JPH10229366A - Method for monitoring in-service of optical amplification relay transmission line - Google Patents

Method for monitoring in-service of optical amplification relay transmission line

Info

Publication number
JPH10229366A
JPH10229366A JP2910197A JP2910197A JPH10229366A JP H10229366 A JPH10229366 A JP H10229366A JP 2910197 A JP2910197 A JP 2910197A JP 2910197 A JP2910197 A JP 2910197A JP H10229366 A JPH10229366 A JP H10229366A
Authority
JP
Japan
Prior art keywords
optical
transmission line
monitoring
pulse
communication signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2910197A
Other languages
Japanese (ja)
Inventor
正豊 ▲角▼田
Masatoyo Tsunoda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2910197A priority Critical patent/JPH10229366A/en
Publication of JPH10229366A publication Critical patent/JPH10229366A/en
Pending legal-status Critical Current

Links

Landscapes

  • Monitoring And Testing Of Transmission In General (AREA)
  • Optical Communication System (AREA)

Abstract

PROBLEM TO BE SOLVED: To detect a loss change position by measuring a reception level of a back- scattered light, corresponding to an elapsed time after transmission of an monitoring optical pulse, so as to locate a content of an abnormal loss and its produced position on an optical amplification relay transmission line. SOLUTION: A monitoring optical pulse, sent from an optical transmission section 1, is combined with an optical communication signal by a combiner 2, and the combined signal is sent to an optical amplification relay transmission line which is a monitor object. An optical repeater 4, incorporating an optical fiber amplifier 3, is placed in the optical amplification relay transmission line to compensate a loss received by the optical signal at each relay block. A back-scattered light generated in the optical amplification relay transmission line by the monitoring optical pulse is led to an opposite line. The back-scattered light and the optical communication signal propagated through the opposite line have different wavelength bands, so that they are separated by an optical filter 7. The separated back-scattered light is given to an optical reception section 6, where the strength of the back-scattered light is measured. Thus, the position of the transmission line at which a loss abnormality is in existence is located, based on an elapsed time after the monitoring optical pulse is transmitted.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、光ファイバ増幅器
が挿入された光増幅中継伝送路の状態を運用中に監視す
るインサービス監視方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an in-service monitoring method for monitoring the state of an optical amplification repeater transmission line in which an optical fiber amplifier is inserted during operation.

【0002】[0002]

【従来の技術】光増幅中継伝送路の状態をインサービス
監視する技術として、監視信号を光通信信号に重畳する
方法が提案されている(Technical Digest of Conferen
ce onOptical Fiber Communication, OFC'94, San Jos
e, USA, vol.4, ThR3, pp.256-257, 1994)。この概要を
図5に示す。
2. Description of the Related Art As a technique for in-service monitoring of the state of an optical amplification repeater transmission line, a method of superimposing a monitoring signal on an optical communication signal has been proposed (Technical Digest of Conferen).
ce onOptical Fiber Communication, OFC'94, San Jos
e, USA, vol. 4, ThR3, pp. 256-257, 1994). The outline is shown in FIG.

【0003】光通信信号は、変調器8で監視信号により
強度変調される。これにより、監視信号は光通信信号に
重畳されて光増幅中継伝送路を伝搬する。光増幅中継伝
送路上の光ファイバ増幅器3を内蔵する各中継器4に
は、光通信信号の一部を対向回線に折り返す光ループバ
ック9が設置されており、監視信号が重畳された光通信
信号の一部が対向回線を伝搬して戻ってくる。
An optical communication signal is intensity-modulated by a modulator 8 by a monitor signal. Thus, the monitoring signal is superimposed on the optical communication signal and propagates through the optical amplification relay transmission line. Each of the repeaters 4 incorporating the optical fiber amplifiers 3 on the optical amplification repeater transmission line is provided with an optical loopback 9 for returning a part of the optical communication signal to the opposite line, and the optical communication signal on which the monitoring signal is superimposed. Is returned on the opposite line.

