JPH04326218A - Submarine optical repeater - Google Patents

Submarine optical repeater

Info

Publication number
JPH04326218A
JPH04326218A JP3125571A JP12557191A JPH04326218A JP H04326218 A JPH04326218 A JP H04326218A JP 3125571 A JP3125571 A JP 3125571A JP 12557191 A JP12557191 A JP 12557191A JP H04326218 A JPH04326218 A JP H04326218A
Authority
JP
Japan
Prior art keywords
optical
output
delay time
signal
optical repeater
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3125571A
Other languages
Japanese (ja)
Other versions
JP2626308B2 (en
Inventor
Hiroshi Sakuyama
佐久山 洋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP12557191A priority Critical patent/JP2626308B2/en
Publication of JPH04326218A publication Critical patent/JPH04326218A/en
Application granted granted Critical
Publication of JP2626308B2 publication Critical patent/JP2626308B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To recognize a distance from an optical repeater to a broken point. CONSTITUTION:A cable is equipped with an optical fiber for measurement separately from a fiber for optical signal. A branching filter 2 branches the exciting beams of an exciting light source 1, one exciting beam is applied to a synthesizer 3 and the other exciting beam is applied to a branching filter 9. The branching filter 9 outputs this exciting beam to the optical fiber for measurement, inputs the exciting beam returned from a broken point P and applies it to a photodetector 12. Based on a reset signal outputted from a pulse current supply circuit 7 simultaneously with a pulse current for excitation and the electric pulse signal of the photodetector 12, a delay time calculation circuit 8 calculates the delay time of the returning exciting beam. Based on this delay time, a computing element 13 computes a distance to the broken point.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、海底光中継装置の障害
点探索装置に利用する。特に、光直接増幅方式の海底光
中継装置の障害点探索装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of Industrial Application The present invention is applied to a failure point searching device for a submarine optical repeater. In particular, the present invention relates to a failure point search device for an optical direct amplification submarine optical repeater.

【0002】0002

【従来の技術】図2は従来例の海底光中継装置のブロッ
ク構成図である。
2. Description of the Related Art FIG. 2 is a block diagram of a conventional submarine optical repeater.

【0003】従来、海底光中継器は、図2に示すように
障害点評定の手段としてループバックを使用する構成で
あった。この方式は図2に示すように、障害伝送路をオ
フラインとし端局14からそれぞれの上りおよび下り伝
送系15、16の中継器に割り当てられた固有のパルス
パタンを送出し、このパタンにより指定された上り光中
継器の出力aと下り光中継器の入力bを接続する。この
結果、上り回線の信号は下り回線に折返され再び端局1
4へ戻ってくる。そして端局14では手前の光中継器1
7から順次ループバックを行い送信受信信号を比較し、
障害区間を探索するものとなっている。なお図2中18
は上りおよび下り伝送系15、16の信号線を示す。
Conventionally, submarine optical repeaters have been configured to use loopback as a means of fault point evaluation, as shown in FIG. As shown in Figure 2, this method takes the faulty transmission line offline and sends out a unique pulse pattern assigned to each uplink and downlink transmission system repeater 15 and 16 from the terminal station 14, and Connect output a of the uplink optical repeater and input b of the downlink optical repeater. As a result, the uplink signal is looped back to the downlink and returned to the terminal station 1.
Return to 4. And at the terminal station 14, the optical repeater 1
Perform loopback sequentially from 7 and compare the transmitted and received signals,
It is designed to search for faulty sections. Note that 18 in Figure 2
1 shows signal lines of uplink and downlink transmission systems 15 and 16.

【0004】0004

【発明が解決しようとする課題】しかし、このような従
来例の海底光中継システムでは、ループバック方式の障
害探索によるために、光中継器どうしの間のどこに障害
があるのか断定することができなかった。したがって、
修理の際には障害区間の光中継器からケーブルをたぐり
寄せていき、障害点を捜していかなければならない。と
ころが、最近では中継間隔が長くなり、特に光海底中継
ではその間隔も100Kmにおよぼうとしているので、
障害点を探す作業も従来のループバック方式であると能
率が悪い問題点があった。
[Problem to be Solved by the Invention] However, in such conventional submarine optical repeater systems, it is not possible to determine where the fault is between optical repeaters because the loopback method is used to search for faults. There wasn't. therefore,
When making repairs, it is necessary to pull the cables from the optical repeater in the faulty section and search for the point of failure. However, recently the relay intervals have become longer, especially in optical submarine relays, which are about to reach 100km.
The conventional loopback method also had the problem of being inefficient when searching for failure points.

