JPH04326787A - Plane luminescent semiconductor laser device - Google Patents

Plane luminescent semiconductor laser device

Info

Publication number
JPH04326787A
JPH04326787A JP9772591A JP9772591A JPH04326787A JP H04326787 A JPH04326787 A JP H04326787A JP 9772591 A JP9772591 A JP 9772591A JP 9772591 A JP9772591 A JP 9772591A JP H04326787 A JPH04326787 A JP H04326787A
Authority
JP
Japan
Prior art keywords
substrate
laser device
semiconductor laser
active layer
reflecting mirror
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP9772591A
Other languages
Japanese (ja)
Inventor
Naoyuki Matsuoka
直之 松岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Optical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Optical Co Ltd filed Critical Olympus Optical Co Ltd
Priority to JP9772591A priority Critical patent/JPH04326787A/en
Publication of JPH04326787A publication Critical patent/JPH04326787A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/0206Substrates, e.g. growth, shape, material, removal or bonding
    • H01S5/0207Substrates having a special shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/18Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities
    • H01S5/183Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL]
    • H01S5/18305Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL] with emission through the substrate, i.e. bottom emission

Landscapes

  • Semiconductor Lasers (AREA)

Abstract

PURPOSE:To principally get a face emitting semiconductor laser device which is low in threshold and small in series resistance and thermal resistance. CONSTITUTION:A plane luminescent semiconductor laser device which is equipped with a first conductivity type of a substrate (31), and a first conductivity type of semiconductor multilayer reflector (32), which is made on the said substrate, an active layer (33), which is made on the said reflector and constitutes a quantum well, a second conductivity type of semiconductor multilayer reflector (34), which is made on the said active layer and has a part to be processed into a pillar shape in the direction vertical to the main surface of the said substrate, and, at least, on the side of the pillar-shaped part of this reflector, an electrode for current injection.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は面発光半導体レ−ザ装置
に関し、基板面と垂直な縦方向にキャビティを有する面
発光半導体レ−ザ装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a surface emitting semiconductor laser device, and more particularly to a surface emitting semiconductor laser device having a cavity in a vertical direction perpendicular to a substrate surface.

【0002】0002

【従来の技術】周知の如く、面発光半導体レ−ザは、水
平共振器半導体レ−ザに比べ単一波長安定性や集積化の
点で優れている。また、活性領域を小さくすることでし
きい値の低下も達成しうる。従来、活性領域を小さくす
るために図4に示す構造の面発光半導体レ−ザが提案さ
れている(従来例1;応用物理,第60巻,第1号(1
991 年),p10頁)。
2. Description of the Related Art As is well known, surface emitting semiconductor lasers are superior to horizontal cavity semiconductor lasers in terms of single wavelength stability and integration. Further, by making the active region smaller, a lower threshold value can also be achieved. Conventionally, a surface-emitting semiconductor laser having the structure shown in FIG. 4 has been proposed in order to reduce the active region (Conventional Example 1; Applied Physics, Vol. 60, No. 1 (1)
(991), p. 10).

【0003】図中の1は、n型のGaAs基板である。 この基板1上には、28.5周期のAIAs/GaAs
Siド−プ半導体多層膜反射鏡(以下、第1反射鏡と呼
ぶ)2が一部を突出させた状態で設けられている。この
反射鏡2の突出部分上には、厚さ8nmの(In0.2
 Ga0.8 As量子井戸層3、23周期のAIAs
/GaAsBeド−プ半導体多層膜反射鏡(以下、第2
反射鏡と呼ぶ)4、1/4波長厚GaAs層5が順次設
けられている。前記第1反射鏡2の突出していない部分
上には、ポリイミドからなる絶縁層6が設けられている
。前記GaAs層5及び前記絶縁層6上には、p型電極
7が形成されている。前記基板1の裏面には、n型電極
8が形成されている。なお、図中の9は柱状部分、10
はレ−ザ光を示す。
1 in the figure is an n-type GaAs substrate. On this substrate 1, AIAs/GaAs with a period of 28.5
A Si-doped semiconductor multilayer film reflecting mirror (hereinafter referred to as a first reflecting mirror) 2 is provided with a portion thereof protruding. On the protruding part of this reflecting mirror 2, there is a (In0.2
Ga0.8 As quantum well layer 3, AIAs with 23 periods
/GaAsBe-doped semiconductor multilayer film reflector (hereinafter referred to as the second
A 4.1/4 wavelength thick GaAs layer 5 (referred to as a reflector) is successively provided. An insulating layer 6 made of polyimide is provided on the non-protruding portion of the first reflecting mirror 2. A p-type electrode 7 is formed on the GaAs layer 5 and the insulating layer 6. An n-type electrode 8 is formed on the back surface of the substrate 1. In addition, 9 in the figure is a columnar part, 10
indicates laser light.

【0004】こうした構成の半導体レ−ザ装置において
、活性領域が柱状部分9の中にあり、キャリアの閉じ込
め効果が高い。従って、しきい値を小さくすることがで
きる。
In the semiconductor laser device having such a structure, the active region is located within the columnar portion 9, and the effect of confining carriers is high. Therefore, the threshold value can be reduced.

【0005】図5は、他の従来の面発光半導体レ−ザ装
置の例を示す(従来例2;CLEO1990,TECH
NICAL DIGEST SERIES,VOLUM
E,505頁)。図中の11は、n型の半導体多層膜反
射鏡(以下、n型反射鏡と呼ぶ)である。この反射鏡1
1上には、活性層12、絶縁層13が形成されている。 前記絶縁層13はプロトンの多重イオン打ち込みで形成
されており、絶縁層13には前記活性層12を露出させ
るような階段状の開口部12aが形成されている。前記
開口部12aには、p型の半導体多層膜反射鏡(以下、
p型反射鏡と呼ぶ)14が設けられている。前記p型反
射鏡14上の所定の位置にはAuからなる上部反射鏡1
5が設けられ、更にp型電極16が設けられている。な
お、n型電極の記載は省略されている。
FIG. 5 shows an example of another conventional surface-emitting semiconductor laser device (Conventional Example 2; CLEO1990, TECH
NICAL DIGEST SERIES, VOLUM
E, p. 505). 11 in the figure is an n-type semiconductor multilayer film reflecting mirror (hereinafter referred to as an n-type reflecting mirror). This reflector 1
1, an active layer 12 and an insulating layer 13 are formed. The insulating layer 13 is formed by multiple ion implantation of protons, and a stepped opening 12a is formed in the insulating layer 13 to expose the active layer 12. The opening 12a is provided with a p-type semiconductor multilayer reflective mirror (hereinafter referred to as
A p-type reflector) 14 is provided. At a predetermined position on the p-type reflector 14, there is an upper reflector 1 made of Au.
5 is provided, and a p-type electrode 16 is further provided. Note that the description of the n-type electrode is omitted.

【0006】図5の構成のレ−ザ装置においては、比較
的広いp型電極16から注入された電流が活性層12に
至る直前で絶縁層13により狭められる。従って、活性
層12を埋め込んでいなくても電流狭窄が達成され、し
きい値を下げることができる。また、電流は最終的に狭
窄されるまで広い通り道を通るので、直列抵抗が低く、
かつ熱抵抗も近いという利点を有する。
In the laser device having the structure shown in FIG. 5, the current injected from the relatively wide p-type electrode 16 is narrowed by the insulating layer 13 just before it reaches the active layer 12. Therefore, current confinement can be achieved even without burying the active layer 12, and the threshold value can be lowered. Also, since the current passes through a wide path until it is finally constricted, the series resistance is low.
It also has the advantage of having similar thermal resistance.

【0007】[0007]

【発明が解決しようとする課題】しかしながら、上記従
来例には次に述べる問題点を有する。
However, the above conventional example has the following problems.

【0008】(1) 従来例1;第1反射鏡2の反射率
を上げるには積層数を多く、つまり柱の高さを高くしな
ければならない。これは、多層膜中に多数のヘテロ障壁
があることから、注入される電流の直列抵抗及び熱抵抗
を大きくしてしまうという欠点を持つ。
(1) Conventional Example 1: In order to increase the reflectance of the first reflecting mirror 2, it is necessary to increase the number of laminated layers, that is, to increase the height of the pillars. This has the disadvantage of increasing the series resistance and thermal resistance of the injected current due to the large number of heterobarriers in the multilayer film.

【0009】(2) 従来例2;注入された電流は当初
広い通りを通るとはいえ、同様に多数のヘテロ障壁を通
過しなければならず、直列抵抗及び熱抵抗の低減は十分
でないという欠点を持つ。
(2) Conventional Example 2: Although the injected current initially passes through a wide path, it also has to pass through a large number of heterobarriers, and the reduction in series resistance and thermal resistance is not sufficient. have.

【0010】本発明は上記事情を鑑みてなされたもので
、半導体多層膜反射鏡を柱状に加工した側面にも電極を
設けることにより、しきい値が低く、かつ直列抵抗と熱
抵抗の小さい面発光半導体レ−ザ装置を提供することを
目的とする。
The present invention has been made in view of the above-mentioned circumstances, and by providing electrodes also on the side surfaces of a semiconductor multilayer mirror processed into a columnar shape, a surface with a low threshold value and low series resistance and low thermal resistance can be obtained. An object of the present invention is to provide a light emitting semiconductor laser device.

【0011】[0011]

【課題を解決するための手段】本発明は、第1導電型の
基板と、前記基板上に形成された第1導電型の半導体多
層膜反射鏡と、前記反射鏡上に形成された量子井戸を構
成する活性層と、前記活性層上に形成され、前記基板主
面と垂直な方向に柱状に加工され部分を有する第2導電
型の半導体多層膜反射鏡と、この反射鏡の柱状部分の少
なくとも側面に電流注入用電極とを具備することを特徴
とする面発光半導体レ−ザ装置である。本発明に係る面
発光半導体レ−ザ装置は、具体的には図2に示す通りで
ある。図中の21は基板である。この基板21上には、
活性層22、半導体多層膜反射鏡23が設けられている
。ここで、前記反射鏡23の一部は、柱状に突出してい
る。前記反射鏡23の柱状部23aを除く部分上には、
絶縁膜24が設けられている。前記柱状部23a上には
、第1電極25が設けられている。ここで、第1電極は
、金属の選択的化学気相堆積により形成する。前記基板
21の裏面側には、第2電極26が設けられている。な
お、図中の27はレ−ザ光である。
Means for Solving the Problems The present invention provides a substrate of a first conductivity type, a semiconductor multilayer film reflecting mirror of a first conductivity type formed on the substrate, and a quantum well formed on the reflecting mirror. a second conductivity type semiconductor multilayer reflective mirror formed on the active layer and having a columnar portion in a direction perpendicular to the main surface of the substrate; This is a surface emitting semiconductor laser device characterized in that it is provided with a current injection electrode on at least a side surface. The surface emitting semiconductor laser device according to the present invention is specifically shown in FIG. 21 in the figure is a substrate. On this board 21,
An active layer 22 and a semiconductor multilayer film reflecting mirror 23 are provided. Here, a portion of the reflecting mirror 23 protrudes in a columnar shape. On the portion of the reflecting mirror 23 excluding the columnar portion 23a,
An insulating film 24 is provided. A first electrode 25 is provided on the columnar portion 23a. Here, the first electrode is formed by selective chemical vapor deposition of metal. A second electrode 26 is provided on the back side of the substrate 21. Note that 27 in the figure is a laser beam.

【0012】0012

【作用】本発明の面発光半導体レ−ザ装置において、活
性層は閉じ込められていないが、上部の反射鏡が活性層
のすぐ近くまで柱状に加工されているので、電流の狭窄
が起こり、しきい値を下げることができる。
[Function] In the surface emitting semiconductor laser device of the present invention, the active layer is not confined, but since the upper reflecting mirror is processed into a columnar shape close to the active layer, current constriction occurs and the active layer is not confined. You can lower the threshold.

【0013】また、柱状部の上部だけでなく値付け部か
ら最も大量に注入され、すぐに活性層に到達することが
できる。この工程において、通過するべきヘテロ障壁の
数が少なく、また経路長さそのものも短くなるので、直
列抵抗及び熱抵抗を大幅に小さくすることができる。
[0013] Furthermore, the largest amount of injected not only from the upper part of the columnar part but also from the pricing part can reach the active layer immediately. In this process, the number of heterobarriers to be passed through is small, and the path length itself is also shortened, so series resistance and thermal resistance can be significantly reduced.

【0014】更に、電流注入用電極を金属の選択的化学
気相堆積により形成するので、柱状部の上面及び側面に
のみ自己整合的に電極が形成され、製造を容易にするこ
とができる。
Furthermore, since the current injection electrode is formed by selective chemical vapor deposition of metal, the electrode is formed in a self-aligned manner only on the top and side surfaces of the columnar part, which facilitates manufacturing.

【0015】[0015]

【実施例】以下、本発明の一実施例に係る面発光半導体
レ−ザ装置を図1を参照して説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS A surface emitting semiconductor laser device according to an embodiment of the present invention will be described below with reference to FIG.

【0016】図中の31は、n型のGaAs基板(キャ
リア濃度2×1018cm−3,厚さ100μm)であ
る。前記基板31の裏面には、穴31aが設けられてい
る。前記基板31上には、20周期のAIAs/AIx
 Ga1−y Asからなるn型半導体多層膜反射鏡3
2(以下、n型反射鏡と呼ぶ)が設けられている。前記
反射鏡32上には、In0.2 Ga0.8 As量子
井戸となっている厚さ8nmの活性層33が設けられて
いる。前記活性層33上には、20周期のAIAs/A
Ix Ga1−y Asからなるp型半導体多層膜反射
鏡34(以下、p型反射鏡と呼ぶ)が設けられている。 ここで、前記反射鏡34の一部は、柱状に突出している
。前記反射鏡34の柱状部34aを除く部分上には、S
OG(スピンオングラス)からなる厚さ200nmの第
1絶縁膜35が設けられている。前記柱状部34a上面
及び側面には、W(タングステン)からなるp型電極3
6が設けられている。前記第1絶縁膜35上には、SO
Gからなる第2絶縁膜37が前記柱状部34a上のp型
電極36の上面と同じ高さになるように設けられている
。前記基板31の裏面には、n型電極38が設けられて
いる。なお、図中の39は、基板31の裏面に設けた穴
31aから出射されるレ−ザ光である。
31 in the figure is an n-type GaAs substrate (carrier concentration 2×10 18 cm −3 , thickness 100 μm). A hole 31a is provided on the back surface of the substrate 31. On the substrate 31, 20 periods of AIAs/AIx
N-type semiconductor multilayer film reflecting mirror 3 made of Ga1-yAs
2 (hereinafter referred to as an n-type reflecting mirror) is provided. An active layer 33 with a thickness of 8 nm is provided on the reflecting mirror 32 and is an In0.2 Ga0.8 As quantum well. On the active layer 33, 20 periods of AIAs/A
A p-type semiconductor multilayer film reflecting mirror 34 (hereinafter referred to as a p-type reflecting mirror) made of Ix Ga1-y As is provided. Here, a portion of the reflecting mirror 34 protrudes in a columnar shape. On the portion of the reflecting mirror 34 other than the columnar portion 34a, there is an S
A first insulating film 35 made of OG (spin-on glass) and having a thickness of 200 nm is provided. A p-type electrode 3 made of W (tungsten) is provided on the top and side surfaces of the columnar portion 34a.
6 is provided. On the first insulating film 35, SO
A second insulating film 37 made of G is provided at the same height as the upper surface of the p-type electrode 36 on the columnar portion 34a. An n-type electrode 38 is provided on the back surface of the substrate 31. Note that 39 in the figure is a laser beam emitted from a hole 31a provided on the back surface of the substrate 31.

【0017】こうした構成のレ−ザ装置において、p型
電極36から注入された電流は、その大部分が電極の最
大部、つまり柱状部34aの付け値付近からp型反射膜
34中に入る。注入された電流は下に向かい、活性層3
3を通過した後、広がってn型電極38に至る。反射率
を上げるために、反射鏡の層数を増し、柱状部34aの
高さを増しても、電流は常にその付け値部分から注入さ
れるので、活性層33に至るまでの電気抵抗を小さいま
ま保つことができる。これは、同時に活性層33で発生
した熱をp型電極36へ逃がすのを容易にする。つまり
、熱抵抗を小さくできる。
In the laser device having such a configuration, most of the current injected from the p-type electrode 36 enters the p-type reflective film 34 from the maximum part of the electrode, that is, near the peak of the columnar part 34a. The injected current goes downward and the active layer 3
3, it spreads out and reaches the n-type electrode 38. In order to increase the reflectance, even if the number of layers of the reflective mirror is increased and the height of the columnar portion 34a is increased, the current is always injected from the bid point, so the electrical resistance up to the active layer 33 is reduced. You can keep it as it is. This also facilitates the release of heat generated in the active layer 33 to the p-type electrode 36. In other words, thermal resistance can be reduced.

【0018】次に、上記構成のレ−ザ装置の製造方法に
ついて、図3A)〜(D)を参照して説明する。
Next, a method of manufacturing the laser device having the above structure will be explained with reference to FIGS. 3A to 3D.

【0019】(1) まず、GaAs基板31上にエピ
タキシャル成長によりn型反射膜32、活性層33及び
p型反射鏡34を形成した後、通常のリソグラフィ工程
とエッチングにより、SiO2 等からなるマスク材3
9を用いて前記p型反射鏡34を所定の厚みまでエッチ
ングし、柱状部34aを形成した(図3(A))。
(1) First, after forming an n-type reflective film 32, an active layer 33, and a p-type reflective mirror 34 by epitaxial growth on a GaAs substrate 31, a mask material 3 made of SiO2 or the like is formed by a normal lithography process and etching.
9 was used to etch the p-type reflective mirror 34 to a predetermined thickness to form columnar portions 34a (FIG. 3(A)).

【0020】(2) 次に、前記マスク材40を除去し
た。つづいて、SOGを全面に塗布,ベ−クした後、H
F系溶液で軽くエッチングし、柱状部34aの上面及び
側面にSOGが残らないようにSOGからなる第1絶縁
膜35を形成した(図3(B))。
(2) Next, the mask material 40 was removed. Next, after applying SOG to the entire surface and baking,
A first insulating film 35 made of SOG was formed by lightly etching with an F-based solution so that no SOG remained on the top and side surfaces of the columnar portion 34a (FIG. 3(B)).

【0021】(3) 次に、タングステンの選択CVD
堆積により、半導体が電位した部分(露出した柱状部3
4a)にのみp型電極36を形成した(図3(C))。
(3) Next, selective CVD of tungsten
The part where the semiconductor has a potential due to the deposition (exposed columnar part 3
A p-type electrode 36 was formed only in 4a) (FIG. 3(C)).

【0022】(4) 次に、全面にSOGを塗布,ベ−
クするかあるいはSiO2 のバイアススパッタにより
、第2絶縁膜37を形成した。つづいて、裏面からGa
As基板31を研磨し、全体の厚さを100μmとした
ところで、リフトオフ法によりAuGe/Ni/Auか
らなるn型電極38を形成した。次いで、前記n型電極
38をマスクとしてGaAs基板31をエッチングして
穴31aを開け、面発光半導体レ−ザ装置を製造した(
図3(D))。
(4) Next, apply SOG to the entire surface and base
A second insulating film 37 was formed by drying or bias sputtering of SiO2. Next, Ga from the back side
After polishing the As substrate 31 to a total thickness of 100 μm, an n-type electrode 38 made of AuGe/Ni/Au was formed by a lift-off method. Next, using the n-type electrode 38 as a mask, the GaAs substrate 31 was etched to form a hole 31a, and a surface-emitting semiconductor laser device was manufactured.
Figure 3(D)).

【0023】しかして、上記実施例に係る面発光レ−ザ
装置によれば、p型半導体多層膜反射鏡34の一部にG
aAs基板31の主面に垂直な方向に柱状部34aを設
け、この柱状部34aの側面にもp型電極36を設けた
構成になっているため、従来と比べ、しきい値が低く、
かつ直列抵抗と熱抵抗を小さくできる。
According to the surface emitting laser device according to the above embodiment, a part of the p-type semiconductor multilayer film reflecting mirror 34 has a G
Since the columnar part 34a is provided in the direction perpendicular to the main surface of the aAs substrate 31, and the p-type electrode 36 is also provided on the side surface of the columnar part 34a, the threshold value is lower than that of the conventional one.
Moreover, series resistance and thermal resistance can be reduced.

【0024】また、上記方法のように、p型電極36を
タングステンの選択CVD法により形成するため、柱状
部34aの側面への電極形成を自己整合的に行うことが
できかつ容易である。
Furthermore, as in the above method, since the p-type electrode 36 is formed by the tungsten selective CVD method, the electrode can be easily formed on the side surface of the columnar portion 34a in a self-aligned manner.

【0025】なお、上記実施例では、AIGaAs系材
料を用いた場合について述べたが、これに限らず、他の
材料系を用いてもよい。
[0025] In the above embodiment, a case was described in which an AIGaAs-based material was used, but the material is not limited to this, and other material systems may be used.

【0026】[0026]

【発明の効果】以上詳述した如く本発明によれば、半導
体多層膜反射鏡を柱状に加工した側面にも電極を設ける
ことにより、しきい値が低く、かつ直列抵抗と熱抵抗の
小さい面発光半導体レ−ザ装置を提供できる。
Effects of the Invention As detailed above, according to the present invention, electrodes are also provided on the side surfaces of the semiconductor multilayer reflector processed into a columnar shape, thereby achieving a surface with a low threshold value and low series resistance and low thermal resistance. A light emitting semiconductor laser device can be provided.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明に係る面発光半導体レ−ザ装置の原理説
明図。
FIG. 1 is a diagram illustrating the principle of a surface-emitting semiconductor laser device according to the present invention.

【図2】本発明の一実施例に係る面発光半導体レ−ザ装
置の断面図。
FIG. 2 is a sectional view of a surface emitting semiconductor laser device according to an embodiment of the present invention.

【図3】本発明に係る面発光半導体レ−ザ装置の製造方
法を工程順に示す断面図。
FIG. 3 is a cross-sectional view showing the method of manufacturing a surface emitting semiconductor laser device according to the present invention in order of steps.

【図4】従来例1に係る面発光半導体レ−ザ装置の断面
図。
FIG. 4 is a sectional view of a surface emitting semiconductor laser device according to Conventional Example 1.

【図5】従来例2に係る面発光半導体レ−ザ装置の断面
図。
FIG. 5 is a sectional view of a surface emitting semiconductor laser device according to Conventional Example 2.

【符号の説明】[Explanation of symbols]

31…n型のGaAs基板、31a…穴、32…n型半
導体多層膜反射鏡、33…活性層、34…p型半導体多
層膜反射鏡、35,37…絶縁膜、36…p型電極、3
8…n型電極、39…レ−ザ光、40…マスク材。
31... N-type GaAs substrate, 31a... Hole, 32... N-type semiconductor multilayer film reflector, 33... Active layer, 34... P-type semiconductor multilayer film reflector, 35, 37... Insulating film, 36... P-type electrode, 3
8... N-type electrode, 39... Laser light, 40... Mask material.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】  第1導電型の基板と、前記基板上に形
成された第1導電型の半導体多層膜反射鏡と、前記反射
鏡上に形成された量子井戸を構成する活性層と、前記活
性層上に形成され、前記基板主面と垂直な方向に柱状に
加工され部分を有する第2導電型の半導体多層膜反射鏡
と、この反射鏡の柱状部分の少なくとも側面に電流注入
用電極とを具備することを特徴とする面発光半導体レ−
ザ装置。
1. A substrate of a first conductivity type, a semiconductor multilayer film reflecting mirror of a first conductivity type formed on the substrate, an active layer constituting a quantum well formed on the reflecting mirror, a second conductivity type semiconductor multilayer reflective mirror formed on the active layer and having a columnar portion in a direction perpendicular to the main surface of the substrate; and a current injection electrode on at least a side surface of the columnar portion of the reflective mirror. A surface emitting semiconductor laser characterized by comprising:
The equipment.
【請求項2】  前記電流注入用電極が、金属の選択的
化学気相堆積により形成される請求項1記載の面発光半
導体レ−ザ装置。
2. A surface emitting semiconductor laser device according to claim 1, wherein said current injection electrode is formed by selective chemical vapor deposition of metal.
JP9772591A 1991-04-26 1991-04-26 Plane luminescent semiconductor laser device Withdrawn JPH04326787A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9772591A JPH04326787A (en) 1991-04-26 1991-04-26 Plane luminescent semiconductor laser device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9772591A JPH04326787A (en) 1991-04-26 1991-04-26 Plane luminescent semiconductor laser device

Publications (1)

Publication Number Publication Date
JPH04326787A true JPH04326787A (en) 1992-11-16

Family

ID=14199867

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9772591A Withdrawn JPH04326787A (en) 1991-04-26 1991-04-26 Plane luminescent semiconductor laser device

Country Status (1)

Country Link
JP (1) JPH04326787A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000016861A (en) * 1998-06-30 2000-01-18 Inax Corp Easily processable pottery plate and board using the same
JP2014135371A (en) * 2013-01-10 2014-07-24 Ricoh Co Ltd Surface emitting laser, surface emitting laser array and optical scanning device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000016861A (en) * 1998-06-30 2000-01-18 Inax Corp Easily processable pottery plate and board using the same
JP2014135371A (en) * 2013-01-10 2014-07-24 Ricoh Co Ltd Surface emitting laser, surface emitting laser array and optical scanning device

Similar Documents

Publication Publication Date Title
US4943970A (en) Surface emitting laser
US4901327A (en) Transverse injection surface emitting laser
JP3497752B2 (en) Vertical cavity surface emitting lasers with individual optical and current guides
US5637511A (en) Vertical-to-surface transmission electro-photonic device and method for fabricating the same
JP2545188B2 (en) Embedded heterostructure laser
JPH05506333A (en) top emitting diode laser
JPH07107949B2 (en) Phased array semiconductor laser
JPH06112594A (en) Surface emission semiconductor light emission device and fabrication thereof
JP3271291B2 (en) Surface emitting semiconductor laser
JP2000058981A (en) Gallium nitride based semiconductor light emitting element and fabrication thereof
JPH07288362A (en) Vertical resonator surface light-emitting semiconductor laser
JPH11284280A (en) Semiconductor laser device, its manufacture and manufacture of iii-v compound semiconductor element
JPH02156692A (en) Semiconductor laser and manufacture thereof
JPH04326787A (en) Plane luminescent semiconductor laser device
JPH1187837A (en) Semiconductor laser and manufacture thereof
JP3344096B2 (en) Semiconductor laser and manufacturing method thereof
JP2002198613A (en) Semiconductor device having salient structure, and method of manufacturing the semiconductor device
JPH09205250A (en) Lateral current injection type surface emitting semiconductor laser device and its manufacture
JP3358197B2 (en) Semiconductor laser
JPH0665237B2 (en) Method for manufacturing two-dimensional quantization element
JPH09246652A (en) Semiconductor laser and manufacturing method thereof
JP2921385B2 (en) Surface emitting laser, method for manufacturing the same, and method for manufacturing edge emitting laser
GB2076214A (en) Semiconductor lasers
JP3144821B2 (en) Semiconductor laser device
JPH0770779B2 (en) Semiconductor laser manufacturing method

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19980711