JPH04325947A - Magneto-optical recording and reproducing device - Google Patents

Magneto-optical recording and reproducing device

Info

Publication number
JPH04325947A
JPH04325947A JP3095701A JP9570191A JPH04325947A JP H04325947 A JPH04325947 A JP H04325947A JP 3095701 A JP3095701 A JP 3095701A JP 9570191 A JP9570191 A JP 9570191A JP H04325947 A JPH04325947 A JP H04325947A
Authority
JP
Japan
Prior art keywords
recording
information
reproducing device
magneto
reproducing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3095701A
Other languages
Japanese (ja)
Inventor
Hiroshi Ito
浩 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP3095701A priority Critical patent/JPH04325947A/en
Publication of JPH04325947A publication Critical patent/JPH04325947A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To provide the large capacity magneto-optical recording and reproducing device having a high data transfer rate. CONSTITUTION:In the information recording and reproducing device enabling magnetic domain wall moving type overwrite, recorded data are reproduced by setting laser emitting power near a recording threshold value in the case of reproducing recorded information. Since reproduction beams have no inter-bit interference, even the data recorded with high density can be reproduced as well, and the capacity and the data transfer rate of the recording and reproducing device is improved.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、レーザービームの変調
により情報のダイレクトオーバーライトを行なう光磁気
記録再生装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a magneto-optical recording and reproducing apparatus that performs direct overwriting of information by modulating a laser beam.

【0002】0002

【従来の技術】光磁気記録再生装置は、最近の着実な進
歩により、第1世代の装置で課題として残されたオーバ
ーライトもいくつかの手段により解決されつつある。そ
のオーバーライト方式の一つに、H.P.D.Shie
h andM.H.Kryder.Appl.Phys
.Lett.49(1986)473やD.Rugar
,J.C.Suits and C−J.Lin.Ap
pl.Phys.Lett.52,1537(1988
)にその原理が発表された、現在一般に「磁壁移動型オ
ーバーライト」と称せられる方式があり、応用されてい
る(以降磁壁移動型と略称する)。光変調法の一種で、
レーザービームの照射の仕方を工夫することによって、
バイアス磁界の向きおよび大きさを変えなくても情報の
ダイレクトオーバーライトが実現される。通常光磁気記
録では、垂直磁気記録膜の二つの安定な磁化の向きをそ
れぞれ0、1に対応させ情報を記録する(ここでは磁区
のない状態を情報0とする)。この方式ではレーザービ
ームのパルス幅および強度を情報の記録と消去で変える
ことによって媒体に形成される温度分布の勾配を制御す
る。急峻な温度勾配を形成することにより、もしそこに
すでに磁区が形成されていた(情報1が記録されていた
)時には磁区は収縮・消滅し、またいままで磁区が存在
していなかった(情報0が記録されていた)時には磁区
は形成されずもとのままで、どちらの場合でも情報0が
記録されたことになる。また比較的緩やかな温度勾配を
形成することにより、今度は逆に、磁区が存在していて
もいなくても、磁区が形成・拡大され、ビットの記録す
なわち情報1が記録される。この二つの温度勾配の与え
方を記録するデータ(1、0のデータ列)に応じて組み
合わせることによって情報のダイレクトオーバーライト
を行なう。 一方情報の再生は、通常の光磁気記録再生装置と同様、
ディスクの記録閾値パワーよりかなり低い出射エネルギ
ーをもつレーザービームを連続的に照射することによっ
て行なっていた。
2. Description of the Related Art With recent steady progress in magneto-optical recording and reproducing devices, overwriting, which remained a problem in first generation devices, is being solved by several means. One of the overwriting methods is H. P. D. Shie
h andM. H. Kryder. Appl. Phys.
.. Lett. 49 (1986) 473 and D. Rugar
, J. C. Suits and C-J. Lin. Ap
pl. Phys. Lett. 52, 1537 (1988
), the principle of which was announced in 1999, and is currently being applied to a method generally referred to as ``domain wall displacement type overwriting'' (hereinafter abbreviated as domain wall displacement type). A type of light modulation method,
By devising the method of irradiating the laser beam,
Direct overwriting of information is achieved without changing the direction and magnitude of the bias magnetic field. In normal magneto-optical recording, information is recorded by making the two stable magnetization directions of a perpendicular magnetic recording film correspond to 0 and 1, respectively (here, the state with no magnetic domain is assumed to be information 0). In this method, the gradient of the temperature distribution formed on the medium is controlled by changing the pulse width and intensity of the laser beam for recording and erasing information. By forming a steep temperature gradient, if a magnetic domain had already been formed there (information 1 was recorded), the domain would shrink and disappear, and if no magnetic domain existed until now (information 0), the magnetic domain would shrink and disappear. When the magnetic domain was recorded), the magnetic domain was not formed and remained as it was, and in either case, information 0 was recorded. Furthermore, by forming a relatively gentle temperature gradient, magnetic domains are formed and expanded, and bits, ie, information 1, are recorded, whether magnetic domains exist or not. Direct overwriting of information is performed by combining these two methods of providing temperature gradients according to the data to be recorded (data string of 1 and 0). On the other hand, information can be reproduced in the same way as a normal magneto-optical recording/reproducing device.
This was done by continuously irradiating a laser beam with an output energy considerably lower than the recording threshold power of the disk.

