to The electron beam output is controlled in accordance with the heating distribution of the sample shown in the figure.

以下、本発明の一例を図面に基づいて詳説する。Hereinafter, an example of the present invention will be explained in detail based on the drawings.

[実施例] 第1図は本発明の方法を使用した介在物分析試料溶解装
置の一例を示す概略図である。 同図において、1は装
置本体、2はその上面に気密を保って着脱可能に載置さ
れた真空ベッセルで、この真空ベッセル内は図示外の真
空ポンプに接続され真空に保たれる。また、この真空ベ
ッセル内には銅製の円形ハース3が設けられている。前
記ハースは前記本体1を気密を保って貫通した回転軸4
により回転可能に保持されており、また、この/XXス
ス上面には多数の凹部5a、5b、・・・が回転中心を
中心とした同一円周上に等間隔に形成されている。この
各凹部に試料6g、6b、・・・が収容される。7は前
記回転軸4を回転させるためのモータ、8はその駆動電
源である。尚、前記ハース3の内部には、図示しないが
冷却水が循環するための水冷手段が施されている。
[Example] FIG. 1 is a schematic diagram showing an example of an inclusion analysis sample dissolution apparatus using the method of the present invention. In the figure, 1 is a main body of the apparatus, and 2 is a vacuum vessel removably placed on the upper surface of the apparatus in an airtight manner.The inside of this vacuum vessel is connected to a vacuum pump (not shown) to maintain a vacuum. Further, a circular hearth 3 made of copper is provided within this vacuum vessel. The hearth has a rotating shaft 4 passing through the main body 1 in an airtight manner.
A large number of recesses 5a, 5b, . . . are formed at equal intervals on the same circumference around the rotation center on the upper surface of the /XX soot. Samples 6g, 6b, . . . are accommodated in each of the recesses. 7 is a motor for rotating the rotating shaft 4, and 8 is a driving power source thereof. Although not shown, water cooling means for circulating cooling water is provided inside the hearth 3.

9は前記ハース3近傍に設けられた電子銃で、発生した
電子ビームEは図示外の偏向手段により約180度偏向
されてハース3上の溶解位置にセットされた試料を照射
する。10はこの電子銃の電源である。尚、前記電子銃
9には図示しないが電子ビームを試料上で2次元的に走
査するための偏向系が組み込まれている。
Reference numeral 9 denotes an electron gun provided near the hearth 3, and the generated electron beam E is deflected by about 180 degrees by a deflection means (not shown) to irradiate the sample set at the melting position on the hearth 3. 10 is a power source for this electron gun. Although not shown, the electron gun 9 has a built-in deflection system for two-dimensionally scanning the electron beam over the sample.

11は前記真空ベッセル2内のハース3上方に置かれた
水晶式膜厚計で、真空ベッセル2を貫通した保持棒12
の先端に保持されている。13はこの膜厚計のコントロ
ーラ系で、このコントローラ系はその出力信号で前記モ
ータ電源8と電子銃電源9を夫々制御する。14はこの
コントローラ系によってカウトされた蒸発レートの表示
部である。
11 is a crystal film thickness gauge placed above the hearth 3 in the vacuum vessel 2, and a holding rod 12 passing through the vacuum vessel 2;
is held at the tip of the Reference numeral 13 denotes a controller system for this film thickness meter, and this controller system controls the motor power source 8 and the electron gun power source 9, respectively, using its output signals. Reference numeral 14 is a display section for the evaporation rate counted by this controller system.

このように膜厚計11を組み込むことにより第2図で示
す試料加熱分布の電子ビーム出力P2の値を正確に設定
することができる。それは試料に電子銃9から電子ビー
ムを発生させて加熱溶解し、蒸発する寸前の状態を膜厚
計で確認することができるからである。また、予備加熱
するための電子ビーム出力P1については、P2以下で
あることから実際に測定することなく実験の繰り返しゃ
経験等によって容易に設定ができる。さらに、他の試料
溶解までの立上がり時間TI、予備加熱時間T2.立上
がり時間T3.溶解時間T4及び立下がり時間T5につ
いても同様に実験の繰り返しゃ経験等によって容易に設
定できる。そして、試料加熱分布のデータが求められる
、そのデータをコントローラ系13にインプットする。
By incorporating the film thickness gauge 11 in this manner, it is possible to accurately set the value of the electron beam output P2 for the sample heating distribution shown in FIG. This is because an electron beam is generated from the electron gun 9 on the sample to heat and melt it, and the state on the verge of evaporation can be confirmed using a film thickness meter. Furthermore, since the electron beam output P1 for preheating is less than P2, it can be easily set by experience or the like by repeating experiments without actually measuring it. Furthermore, the rise time TI until the other sample melts, the preheating time T2. Rise time T3. Similarly, the dissolution time T4 and the fall time T5 can be easily set by repeating experiments or by experience. Data on the sample heating distribution is then input to the controller system 13.