【0005】本発明は上記の問題点を解決するもので、
光中継器から破断点までの距離を知ることができる海底
光中継装置を提供することを目的とする。
[0005] The present invention solves the above problems.
An object of the present invention is to provide a submarine optical repeater that can determine the distance from an optical repeater to a breaking point.

【0006】[0006]

【課題を解決するための手段】本発明は、複数の光中継
器と、この複数の光中継器を縦続接続する信号用光ファ
イバで構成されたケーブルとを備え上記各光中継器は入
力する光信号と入力する励起光とを合波する合波器と、
この合波器の出力光信号を直接増幅するドープファイバ
と、励起用パルス電流を供給するパルス電流供給回路と
、この励起用パルス電流を入力し上記励起光を出力する
励起光源とを含む海底光中継装置において、上記ケーブ
ルは上記信号用光ファイバとは別に測定用光ファイバを
含み、上記パルス電流供給回路は励起用パルス電流を供
給すると同時にリセット信号を出力する手段を含み、上
記光中継器は、上記励起光源と合波器との間に挿入され
上記励起光源の出力励起光を分波しその内の一方の励起
光を上記合波器に与える第一の分波器と、この第一の分
波器の他方の励起光を一方の出力に入力して上記測定用
光ファイバに出力し破断点からの戻り励起光を入力し他
方の出力から出力する第二の分波器と、この第二の分波
器の出力戻り励起光を電気パルスに変換する光検出器と
、この光検出器の出力電気パルスおよび上記パルス電流
供給回路のリセット信号に基づき上記戻り励起光の遅延
時間を算出する遅延時間算出回路と、この算出された遅
延時間に基づき上記破断点までの距離を演算する演算器
とを含むことを特徴とする。
[Means for Solving the Problems] The present invention includes a plurality of optical repeaters and a cable composed of signal optical fibers that cascade connects the plurality of optical repeaters. a multiplexer that multiplexes the optical signal and input pump light;
A submarine optical fiber that includes a doped fiber that directly amplifies the output optical signal of this multiplexer, a pulse current supply circuit that supplies a pulsed pumping current, and a pumping light source that inputs this pulsed pumping current and outputs the pumping light. In the repeater, the cable includes a measurement optical fiber in addition to the signal optical fiber, the pulse current supply circuit includes means for supplying the excitation pulse current and at the same time outputs a reset signal, and the optical repeater , a first demultiplexer inserted between the excitation light source and the multiplexer, which demultiplexes the output excitation light of the excitation light source and supplies one of the excitation lights to the multiplexer; a second splitter which inputs the pump light from the other branch of the splitter into one output and outputs it to the measurement optical fiber, inputs the pump light returned from the break point and outputs it from the other output; A photodetector that converts the output return excitation light of the second branching filter into electric pulses, and a delay time of the return excitation light calculated based on the output electric pulses of this photodetector and the reset signal of the pulse current supply circuit. The present invention is characterized in that it includes a delay time calculation circuit that calculates the delay time, and an arithmetic unit that calculates the distance to the breaking point based on the calculated delay time.

【0007】また、本発明は、上記測定用ケーブルは次
段の光中継器の入力の直前までの長さを有することがで
きる。
Further, in the present invention, the measurement cable may have a length up to just before the input of the next-stage optical repeater.

【0008】[0008]

【作用】ケーブルは上記信号用光ファイバとは別に測定
用光ファイバを含み、パルス電流供給回路は励起用パル
ス電流を供給すると同時にリセット信号を出力する。第
一の分波器は励起光源と合波器との間に挿入され励起光
源の出力励起光を分波しその内の一方の励起光を合波器
に与える。第二の分波器は第一の分波器の他方の励起光
を一方の出力に入力して上記測定用光ファイバに出力し
破断点からの戻り励起光を入力し他方の出力から出力す
る。光検出器は第二の分波器の出力戻り励起光を電気パ
ルスに変換する。遅延時間算出回路は光検出器の出力電
気パルスおよびパルス電流供給回路のリセット信号に基
づき戻り励起光の遅延時間を算出する。演算器はこの算
出された遅延時間に基づき破断点までの距離を演算する
[Operation] The cable includes an optical fiber for measurement in addition to the optical fiber for signal, and the pulse current supply circuit supplies a pulse current for excitation and outputs a reset signal at the same time. The first branching filter is inserted between the pumping light source and the multiplexer, and splits the output pumping light of the pumping light source and supplies one of the pumping lights to the multiplexer. The second splitter inputs the pumping light from the other side of the first splitter into one output, outputs it to the measurement optical fiber, inputs the pumping light returned from the break point, and outputs it from the other output. . A photodetector converts the output return excitation light of the second splitter into electrical pulses. The delay time calculation circuit calculates the delay time of the return excitation light based on the output electric pulse of the photodetector and the reset signal of the pulse current supply circuit. The calculator calculates the distance to the breaking point based on the calculated delay time.

【0009】以上により光中継器から破断点までの距離
を知ることができる。
As described above, the distance from the optical repeater to the breaking point can be known.

【0010】0010

【実施例】本発明の実施例について図面を参照して説明
する。図1は本発明一実施例海底光中継装置のブロック
構成図である。
Embodiments Examples of the present invention will be described with reference to the drawings. FIG. 1 is a block diagram of a submarine optical repeater according to an embodiment of the present invention.

【0011】図1において、海底光中継装置は、複数の
光中継器5と、複数の光中継器5を縦続接続する信号用
光ファイバ10で構成されたケーブル6とを備え各光中
継器5は入力する光信号と入力する励起光とを合波する
合波器3と、合波器3の出力光信号を直接増幅するドー
プファイバ4と、励起用パルス電流を供給するパルス電
流供給回路7と、この励起用パルス電流を入力し上記励
起光を出力する励起光源1とを含む。
In FIG. 1, the submarine optical repeater includes a plurality of optical repeaters 5 and a cable 6 composed of signal optical fibers 10 that connect the plurality of optical repeaters 5 in cascade. A multiplexer 3 that combines an input optical signal and an input pumping light, a doped fiber 4 that directly amplifies the output optical signal of the multiplexer 3, and a pulse current supply circuit 7 that supplies a pulsed current for excitation. and an excitation light source 1 which inputs this excitation pulse current and outputs the excitation light.

【0012】ここで本発明の特徴とするところは、ケー
ブル6は信号用光ファイバ10とは別に測定用光ファイ
バ11を含み、パルス電流供給回路7は励起用パルス電
流を供給すると同時にリセット信号を出力する手段を含
み、各光中継器5は、励起光源1と合波器3との間に挿
入され励起光源1の出力励起光を分波しその内の一方の
励起光を合波器3に与える第一の分波器として分波器2
と、分波器2の他方の励起光を一方の出力に入力して測
定用光ファイバ11に出力し破断点Pからの戻り励起光
を入力し他方の出力から出力する第二の分波器として分
波器9と、分波器9の出力戻り励起光を電気パルスに変
換する光検出器12と、光検出器12の出力電気パルス
およびパルス電流供給回路7のリセット信号に基づき戻
り励起光の遅延時間を算出する遅延時間算出回路8と、
この算出された遅延時間に基づき破断点Pまでの距離を
演算する演算器13とを含むことにある。
The features of the present invention are that the cable 6 includes a measurement optical fiber 11 in addition to the signal optical fiber 10, and the pulse current supply circuit 7 supplies the excitation pulse current and at the same time outputs a reset signal. Each optical repeater 5 is inserted between the pump light source 1 and the multiplexer 3, and splits the output pump light of the pump light source 1 and sends one of the pump lights to the multiplexer 3. Demultiplexer 2 serves as the first demultiplexer to give
and a second demultiplexer which inputs the pumping light from the other side of the demultiplexer 2 into one output and outputs it to the measurement optical fiber 11, and inputs the return pumping light from the break point P and outputs it from the other output. A demultiplexer 9, a photodetector 12 that converts the output return excitation light of the demultiplexer 9 into electric pulses, and a return excitation light based on the output electric pulses of the photodetector 12 and the reset signal of the pulse current supply circuit 7. a delay time calculation circuit 8 for calculating the delay time of
It also includes a calculator 13 that calculates the distance to the breaking point P based on the calculated delay time.

【0013】また、測定用ケーブル11は次段の光中継
器5の入力の直前までの長さを有する。
Furthermore, the measurement cable 11 has a length up to just before the input of the optical repeater 5 at the next stage.

【0014】このような構成の海底光中継装置の動作に
ついて説明する。
[0014] The operation of the submarine optical repeater having such a configuration will be explained.

【0015】図1において、励起光源1から出力する励
起光は、第一光分波器2と光合波器3を通りドープファ
イバ4に注入され、光中継器5は入力Aより入力される
光伝送信号を増幅して出力Bより出力する。
In FIG. 1, pump light output from a pump light source 1 is injected into a doped fiber 4 through a first optical demultiplexer 2 and an optical multiplexer 3, and an optical repeater 5 receives light input from an input A. Amplify the transmission signal and output it from output B.

【0016】ここで、この光中継器5より先のケーブル
6のある地点(破断点Pとする)にて、ケーブル破断が
起こったとする。このときにパルス電流供給回路7は、
パルス電流を励起光源1へ流し、それと同時にリセット
信号を遅延時間算出回路8に送出する。
Now, suppose that a cable break occurs at a certain point (referred to as a break point P) on the cable 6 beyond the optical repeater 5. At this time, the pulse current supply circuit 7
A pulse current is passed through the excitation light source 1, and at the same time, a reset signal is sent to the delay time calculation circuit 8.

【0017】第一光分波器2は、励起光源1より出力さ
れた光パルスを分岐し、そのうちの一つを第二光分波器
9に与える。第二光分波器9の出力ポートより入力され
た光パルスは、ケーブル6に設けられた信号用光ファイ
バ10とは別の測定用光ファイバ11を通り、破断点P
まで到達する。
The first optical demultiplexer 2 branches the optical pulses output from the excitation light source 1 and supplies one of them to the second optical demultiplexer 9 . The optical pulse inputted from the output port of the second optical demultiplexer 9 passes through a measurement optical fiber 11 that is separate from the signal optical fiber 10 provided in the cable 6, and passes through a measurement optical fiber 11 provided at a breaking point P.
reach up to.

【0018】光パルスは破断点Pから反射して戻り、再
び第二光分波器9を通り、分岐される。分岐された光パ
ルス(戻り光)は光検出器12に入力される。
The optical pulse is reflected back from the breaking point P, passes through the second optical demultiplexer 9 again, and is branched. The branched optical pulse (return light) is input to the photodetector 12.

【0019】光検出器12は、光パルスを電気に変換し
、電気パルス信号を遅延時間算出回路8に出力する。 遅延時間算出回路8は、励起光源1にパルス電流を流し
たときのリセット信号と光検出器12からの電気パルス
信号との時間差tを求め、その情報を演算器13へ送出
する。
The photodetector 12 converts the optical pulse into electricity and outputs the electrical pulse signal to the delay time calculation circuit 8. The delay time calculating circuit 8 calculates the time difference t between the reset signal when a pulse current is applied to the excitation light source 1 and the electric pulse signal from the photodetector 12, and sends this information to the calculator 13.

【0020】演算器13では、時間差tより以下に示す
計算を行い光中継器5から破断点Pまでの距離Lを求め
ることができる。
The computing unit 13 performs the following calculation based on the time difference t, and can determine the distance L from the optical repeater 5 to the breaking point P.

【0021】L=C・t/2・n ここで、 L:光中継器5から破断点Pまでの距離C:光の速度 t:励起光源1にパルス信号を流したときのリセット信
号と光検出器12からの電気パルス信号との時間差n:
光ファイバの屈折率
L=C・t/2・n Here, L: Distance from the optical repeater 5 to the breaking point P C: Speed of light t: Reset signal and light when a pulse signal is sent to the excitation light source 1 Time difference n with the electric pulse signal from the detector 12:
refractive index of optical fiber

【0022】[0022]

【発明の効果】以上説明したように、本発明は、光中継
器から破断点までの距離を知ることができる優れた効果
がある。
As explained above, the present invention has an excellent effect of being able to determine the distance from the optical repeater to the breaking point.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】本発明一実施例海底光中継装置のブロック構成
図。
FIG. 1 is a block diagram of a submarine optical repeater according to an embodiment of the present invention.

【図2】従来例の海底光中継装置のブロック構成図。FIG. 2 is a block configuration diagram of a conventional submarine optical repeater.

【符号の説明】[Explanation of symbols]

1  励起光源 2  、9分波器 3  合波器 4  ドープファイバ 5、17  光中継器 6  ケーブル 7  パルス電流供給回路 8  遅延時間算出回路 10  信号用光ファイバ 11  測定用光ファイバ 12  光検出器 13  演算器 14  端局 15  上り伝送系 16  下り伝送系 18  信号線 1 Excitation light source 2, 9 splitter 3 Multiplexer 4 Doped fiber 5, 17 Optical repeater 6 Cable 7 Pulse current supply circuit 8 Delay time calculation circuit 10 Signal optical fiber 11 Optical fiber for measurement 12 Photodetector 13 Arithmetic unit 14 Terminal 15 Upstream transmission system 16 Downward transmission system 18 Signal line

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】  複数の光中継器と、この複数の光中継
器を縦続接続する信号用光ファイバで構成されたケーブ
ルとを備え上記各光中継器は入力する光信号と入力する
励起光とを合波する合波器と、この合波器の出力光信号
を直接増幅するドープファイバと、励起用パルス電流を
供給するパルス電流供給回路と、この励起用パルス電流
を入力し上記励起光を出力する励起光源とを含む海底光
中継装置において、上記ケーブルは上記信号用光ファイ
バとは別に測定用光ファイバを含み、上記パルス電流供
給回路は励起用パルス電流を供給すると同時にリセット
信号を出力する手段を含み、上記各光中継器は、上記励
起光源と合波器との間に挿入され上記励起光源の出力励
起光を分波しその内の一方の励起光を上記合波器に与え
る第一の分波器と、この第一の分波器の他方の励起光を
一方の出力に入力して上記測定用光ファイバに出力し破
断点からの戻り励起光を入力し他方の出力から出力する
第二の分波器と、この第二の分波器の出力戻り励起光を
電気パルスに変換する光検出器と、この光検出器の出力
電気パルスおよび上記パルス電流供給回路のリセット信
号に基づき上記戻り励起光の遅延時間を算出する遅延時
間算出回路と、この算出された遅延時間に基づき上記破
断点までの距離を演算する演算器とを含むことを特徴と
する海底光中継装置。
Claim 1: Each optical repeater comprises a plurality of optical repeaters and a cable made up of signal optical fibers that connects the plurality of optical repeaters in cascade, and each of the optical repeaters receives an input optical signal and an input pumping light. a doped fiber that directly amplifies the output optical signal of this multiplexer, a pulse current supply circuit that supplies a pulsed excitation current, and a pulsed current supply circuit that inputs this pulsed excitation current and outputs the above excitation light. In the submarine optical repeater including an excitation light source for output, the cable includes a measurement optical fiber in addition to the signal optical fiber, and the pulse current supply circuit supplies the excitation pulse current and outputs a reset signal at the same time. Each of the optical repeaters includes means for splitting the output pumping light of the pumping light source and providing one of the pumping lights to the multiplexer, the optical repeater being inserted between the pumping light source and the multiplexer. Input the excitation light from the first demultiplexer and the other from the first demultiplexer into one output and output it to the above-mentioned measurement optical fiber, input the return excitation light from the break point, and output from the other output. a second branching filter that converts the output return excitation light of the second branching filter into an electric pulse; A submarine optical repeater comprising: a delay time calculation circuit that calculates the delay time of the return pumping light based on the calculated delay time; and an arithmetic unit that calculates the distance to the break point based on the calculated delay time.
【請求項2】  上記測定用ケーブルは次段の光中継器
の入力の直前までの長さを有する請求項1記載の海底光
中継装置。
2. The submarine optical repeater according to claim 1, wherein the measurement cable has a length up to just before the input of the next-stage optical repeater.
JP12557191A 1991-04-25 1991-04-25 Submarine optical repeater Expired - Lifetime JP2626308B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12557191A JP2626308B2 (en) 1991-04-25 1991-04-25 Submarine optical repeater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12557191A JP2626308B2 (en) 1991-04-25 1991-04-25 Submarine optical repeater

Publications (2)

Publication Number Publication Date
JPH04326218A true JPH04326218A (en) 1992-11-16
JP2626308B2 JP2626308B2 (en) 1997-07-02

Family

ID=14913486

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12557191A Expired - Lifetime JP2626308B2 (en) 1991-04-25 1991-04-25 Submarine optical repeater

Country Status (1)

Country Link
JP (1) JP2626308B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6807370B2 (en) 2001-03-16 2004-10-19 Fujitsu Limited Optical transmission system
JP2013505654A (en) * 2009-09-22 2013-02-14 ▲ホア▼▲ウェイ▼技術有限公司 Method, repeater and communication system for locating submarine cable faults
JP2016012826A (en) * 2014-06-30 2016-01-21 富士通株式会社 Optical transmission system and optical transmission device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01132232A (en) * 1987-11-18 1989-05-24 Nec Corp Optical submarine repeater
JPH01261956A (en) * 1988-04-13 1989-10-18 Nec Corp Optical submarine repeater

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01132232A (en) * 1987-11-18 1989-05-24 Nec Corp Optical submarine repeater
JPH01261956A (en) * 1988-04-13 1989-10-18 Nec Corp Optical submarine repeater

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6807370B2 (en) 2001-03-16 2004-10-19 Fujitsu Limited Optical transmission system
JP2013505654A (en) * 2009-09-22 2013-02-14 ▲ホア▼▲ウェイ▼技術有限公司 Method, repeater and communication system for locating submarine cable faults
US9203510B2 (en) 2009-09-22 2015-12-01 Huawei Technologies Co., Ltd. Method for locating fault of submarine cable, repeater, and communication system
JP2016012826A (en) * 2014-06-30 2016-01-21 富士通株式会社 Optical transmission system and optical transmission device

Also Published As

Publication number Publication date
JP2626308B2 (en) 1997-07-02

Similar Documents

Publication Publication Date Title
US8175454B2 (en) Fault locator for long haul transmission system
KR100945305B1 (en) System for testing an optical network using optical time-domain reflectometryOTDR
US9231696B2 (en) Methods and apparatuses for supervision of optical networks
US9503181B2 (en) Rare earth-doped fiber amplifier with integral optical metrology functionality
US6868204B2 (en) Optical amplifying and relaying system
JP2011077808A (en) Optical transmission system
EP1182806A2 (en) Optical transmission path monitoring system
US6486991B1 (en) Optical transmission system having an optical surge suppression function
JPH04326218A (en) Submarine optical repeater
US6337936B1 (en) Optical amplifier, and method and apparatus for monitoring an optical fiber transmission path
JP7450765B2 (en) Repeater design for distributed acoustic sensing over multispan fiber links
US6472655B1 (en) Remote amplifier for an optical transmission system and method of evaluating a faulty point
JP7211426B2 (en) Optical transmission line monitoring device, optical transmission line monitoring system, and optical transmission line monitoring method
JP3719414B2 (en) Optical repeater
JPH022228A (en) Monitor system and apparatus for long range optical communication system
JP2006180381A (en) System and method for monitoring optical fiber transmission line, and optical repeater
JP3039995B2 (en) Characteristic detection method of optical fiber communication line
JPH039625A (en) Fault supervising system for optical communication system
JP2001251257A (en) Optical transmission line monitor method and optical fiber amplifier repeater used for the method
JPH10229366A (en) Method for monitoring in-service of optical amplification relay transmission line
JPH021631A (en) Optical cable communication system
JPS6352826B2 (en)
JPH0419534A (en) Light beam path testing method
CN103501196A (en) System and combined device for online monitoring quality of optical fiber link
JPH05130042A (en) Optical direct amplifier repeater