【0003】0003

【発明が解決しようとする課題】しかしながら、前述の
従来技術では、情報の再生の際に、記録データを消去し
てしまうことのないように、ディスクの記録閾値よりか
なり低い出射エネルギーをもつレーザービームを連続的
に照射することによって行なっていた。そのため再生ビ
ームのビーム半径よりも記録ビットの間隔を小さくして
高密度に記録した場合、再生時にビット間の波形干渉が
発生し情報が再生できず、実質的に記録密度を向上させ
ることができないという課題を有する。
[Problems to be Solved by the Invention] However, in the above-mentioned conventional technology, in order to prevent recorded data from being erased when reproducing information, a laser beam with emission energy considerably lower than the recording threshold of the disk is used. This was done by continuous irradiation. Therefore, when recording at high density by making the interval between recording bits smaller than the beam radius of the reproduction beam, waveform interference occurs between bits during reproduction, making it impossible to reproduce information, making it impossible to substantially improve recording density. This poses a problem.

【0004】そこで本発明はこのような課題を解決する
もので、その目的とするところは、情報の再生用レーザ
ービームとして、ディスクの記録閾値近傍の出射エネル
ギーをもつ連続光を用いることにより、ビーム通過時の
再生直後のビットを一時消去あるいは光学的に検知でき
ない程度小さくしておくことにより、高密度記録された
データを波形干渉なく再生し、ダイレクトオーバーライ
ト可能な記憶容量の大きい、またビット間隔が小さいた
め実効的に高データ転送レートの光磁気記録再生装置を
提供するところにある。なお、本発明で用いている原理
はTbFeCo記録膜で確認されている実験事実を用い
ている。それはJ.Appl.Phys.に記載されて
いる原理を応用している。磁壁移動型に用いるオーバー
ライトメディアでは、その記録過程において、前もって
磁区が形成されていた場合記録用のパルスを照射すると
、一旦磁区が消滅した後時間が経過すると再度磁区が形
成され記録が終了する。また前もって磁区が形成されて
いない場合には時間の経過とともに磁区が形成され記録
が終了する。 これはレーザーによる温度上昇時には温度分布の勾配が
大きい状況が形成されるため磁区が消滅し、温度下降時
には温度分布の勾配が緩やかな状況が形成され磁区が形
成・拡大しピットが記録される。これを移動しているビ
ームに用いる。再生用連続光が照射されているスポット
部分において、ビームのあたりはじめ(ビーム前面)で
はレーザー照射による温度上昇がまだあまり起こってい
ないため、この部分の情報は消えず反射光にピット情報
がのっている。ビームの中心付近では温度上昇がかなり
起こり、また温度勾配も急峻に成っているため磁区は収
縮あるいは消滅する。さらにビーム後端では及び冷却が
おこっているところでは温度分布がブロードになり収縮
あるいは消滅していた磁区が再び形成される。この過程
を光学ヘッドの再生系で観測するとビーム前面部からの
反射光部分のみが再生され、さらにビーム通過後にもビ
ットは記録された状態を保っている。これを用いること
により光学ヘッドのレンズからくる空間分解能の制限い
かに配列された情報ビット系列も再生することができる
[0004]The present invention is intended to solve these problems, and its purpose is to use a continuous light beam with an output energy near the recording threshold of the disk as a laser beam for information reproduction. By temporarily erasing the bits that have just been reproduced during passing or making them so small that they cannot be detected optically, high-density recorded data can be reproduced without waveform interference, resulting in a large storage capacity that can be directly overwritten, and bit spacing. Since the data transfer rate is small, it is possible to provide a magneto-optical recording/reproducing device with an effective high data transfer rate. Note that the principle used in the present invention is based on experimental facts confirmed with a TbFeCo recording film. That's J. Appl. Phys. It applies the principles described in In overwrite media used for domain wall displacement type, during the recording process, if magnetic domains have been formed beforehand, when a recording pulse is irradiated, the magnetic domains disappear, and