この状態で、スタート釦Sを押すとコントローラ系13
は、先ず出力信号をモータ電源7に送り加熱すべく最初
の試料6aを溶解位置にセットする。その後、コントロ
ーラ系は出力信号を電子銃電源10に送り、電子銃から
発生する電子ビーム出力を第2図で示す分布に沿って制
御する。これにより試料6aは急激に加熱されることな
く徐々に加熱されて試料全体が一様にある温度まで達す
ると、次第に溶解温度まで加熱されるため、介在物が分
離浮上して凝固される。そして、電子銃9からの電子ビ
ーム出力が停止されると、コントローラ系13は溶解終
了信号をモータ電源8に送り、モータ7を一定角度回転
させる。この回転により回転軸4を介してハース3が回
転し、次の四部か溶解位置にセットされる。以下、前述
した動作が繰り返されて、ハース上の凹部に収容された
各試料が自動的に順次電子ビームによって溶解され介在
物が浮上凝固される。
In this state, when you press the start button S, the controller system 13
First, an output signal is sent to the motor power source 7 and the first sample 6a is set at the melting position for heating. Thereafter, the controller system sends an output signal to the electron gun power supply 10 to control the electron beam output generated from the electron gun along the distribution shown in FIG. As a result, the sample 6a is heated gradually without being heated rapidly, and when the entire sample uniformly reaches a certain temperature, it is gradually heated to the melting temperature, so that the inclusions are separated and floated and solidified. Then, when the electron beam output from the electron gun 9 is stopped, the controller system 13 sends a melting end signal to the motor power source 8 to rotate the motor 7 by a certain angle. This rotation causes the hearth 3 to rotate via the rotating shaft 4, and the next four parts are set at the melting position. Thereafter, the above-described operations are repeated, and each sample accommodated in the recess on the hearth is automatically and sequentially melted by the electron beam, and the inclusions are floated and solidified.

このようになせば、試料を溶解する電子ビーム出力を正
確に設定できるため、介在物を効率良く浮上させること
ができると共に、試料を無駄にすることを防止できる。
By doing so, the electron beam power for dissolving the sample can be set accurately, so that inclusions can be efficiently levitated and the sample can be prevented from being wasted.

また、試料の溶解中において、蒸発を膜厚計にて確認で
きるため、測定試料の異状チエツクを行うことができる
と同時に、電子銃中のフィラメントの経年変化等による
異状加熱を直ちに確認でき、それによる試料の無駄を防
止できる。さらに、多数の試料における溶解(介在物の
浮上)の自動化を容易にかつ簡単な構成にて行うことが
できる。
In addition, since evaporation can be confirmed with a film thickness meter while the sample is being melted, it is possible to check for abnormalities in the measurement sample, and at the same time, it is possible to immediately check for abnormal heating due to aging of the filament in the electron gun. It is possible to prevent waste of samples due to Furthermore, the dissolution (floating of inclusions) of a large number of samples can be automated easily and with a simple configuration.

尚、前述の説明は本発明の一例であり、実施にあたって
は幾多の変形が考えられる。例えば上記本実施例では、
水晶式の膜厚計を使用したが、これに限定されることな
く電子衝撃式膜厚計等の既知のものであれば何でも良い
It should be noted that the above description is an example of the present invention, and many modifications can be made in implementing the present invention. For example, in the above embodiment,
Although a crystal type film thickness meter was used, the present invention is not limited thereto, and any known type such as an electron impact type film thickness meter may be used.

[効果] 以上のようになせば、介在物を浮上させるにあたり、従
来のようにオペレータがその都度試料の加熱状態を観察
することなく自動的に制御することができるため、試料
を蒸発させて無駄にすることを防止できる。また、介在
物の浮上する条件の制度をより一層向上させることがで
きる。
[Effect] By doing the above, the operator can automatically control the levitation of inclusions without having to observe the heating state of the sample each time, unlike in the past, so the sample is not evaporated and wasted. You can prevent this from happening. In addition, the accuracy of the conditions under which inclusions float can be further improved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の方法を使用した介在物分析試料溶解装
置の一例を示す概略図、第2図は試料の加熱分布を示す
図である。 1:装賀本体      2:真空ベッセル3:ハース
       4:回転軸 5a、5b:凹部 6a、6b:試料    7:モータ 8:モータ電源     9:電子銃 1〇二電子銃電源 11:水晶式膜厚計   12:保持棒13:コントロ
ーラ系
FIG. 1 is a schematic diagram showing an example of an inclusion analysis sample dissolving apparatus using the method of the present invention, and FIG. 2 is a diagram showing the heating distribution of the sample. 1: Mounting body 2: Vacuum vessel 3: Hearth 4: Rotating shaft 5a, 5b: Recesses 6a, 6b: Sample 7: Motor 8: Motor power supply 9: Electron gun 102 Electron gun power supply 11: Crystal film thickness meter 12: Holding rod 13: Controller system