【0004】対向回線の受信端には、光通信信号と監視
信号を分離する分離器10があり、帰還した監視信号の
強度が監視信号受信器11により測定される。帰還した
監視信号の測定強度を初期状態の値と比較することによ
り、伝送路での損失変化を検出できる。また、監視信号
を送出してからの経過時間から、監視信号がどの中継器
で折り返されたものかを特定できるので、各中継区間の
損失変化を検知できる。さらに、光通信信号の伝送特性
に影響を与えない程度に、変調器8による強度変調指数
を小さくすることにより、インサービス監視が可能にな
っている。
[0004] At the receiving end of the opposite line, there is a separator 10 for separating the optical communication signal and the supervisory signal, and the supervisory signal receiver 11 measures the intensity of the returned supervisory signal. By comparing the measured intensity of the returned monitor signal with the value in the initial state, it is possible to detect a loss change in the transmission path. In addition, since it is possible to identify which repeater has returned the monitoring signal from the elapsed time from the transmission of the monitoring signal, it is possible to detect a loss change in each relay section. Further, by reducing the intensity modulation index of the modulator 8 so as not to affect the transmission characteristics of the optical communication signal, in-service monitoring becomes possible.

【0005】[0005]

【発明が解決しようとする課題】ところで、図5に示す
従来のインサービス監視方法は、光増幅器のもつ光信号
に対するトランスペアレンシ性を利用して、光増幅中継
伝送路のインサービス監視を行う優れた方法である。し
かし、この従来方法で検出できるのは、各中継区間のト
ータルな損失変化であり、各中継区間内のどの位置にお
いて損失変化が起こったかを示す詳細な情報を得ること
はできなかった。
By the way, the conventional in-service monitoring method shown in FIG. 5 performs an in-service monitoring of an optical amplification relay transmission line by utilizing the transparency of an optical signal of an optical amplifier. It is a method. However, what can be detected by this conventional method is a total loss change in each relay section, and detailed information indicating at which position in each relay section a loss change has not been obtained.

【0006】本発明は、損失変化が起こっている位置を
検出することができる光増幅中継伝送路のインサービス
監視方法を提供することを目的とする。
An object of the present invention is to provide an in-service monitoring method of an optical amplification repeater transmission line capable of detecting a position where a loss change has occurred.

【0007】[0007]

【課題を解決するための手段】現在、光伝送路の故障点
を検出する技術としてOTDR技術が広く用いられてい
る。これは、探査用の光パルスを被試験光ファイバに入
力し、この光パルスにより発生し逆方向に伝搬して帰還
した後方散乱光を受信し、その強度を光パルスを送信し
てからの時間経過に応じて測定することにより、光ファ
イバの損失異常を高い距離分解能で検出できるものであ
る。
At present, the OTDR technique is widely used as a technique for detecting a failure point in an optical transmission line. This is because the optical pulse for exploration is input to the optical fiber under test, the backscattered light generated by this optical pulse, propagated in the opposite direction and returned is received, and the intensity is measured as the time from the transmission of the optical pulse. By performing the measurement in accordance with the progress, the loss abnormality of the optical fiber can be detected with high distance resolution.

【0008】本発明の光増幅中継伝送路のインサービス
監視方法は、このOTDR技術を応用することにより、
光増幅中継伝送路の損失変化を位置情報を含めて検出す
ることを第一の特徴としている。さらに、本発明では、
光通信信号に波長多重して光増幅中継伝送路を伝搬させ
る監視用光パルスのパルス幅が、光ファイバ増幅器の過
渡応答時間より十分に短いことを第二の特徴としてい
る。このため、監視用光パルスが通過しても光ファイバ
増幅器の利得は変化せず、監視用光パルスを光通信信号
に合波して増幅中継伝送路を同時に伝搬させても、光通
信信号の伝送特性に影響を与えない。また、監視用光パ
ルスの波長は光通信信号と異なっているので、容易に監
視用光パルスと光通信信号の分離が可能である。このよ
うに、本発明によれば、増幅中継伝送路の損失変化を位
置情報を含めてインサービスで検知することができる。
The in-service monitoring method of the optical amplification repeater transmission line according to the present invention uses the OTDR technology to
The first feature is that a loss change of the optical amplification repeater transmission line is detected including position information. Further, in the present invention,
The second feature is that the pulse width of the monitoring optical pulse that is wavelength-multiplexed with the optical communication signal and propagated through the optical amplification relay transmission line is sufficiently shorter than the transient response time of the optical fiber amplifier. Therefore, even if the monitoring optical pulse passes, the gain of the optical fiber amplifier does not change, and even if the monitoring optical pulse is multiplexed with the optical communication signal and propagated through the amplification relay transmission line at the same time, the optical communication signal Does not affect transmission characteristics. Further, since the wavelength of the monitoring optical pulse is different from that of the optical communication signal, the monitoring optical pulse and the optical communication signal can be easily separated. As described above, according to the present invention, it is possible to detect a change in loss of the amplification relay transmission line in-service including the position information.

【0009】[0009]

【発明の実施の形態】図1は、本発明のインサービス監
視方法が適用されるシステム構成を示す。図において、
光送信部1から送出された監視用光パルスは、合波器2
で光通信信号と合波されて、監視対象である光増幅中継
伝送路に送出される。この光増幅中継伝送路には光ファ
イバ増幅器3を内蔵した光中継器4が配置されており、
各中継区間で光信号が受けた損失を補償している。ま
た、各光中継器4には対向回線間を結ぶ光経路5が設置
されており、監視用光パルスにより光増幅中継伝送路で
発生した後方散乱光が対向回線に導かれる。対向回線を
伝搬してきた後方散乱光と光通信信号は、波長が異なっ
ているので光フィルタ7により分離される。分離された
後方散乱光は、光受信部6に入力されてその強度が測定
される。
FIG. 1 shows a system configuration to which an in-service monitoring method of the present invention is applied. In the figure,
The monitoring optical pulse transmitted from the optical transmitter 1 is transmitted to the multiplexer 2
Multiplexed with the optical communication signal, and sent out to the optical amplification relay transmission line to be monitored. An optical repeater 4 having a built-in optical fiber amplifier 3 is arranged in this optical amplification relay transmission line.
The loss received by the optical signal in each relay section is compensated. Each optical repeater 4 is provided with an optical path 5 connecting between the opposing lines, and the backscattered light generated in the optical amplification relay transmission line by the monitoring light pulse is guided to the opposing lines. The backscattered light and the optical communication signal that have propagated through the opposite line are separated by the optical filter 7 because they have different wavelengths. The separated backscattered light is input to the light receiving unit 6 and its intensity is measured.

【0010】図2は、監視用光パルスの送出後の時間経
過に対する後方散乱光強度の測定例を示す。この測定例
では、A点に伝送路の損失変化がみられる。監視用光パ
ルスを送出した後、A点で発生した後方散乱光が光受信
部6に戻ってくるまでの時間は、光通信信号が送信端と
A点間を往復する時間である。したがって、監視用光パ
ルスを送出してからの経過時間より、損失異常のある伝
送路位置を特定することが可能である。
FIG. 2 shows an example of measuring the backscattered light intensity with respect to the lapse of time after the transmission of the monitoring light pulse. In this measurement example, a change in transmission line loss is observed at point A. The time until the backscattered light generated at the point A returns to the light receiving unit 6 after transmitting the monitoring light pulse is the time for the optical communication signal to reciprocate between the transmitting end and the point A. Therefore, it is possible to specify the position of the transmission line having the loss abnormality from the elapsed time after the transmission of the monitoring light pulse.

【0011】ここで、光ファイバ増幅器の入力光強度の
時間変化を図3に示す。光強度が盛り上がっている部分
が、光通信信号に監視用光パルスが合波された部分であ
る。光ファイバ増幅器の利得と入力光強度の関係を図4
に示す。通常、光ファイバ増幅器の動作点(利得が中継
区間損失に一致する点)は、図4に示すように設定され
ている。動作点での入力光強度はPs である。光通信信
号に監視用光パルスが合波された箇所では、図3に示し
たように、光ファイバ増幅器に入力される光信号強度は
Ps より大きくなる。したがって、光ファイバ増幅器の
利得は中継区間損失より小さくなり、光信号は中継区間
伝送路で受けた損失を光ファイバ増幅器で補償されな
い。こうして、一般には監視用光パルスが合波された部
分の光通信信号は、受信端で強度が低くなり、信号対雑
音比が低下し、光通信信号の伝送特性は劣化する。
FIG. 3 shows a time change of the input light intensity of the optical fiber amplifier. The portion where the light intensity rises is the portion where the monitoring optical pulse is multiplexed with the optical communication signal. Fig. 4 shows the relationship between the gain of the optical fiber amplifier and the input light intensity.
Shown in Normally, the operating point of the optical fiber amplifier (the point at which the gain matches the loss in the relay section) is set as shown in FIG. The input light intensity at the operating point is Ps. At the point where the monitoring optical pulse is multiplexed with the optical communication signal, the intensity of the optical signal input to the optical fiber amplifier becomes larger than Ps, as shown in FIG. Therefore, the gain of the optical fiber amplifier is smaller than the loss in the repeater section, and the loss of the optical signal received in the repeater section transmission line is not compensated by the optical fiber amplifier. Thus, in general, the optical communication signal in the portion where the monitoring optical pulse is multiplexed has a low intensity at the receiving end, the signal-to-noise ratio decreases, and the transmission characteristics of the optical communication signal deteriorate.

【0012】しかし、光ファイバ増幅器の過渡応答性は
非常に遅く、その応答時間は1msec程度である。また、
本発明では、監視用光パルスのパルス幅を過渡応答時間
より十分に短く、例えば10μsec に設定している。した
がって、このような過渡応答時間より短い光パルスが通
過した時には、光ファイバ増幅器の利得は光パルスの通
過に追随して変化せず、利得は中継区間損失の値を保っ
ている。このように、監視用光パルスを合波しても、光
通信信号が光ファイバ増幅器から受ける利得は変化しな
いので、その伝送特性は劣化しない。
However, the transient response of the optical fiber amplifier is very slow, and its response time is about 1 msec. Also,
In the present invention, the pulse width of the monitoring light pulse is set to be sufficiently shorter than the transient response time, for example, 10 μsec. Therefore, when an optical pulse shorter than such a transient response time passes, the gain of the optical fiber amplifier does not change following the passage of the optical pulse, and the gain maintains the value of the relay section loss. As described above, even when the monitoring optical pulses are combined, the gain of the optical communication signal received from the optical fiber amplifier does not change, so that the transmission characteristics do not deteriorate.

【0013】[0013]

【発明の効果】以上説明したように、本発明の光増幅中
継伝送路のインサービス監視方法は、光通信信号の伝送
特性に影響を与えずに監視用光パルスを伝送路に伝搬さ
せることができる。また、この監視用光パルスにより発
生した後方散乱光の強度を時間経過と共に測定できるの
で、光増幅中継伝送路に損失異常が起こった時に、異常
の内容および発生位置を特定することができる。このよ
うに、本発明の光増幅中継伝送路のインサービス監視方
法は、従来技術に比べてより精度の高い伝送路監視を行
うことができる効果がある。
As described above, the in-service monitoring method for an optical amplification repeater transmission line according to the present invention can propagate a monitoring optical pulse to a transmission line without affecting the transmission characteristics of an optical communication signal. it can. Further, since the intensity of the backscattered light generated by the monitoring light pulse can be measured with the passage of time, when a loss abnormality occurs in the optical amplification repeater transmission line, the content and location of the abnormality can be specified. As described above, the in-service monitoring method of the optical amplification relay transmission line according to the present invention has an effect that the transmission line can be monitored with higher accuracy than the conventional technology.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明のインサービス監視方法が適用されるシ
ステム構成を示す図。
FIG. 1 is a diagram showing a system configuration to which an in-service monitoring method of the present invention is applied.

【図2】監視用光パルスの送出後の時間経過に対する後
方散乱光強度の測定例を示す図。
FIG. 2 is a diagram showing a measurement example of the backscattered light intensity with respect to the elapse of time after the monitoring light pulse is transmitted.

【図3】光ファイバ増幅器の入力光強度の時間変化を示
す図。
FIG. 3 is a diagram showing a time change of the input light intensity of the optical fiber amplifier.

【図4】光ファイバ増幅器の利得と入力光強度の関係を
示す図。
FIG. 4 is a diagram showing the relationship between the gain of the optical fiber amplifier and the input light intensity.

【図5】従来のインサービス監視方法が適用されるシス
テム構成を示す図。
FIG. 5 is a diagram showing a system configuration to which a conventional in-service monitoring method is applied.

【符号の説明】[Explanation of symbols]

1 光送信部 2 合波器 3 光ファイバ増幅器 4 光中継器 5 光経路 6 光受信部 7 光フィルタ 8 変調器 9 光ループバック 10 分離器 11 監視信号受信器 REFERENCE SIGNS LIST 1 optical transmitting unit 2 multiplexer 3 optical fiber amplifier 4 optical repeater 5 optical path 6 optical receiving unit 7 optical filter 8 modulator 9 optical loopback 10 separator 11 supervisory signal receiver

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 光通信信号を電気信号に変換せず直接増
幅する光ファイバ増幅器が挿入された光増幅中継伝送路
のインサービス監視方法において、 パルス幅が前記光ファイバ増幅器の過渡応答時間より十
分に短く、またその波長が前記光通信信号の波長と異な
る監視用光パルスを生成し、 前記監視用光パルスを前記光通信信号を合波して前記光
増幅中継伝送路に送出し、 前記監視用光パルスにより発生した後方散乱光を受信
し、 前記監視用光パルスを送信してからの経過時間に対応し
て前記後方散乱光の受信レベルを測定して前記光増幅中
継伝送路における損失異常の内容および発生位置を特定
することを特徴とする光増幅中継伝送路のインサービス
監視方法。
An in-service monitoring method for an optical amplification repeater transmission line in which an optical fiber amplifier for directly amplifying an optical communication signal without converting it into an electric signal is inserted, wherein a pulse width is longer than a transient response time of the optical fiber amplifier. To generate a monitoring optical pulse whose wavelength is different from the wavelength of the optical communication signal, multiplexes the monitoring optical pulse with the optical communication signal, and sends the multiplexed optical communication signal to the optical amplification relay transmission line. Receiving the backscattered light generated by the light pulse for use, measuring the reception level of the backscattered light corresponding to the elapsed time after transmitting the monitoring light pulse, and measuring the loss abnormality in the optical amplification relay transmission line. An in-service monitoring method for an optical amplifying repeater transmission line, characterized in that the content and the position of occurrence are specified.
JP2910197A 1997-02-13 1997-02-13 Method for monitoring in-service of optical amplification relay transmission line Pending JPH10229366A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2910197A JPH10229366A (en) 1997-02-13 1997-02-13 Method for monitoring in-service of optical amplification relay transmission line

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2910197A JPH10229366A (en) 1997-02-13 1997-02-13 Method for monitoring in-service of optical amplification relay transmission line

Publications (1)

Publication Number Publication Date
JPH10229366A true JPH10229366A (en) 1998-08-25

Family

ID=12266966

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2910197A Pending JPH10229366A (en) 1997-02-13 1997-02-13 Method for monitoring in-service of optical amplification relay transmission line

Country Status (1)

Country Link
JP (1) JPH10229366A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7068945B2 (en) 2003-02-06 2006-06-27 Fujitsu Limited Optical amplifying and repeating method and optical amplifying and repeating system
JP2021526626A (en) * 2018-05-22 2021-10-07 シエナ コーポレーション Fiber Optic Characteristic Measurement System and Method
WO2022154038A1 (en) * 2021-01-18 2022-07-21 日本電気株式会社 Optical path identification device, optical path identification method, and storage medium for optical path identification program

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7068945B2 (en) 2003-02-06 2006-06-27 Fujitsu Limited Optical amplifying and repeating method and optical amplifying and repeating system
JP2021526626A (en) * 2018-05-22 2021-10-07 シエナ コーポレーション Fiber Optic Characteristic Measurement System and Method
WO2022154038A1 (en) * 2021-01-18 2022-07-21 日本電気株式会社 Optical path identification device, optical path identification method, and storage medium for optical path identification program

Similar Documents

Publication Publication Date Title
JP5508411B2 (en) High attenuation loopback for long repeater spans
JP4324581B2 (en) Optical fiber condition monitoring device and method in optical network
EP2763330B1 (en) System and method for fault identification in optical communication systems
US7872738B2 (en) System and method for monitoring an optical communication system
CA2195153C (en) Surveillance system for passive branched optical networks
US8175454B2 (en) Fault locator for long haul transmission system
US6011623A (en) Fault detection system for an amplified optical transmission system
EP1182806B1 (en) Optical transmission path monitoring system
EP1023587B1 (en) Side-tone otdr for in-service optical cable monitoring
US6842586B2 (en) OTDR arrangement for detecting faults in an optical transmission system employing two pairs of unidirectional optical fibers
JP3411436B2 (en) Monitoring method of optical communication line
US20040047629A1 (en) Adaptor arrangement for detecting faults in an optically amplified multi-span transmission system using a remotely located OTDR
US7099581B2 (en) OTDR arrangement for detecting faults in an optical transmission system on a span by span basis
CN111788780A (en) Optical repeater, transmission path optical fiber monitoring method, and optical transmission system
US20040047295A1 (en) Method and apparatus for providing a common optical line monitoring and service channel over an WDM optical transmission system
WO2020098277A1 (en) Distributed optical fiber sensing system and control method and control device therefor, and storage medium
US6337936B1 (en) Optical amplifier, and method and apparatus for monitoring an optical fiber transmission path
JPH10229366A (en) Method for monitoring in-service of optical amplification relay transmission line
JP2003511964A (en) Method and apparatus for continuous monitoring of optical transmission lines
CN114526809A (en) Ultra-long distance distributed optical fiber vibration sensing detection method and device
CN110514413B (en) Rapid detection system for broken optical fiber of optical fiber fence
KR100319745B1 (en) Method and apparatus for measuring optical performance parameters of optical amplifier in optical transmission system
EP0987843A2 (en) Remote amplifier for an optical transmission system and method of location of a faulty point
CN219514082U (en) Multi-wavelength optical time domain reflectometer capable of carrying out optical test
CN113206702B (en) Optical cable fault detection device and detection method thereof