after some time elapses, magnetic domains are formed again and recording ends. . Furthermore, if no magnetic domains have been formed in advance, magnetic domains will be formed over time and recording will be completed. This is because when the temperature is raised by the laser, a situation where the gradient of the temperature distribution is large is formed, so the magnetic domains disappear, and when the temperature is reduced, a situation where the gradient of the temperature distribution is gentle is formed, the magnetic domains are formed and expanded, and pits are recorded. Use this for moving beams. In the spot area where the continuous light for reproduction is irradiated, the temperature at the beginning of the beam (front of the beam) due to the laser irradiation has not yet risen significantly, so the information in this area does not disappear and pit information is superimposed on the reflected light. ing. Near the center of the beam, the temperature rises considerably and the temperature gradient becomes steeper, causing the magnetic domains to shrink or disappear. Furthermore, at the rear end of the beam and where cooling is occurring, the temperature distribution becomes broad, and the magnetic domains that had contracted or disappeared are re-formed. When this process is observed using the reproducing system of an optical head, only the portion of the reflected light from the front part of the beam is reproduced, and furthermore, the bits remain recorded even after the beam has passed. By using this, it is possible to reproduce information bit sequences arranged no matter how limited the spatial resolution is due to the lens of the optical head.

【0005】[0005]

【課題を解決するための手段】情報の記録再生磁性膜が
単層で、バイアス磁界の方向ならびに大きさを変えるこ
となく、レーザービームの変調のみにより情報のダイレ
クトオーバーライトを行なう光磁気記録再生装置におい
て、情報再生時のレーザー光の出射エネルギーがディス
クの記録閾値付近の連続光であることを特徴とする。
[Means for solving the problem] A magneto-optical recording and reproducing device that has a single-layer magnetic film for recording and reproducing information, and performs direct overwriting of information only by modulating a laser beam without changing the direction and magnitude of the bias magnetic field. The invention is characterized in that the output energy of the laser beam during information reproduction is continuous light near the recording threshold of the disk.

【0006】[0006]

【実施例】(実施例1)以下本発明を実施例に基づいて
詳細に説明する。
EXAMPLES (Example 1) The present invention will be explained in detail below based on examples.

【0007】本実施例で用いた光磁気ディスクは、連続
溝付きの直径5.25インチのガラスディスク基板上に
、SiNの保護膜を65nm、GdTbFeCo100
nm、SiNの保護膜65nmをスパッタ法により順に
積層した。そのディスクを直流磁場中で初期化して用い
た。
The magneto-optical disk used in this example was a 5.25-inch diameter glass disk substrate with continuous grooves, a 65 nm SiN protective film, a GdTbFeCo100
A protective film of 65 nm and 65 nm of SiN was sequentially laminated by sputtering. The disk was initialized in a DC magnetic field and used.

【0008】まずこのディスクの記録パワー閾値を求め
た。記録周波数3.7MHz、印加磁界300Oeで記
録して、その再生信号の搬送波対雑音比(以下CNRと
称する)をスペクトラムアナライザを用い、分解能バン
ド幅30kHzで測定して求めた。再生時は0.8mW
の連続光を照射した。測定結果を図2に示す。CNRは
3mWから徐々に立ち上がり、5mWでほぼ飽和に達す
る。記録周波数を変えてもほぼ同様な振舞いである。そ
こでこのディスクの閾値はほぼ3mWであることがわか
った。
First, the recording power threshold of this disc was determined. Recording was performed at a recording frequency of 3.7 MHz and an applied magnetic field of 300 Oe, and the carrier-to-noise ratio (hereinafter referred to as CNR) of the reproduced signal was measured using a spectrum analyzer at a resolution bandwidth of 30 kHz. 0.8mW during playback
irradiated with continuous light. The measurement results are shown in Figure 2. CNR gradually rises from 3 mW and reaches almost saturation at 5 mW. The behavior is almost the same even if the recording frequency is changed. Therefore, it was found that the threshold value of this disk was approximately 3 mW.

【0009】つぎにこのディスクがオーバーライト可能
であることを確認した。線速、印加磁界、ビーム径は後
にしめす再生実験と同様にした。記録周波数2MHz、
記録パワー6mWで記録し、再生パワー0.8mWで再
生したところ、CNR50dB(分解能バンド幅30k
Hz)が得られた。更に記録信号周波数3MHz、記録
パワー6mWに、図3に示すように繰り返し周波数10
MHz、パワー9mWパルス幅30nsecの消去パル
スを混合照射し、CNRの測定を行なった。その結果2
MHzの信号成分はノイズレベルで一方3MHzにピー
クが見られ、CNRは48dBが得られ、磁壁移動型の
オーバーライト可能であることが確認された。
Next, it was confirmed that this disk was overwritable. The linear velocity, applied magnetic field, and beam diameter were the same as in the reproduction experiment shown later. Recording frequency 2MHz,
When recording with a recording power of 6 mW and reproducing with a reproducing power of 0.8 mW, the CNR was 50 dB (resolution bandwidth 30 k).
Hz) was obtained. Furthermore, the recording signal frequency is 3 MHz, the recording power is 6 mW, and the repetition frequency is 10 as shown in Figure 3.
CNR was measured by irradiating a mixture of erase pulses of MHz, power 9 mW, pulse width 30 nsec. Result 2
The noise level of the MHz signal component peaked at 3 MHz, and a CNR of 48 dB was obtained, confirming that domain wall displacement type overwriting is possible.

【0010】つぎにこのディスクで再生実験を行なった
。印加磁界は情報の記録方向に300Oe一定として、
記録時消去時を問わず常に印加した。ビームスポット径
は(ビーム強度が中心の1/e2)1.58μm。線速
5.7m/s、レーザー変調周波数を2MHzから1M
Hz毎に12MHzまでデューティー30%を保ったま
ま変え、記録レーザーパワー6mWで記録し、再生レー
ザーパワーを1mWから0.5mW毎に変え、再生信号
強度および搬送波対雑音比(CNR)の再生パワー依存
性を調べた。その結果各周波数で再生パワーがほぼ2.
8mWでピークとなりそれより高くても低くても得られ
るCNRは低い。各周波数での最高CNRを図1に示す
。また従来の再生法(再生光パワー0.7mW)による
CNRの記録周波数依存性を図4に示す。従来の再生法
では記録周波数7MHzでCNRはほぼゼロとなりこの
辺が記録密度の限界であることを示している。一方本発
明によると再生可能な周波数帯域が大幅に広がることが
わかる。また各周波数で100万回再生したが信号に変
化は見られなかった。
Next, a playback experiment was conducted using this disc. Assuming that the applied magnetic field is constant at 300 Oe in the information recording direction,
It was always applied regardless of whether it was recording or erasing. The beam spot diameter is (1/e2 centered on beam intensity) 1.58 μm. Linear speed 5.7m/s, laser modulation frequency from 2MHz to 1M
The frequency was changed every Hz to 12 MHz while maintaining a duty of 30%, the recording laser power was changed to 6 mW, and the playback laser power was changed from 1 mW to every 0.5 mW, and the playback signal strength and carrier-to-noise ratio (CNR) depended on the playback power. I looked into gender. As a result, the reproduction power at each frequency is approximately 2.
It reaches a peak at 8 mW, and the CNR obtained is low regardless of whether it is higher or lower than that. The highest CNR at each frequency is shown in Figure 1. Furthermore, FIG. 4 shows the recording frequency dependence of CNR by the conventional reproduction method (reproducing optical power 0.7 mW). In the conventional reproduction method, the CNR becomes almost zero at a recording frequency of 7 MHz, indicating that this is the limit of recording density. On the other hand, it can be seen that according to the present invention, the reproducible frequency band is significantly expanded. In addition, no change was observed in the signal after playing back 1 million times at each frequency.

【0011】ところで磁壁移動型オーバーライト可能な
メディアではなく、通常のメディアにおいても再生光の
パワーを上げることによって、高密度記録された情報を
読みとることが可能であるが、再生直後のピットは消去
されたままなので一回読み出すと情報は消去されてしま
う。本発明では情報を再生した後でも情報が残っており
、複数回読み出すことが可能であることも確認した。
[0011] Incidentally, it is possible to read high-density recorded information not only on domain wall displacement type overwritable media but also on normal media by increasing the power of the reproduction light, but the pits immediately after reproduction are erased. Since the information remains unchanged, the information will be erased once it is read. In the present invention, it has also been confirmed that even after the information is reproduced, the information remains and can be read out multiple times.

【0012】以上、情報の再生周波数が向上し、高密度
で記録されたデータの再生が可能になり、オーバーライ
トも可能なことから高データ転送レートの大容量光磁気
記録再生装置が提供できる。
As described above, the reproduction frequency of information is improved, data recorded at high density can be reproduced, and overwriting is also possible, so that a large-capacity magneto-optical recording/reproducing device with a high data transfer rate can be provided.

【0013】[0013]

【発明の効果】以上述べてきたように本発明によれば、
磁壁移動型オーバーライト方式において、データ再生時
のレーザ照射エネルギーを記録閾値付近に設定すること
により、従来光学的な限界から高密度記録限界以上の高
密度記録再生が可能になり、大容量、ダイレクトオーバ
ーライト可能な高速データ転送レートの光磁気記録再生
装置が提供できる。本発明の光磁気記録再生装置は、コ
ンピュータメモリ、光ディスクファイル等の光情報記録
再生装置に応用が可能で、装置の高性能化などの多大な
効果を有するものである。
[Effects of the Invention] As described above, according to the present invention,
In the domain wall motion overwrite method, by setting the laser irradiation energy during data reproduction near the recording threshold, it becomes possible to perform high-density recording and reproduction that exceeds the conventional optical limit and exceeds the high-density recording limit. A magneto-optical recording/reproducing device with a high data transfer rate that can be overwritten can be provided. The magneto-optical recording and reproducing device of the present invention can be applied to optical information recording and reproducing devices such as computer memories and optical disk files, and has great effects such as improving the performance of the device.

【0014】[0014]

【図面の簡単な説明】[Brief explanation of drawings]

【図1】本発明の光磁気記録再生装置による再生信号の
搬送波対雑音比の記録信号周波波数依存性を示す図であ
る。
FIG. 1 is a diagram showing the dependence of the carrier-to-noise ratio of a reproduced signal on a recorded signal frequency by a magneto-optical recording/reproducing apparatus of the present invention.

【図2】3.7MHz記録信号における搬送波対雑音比
の記録パワー依存性を示す図である。
FIG. 2 is a diagram showing the recording power dependence of carrier-to-noise ratio in a 3.7 MHz recording signal.

【図3】オーバーライトに用いるパルスを説明する図で
ある。
FIG. 3 is a diagram illustrating pulses used for overwriting.

【図4】本発明の光磁気記録再生装置による再生信号の
搬送波対雑音比の記録信号周波波数依存性を示す図であ
る。
FIG. 4 is a diagram showing the dependence of the carrier wave-to-noise ratio of a reproduced signal on a recorded signal frequency by the magneto-optical recording/reproducing apparatus of the present invention.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  情報の記録再生磁性膜が単層で、バイ
アス磁界の方向ならびに大きさを変えることなく、レー
ザービームの変調のみにより情報のダイレクトオーバー
ライトを行なう光磁気記録再生装置において、情報再生
時のレーザー光の出射エネルギーがディスクの記録閾値
付近の連続光であることを特徴とする光磁気記録再生装
置。
[Claim 1] In a magneto-optical recording and reproducing device in which the information recording and reproducing magnetic film is a single layer and direct overwriting of information is performed only by modulating a laser beam without changing the direction and magnitude of the bias magnetic field, information reproducing is possible. 1. A magneto-optical recording and reproducing device, characterized in that the output energy of the laser beam is continuous light in the vicinity of the recording threshold of the disk.
JP3095701A 1991-04-25 1991-04-25 Magneto-optical recording and reproducing device Pending JPH04325947A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3095701A JPH04325947A (en) 1991-04-25 1991-04-25 Magneto-optical recording and reproducing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3095701A JPH04325947A (en) 1991-04-25 1991-04-25 Magneto-optical recording and reproducing device

Publications (1)

Publication Number Publication Date
JPH04325947A true JPH04325947A (en) 1992-11-16

Family

ID=14144809

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3095701A Pending JPH04325947A (en) 1991-04-25 1991-04-25 Magneto-optical recording and reproducing device

Country Status (1)

Country Link
JP (1) JPH04325947A (en)

Similar Documents

Publication Publication Date Title
JP3380621B2 (en) Magneto-optical recording medium reproducing method, magneto-optical recording medium and magneto-optical recording and reproducing apparatus using the same
JP2972899B2 (en) Magneto-optical recording method
US5144601A (en) Magneto-optical overwriting methods using erasing pulses, each of which has a higher frequency and narrower width than that of the overwriting pulses
US5353265A (en) Magneto optical overwriting methods using a single optical head designed for a two-beam overwrite
JPH10134429A (en) Magneto-optical recording medium and its reproduction method
US6122229A (en) Magneto-optically recorded data readout system
JPH01229426A (en) Recording method for optical information
JPH04325947A (en) Magneto-optical recording and reproducing device
JPH11126381A (en) Magneto-optical recording medium
JP3398766B2 (en) Magneto-optical recording method
JP3458233B2 (en) Magneto-optical recording method
JP3458234B2 (en) Magneto-optical recording method
JP2797476B2 (en) Magneto-optical memory device
JPH07334890A (en) Method and device for magneto-optical recording
Sukeda et al. High Speed Magnetic Field Modulation in Pit-Edge Magneto-Optic Recording
JP2788518B2 (en) Magneto-optical recording method
JPH04313833A (en) Magneto-optical recording medium and magneto-optical recording and reproducing method using this medium
JP2689697B2 (en) Optical disk drive
KR100304873B1 (en) magneto-optical recording medium and method for reading of the same
JPH064925A (en) Method for erasing information in magneto-optical recording
JPH01227245A (en) Magneto-optical recording system
Arai et al. MO recording by single carrier independent mark edge modulation
JP2000003537A (en) Medium and method for recording optical information
JPH04247347A (en) Magneto-optical recording system
JPH02158918A (en) Method for recording optical information