Claims (1)

【特許請求の範囲】[Claims] 真空ベッセル中に設けたハース上の試料に電子ビームを
照射して介在物をその表面に浮上させる介在物分析試料
溶解方法において、前記真空ベッセル内に膜厚計を設け
、前記試料を溶解するための電子ビーム出力の立上げ時
間、予備加熱時間、溶解時間及び出力の立下げ時間の制
御を前記膜厚計の膜厚コントローラ系に設定し、溶解操
作を自動的に行うことを特徴とする介在物分析試料溶解
方法。
In an inclusion analysis sample dissolution method in which a sample on a hearth provided in a vacuum vessel is irradiated with an electron beam to cause inclusions to float to the surface thereof, a film thickness gauge is provided in the vacuum vessel to dissolve the sample. An intervention characterized in that the control of the rise time of the electron beam output, the preheating time, the melting time, and the fall time of the output is set in the film thickness controller system of the film thickness meter, and the melting operation is automatically performed. Physical analysis sample dissolution method.
JP2138904A 1990-05-29 1990-05-29 Inclusion analysis sample dissolution method Expired - Fee Related JP2790361B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2138904A JP2790361B2 (en) 1990-05-29 1990-05-29 Inclusion analysis sample dissolution method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2138904A JP2790361B2 (en) 1990-05-29 1990-05-29 Inclusion analysis sample dissolution method

Publications (2)

Publication Number Publication Date
JPH0432743A true JPH0432743A (en) 1992-02-04
JP2790361B2 JP2790361B2 (en) 1998-08-27

Family

ID=15232851

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2138904A Expired - Fee Related JP2790361B2 (en) 1990-05-29 1990-05-29 Inclusion analysis sample dissolution method

Country Status (1)

Country Link
JP (1) JP2790361B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0540082A (en) * 1991-08-06 1993-02-19 Nippon Steel Corp Inclusion analysis specimen dissolution method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0540082A (en) * 1991-08-06 1993-02-19 Nippon Steel Corp Inclusion analysis specimen dissolution method

Also Published As

Publication number Publication date
JP2790361B2 (en) 1998-08-27

Similar Documents

Publication Publication Date Title
US4503313A (en) Relatively adjustable laser and optic system for laser processing
JPH0432743A (en) Method for dissolving sample for analysis of inclusion
JP2006206951A (en) Method for removing impurity in solder material
JPH04251186A (en) Microwave melting furnace for treating liquid
US3415636A (en) Method for treating molten glass with a laser beam
US4080172A (en) Zone refiner automatic control
JP2006045581A (en) Vacuum deposition apparatus and vacuum deposition method using the apparatus
DE102013110760B4 (en) Radiation source for generating short-wave radiation from a plasma
US3267529A (en) Apparatus for melting metals under high vacuum
KR101765973B1 (en) Arc melting furnace device
US3431389A (en) Method for working materials by means of an energy beam
KR20150099807A (en) Continuous casting method for slab made of titanium or titanium alloy
JP2018069265A (en) Casting device
JP2790372B2 (en) Inclusion analysis sample dissolution method
JP6141047B2 (en) Laser cutting apparatus and laser cutting method
JPH10180422A (en) Apparatus and method for producing amorphous metallic fiber
JP3338440B2 (en) Dissolution method of high melting point active metal
RU1790474C (en) Apparatus for dispersing fibres and powdered particles from chemically active metal melts
JPH03151182A (en) Laser beam machining method
RU2585581C2 (en) Method and device for electron beam melting of metal with bottom drain for moulding ingots with complex configuration
JPS62224688A (en) Processing device combinedly using laser
JP2021079395A (en) Method of making titanium ingot
JPH11200018A (en) Vacuum deposition method by electron gun heating system
JPH1038469A (en) Float melting apparatus
JPS63177992A (en) Laser welding equipment

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees