JPH0432592A - Production of gaseous nitrogen trifluoiride - Google Patents

Production of gaseous nitrogen trifluoiride

Info

Publication number
JPH0432592A
JPH0432592A JP2137027A JP13702790A JPH0432592A JP H0432592 A JPH0432592 A JP H0432592A JP 2137027 A JP2137027 A JP 2137027A JP 13702790 A JP13702790 A JP 13702790A JP H0432592 A JPH0432592 A JP H0432592A
Authority
JP
Japan
Prior art keywords
gas
electrolysis
anode
cathode
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2137027A
Other languages
Japanese (ja)
Other versions
JP2896196B2 (en
Inventor
Makoto Aritsuka
眞 在塚
Tokuyuki Iwanaga
岩永 徳幸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Toatsu Chemicals Inc
Original Assignee
Mitsui Toatsu Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Toatsu Chemicals Inc filed Critical Mitsui Toatsu Chemicals Inc
Priority to JP2137027A priority Critical patent/JP2896196B2/en
Publication of JPH0432592A publication Critical patent/JPH0432592A/en
Application granted granted Critical
Publication of JP2896196B2 publication Critical patent/JP2896196B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Abstract

PURPOSE:To prevent the generation of gaseous H2 on an anode when electrolysis is stopped at the time of producing gaseous NF3 from NH4F and HF by molten- salt electrolysis by continuously impressing a voltage between the electrodes when the generation of gaseous NF3 is stopped. CONSTITUTION:An electrolytic cell 1 is divided by a partition wall 5, and the anode 3 and cathode 4 in the respective sections are connected to a power source 16. The molten salt 2 derived from NH4F and/or NH4HF2 and HF is introduced into the cell 1 and kept at about 100-150 deg.C by a heater 10. Under these conditions, a DC current is applied between the anode 3 and cathode 4 from the power source 16, and gaseous NF3 is generated from the cathode 3 and gaseous H2 from the cathode 4. An auxiliary DC power source 17 for constant-voltage control is used when electrolysis is stopped, a voltage signal from a function generator 18 is inputted to the power source 17, and a voltage is applied between the anode 3 and cathode 4 continuously or intermittently. Consequently, the generation of gaseous H2 from the anode 3 is prevented, and there is no danger of explosion when electrolysis is resumed.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は三弗化窒素ガス(NF3)の製造方法に関する
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for producing nitrogen trifluoride gas (NF3).

更に詳しくは、弗化アンモニウム(NH4F)または/
及び酸性弗化アンモニウム(NHJFt)と無水弗化水
素酸(HF)を原料とするN)14F・肝系熔融塩の電
解法によるNF、ガスの製造方法に関する。
More specifically, ammonium fluoride (NH4F) or/
and a method for producing NF and gas by electrolyzing N)14F liver molten salt using acidic ammonium fluoride (NHJFt) and anhydrous hydrofluoric acid (HF) as raw materials.

〔従来の技術及び発明が解決しようとする課題〕NF3
は沸点が一129°C1融点が一207°Cの物性を示
す無色の気体である。
[Problems to be solved by conventional technology and invention] NF3
is a colorless gas with a boiling point of 1129°C and a melting point of 1207°C.

NF3ガスは半導体のドライエツチング剤やCVD]1
のクリーニングガスとして近年注目されているが、これ
らの用途に使用されるNhガスは、高純度のものが要求
されている。
NF3 gas is a dry etching agent for semiconductors and CVD]1
In recent years, Nh gas has been attracting attention as a cleaning gas for various purposes, but high purity Nh gas is required for use in these applications.

しかしながら製造されたNF、ガスは、窒素(N2)、
二弗化二窒素(NJz)、亜酸化窒素(N20) 、二
酸化炭素(Co□)、二弗化酸素(OFり 、四弗化炭
素(cpa) 、酸素(0□)、未反応の弗化水素(肝
)等の不純物を比較的多量に含んでおり、本発明で対象
とする溶融塩電解法で製造されたNFsガスも同様であ
る。従って、上記用途としての高純度のNFsガスを得
るためには精製が必要である。
However, the produced NF gas is nitrogen (N2),
Nitrogen difluoride (NJz), nitrous oxide (N20), carbon dioxide (Co□), oxygen difluoride (OF), carbon tetrafluoride (cpa), oxygen (0□), unreacted fluoride It contains a relatively large amount of impurities such as hydrogen (liver), and the same is true for the NFs gas produced by the molten salt electrolysis method that is the subject of the present invention.Therefore, high purity NFs gas for the above purpose is obtained. Purification is necessary for this purpose.

NFzガス中のこれらの不純物を除去する精製方法とし
ては、下記する方法が知られている。
As a purification method for removing these impurities from NFz gas, the following method is known.

即ち、1)NJtはKI、NazS、 NazSz03
等の水溶液と接触させる方法(J、 Massonne
+ケミ−・インジェニュール・テヒニール(Chew、
 Ing、 Techn、)41゜(12)、695.
(1969) )や148.9〜537.8°Cの温度
で金属と接触させる方法(特公昭59〜15081号)
等で除去することができる。 2)HFは100°C前
後に加熱した伏態でNaFと接触させる方法等で簡便に
除去できる。 3)OF、は、NazSzOs 、Kl
、 Na2SO2、■、NazS等の水溶液と接触させ
る方法で除去することができる。 4)N20やCO□
等のような比較的高沸点の成分はゼオライト等の吸着剤
と接触させることで効率よく除去することができる(C
hew、 Eng。
That is, 1) NJt is KI, NazS, NazSz03
A method of contacting with an aqueous solution such as (J, Massonne
+ Chemie Ingenur Technir (Chew,
Ing, Techn, )41°(12), 695.
(1969) ) or a method of contacting with metal at a temperature of 148.9 to 537.8°C (Special Publication No. 15081 of 1981)
It can be removed with etc. 2) HF can be easily removed by heating it to around 100°C and bringing it into contact with NaF. 3) OF, is NazSzOs, Kl
, Na2SO2, ■, NazS, etc. can be removed by contacting with an aqueous solution. 4) N20 and CO□
Components with relatively high boiling points such as
hew, Eng.

84、116. (1977)等〕。5)N2や0□等
の低沸点成分は、−150℃〜−190℃の温度に冷却
してNhを液化することで除去することができる。
84, 116. (1977) etc.]. 5) Low boiling point components such as N2 and 0□ can be removed by cooling to a temperature of -150°C to -190°C to liquefy Nh.

しかしながらCF4は上記した各方法では除去されず、
その効果的な除去方法は未だ知られていない、またCF
、は沸点が一128°Cであって、NF3の沸点と非常
に接近しているのでNF3の深冷蒸留によっても分離が
不可能である。
However, CF4 is not removed by each of the above methods,
An effective method for removing it is not yet known, and CF
has a boiling point of 1128°C, which is very close to the boiling point of NF3, so it is impossible to separate it even by cryogenic distillation of NF3.

さて本発明で対象とする溶融塩の電解において、最も耐
蝕性に優れた陽極材料は炭素である。しかし、炭素を陽
極として電解を行うとCFaが多量に発生する。これは
前記した通り、高純度のNFsガスを製造するには極め
て不都合である。そこで高純度のNF3ガスを製造する
場合はニッケル(Ni)或はニッケルを主成分とする合
金、もしくは白金(Pt)或は白金を主成分とする合金
が陽極として使用される。
Now, in the electrolysis of molten salt, which is the object of the present invention, carbon is the anode material that has the best corrosion resistance. However, when electrolysis is performed using carbon as an anode, a large amount of CFa is generated. As mentioned above, this is extremely inconvenient for producing high purity NFs gas. Therefore, when producing high-purity NF3 gas, nickel (Ni) or an alloy containing nickel as a main component, or platinum (Pt) or an alloy containing platinum as a main component is used as an anode.

NF3ガスは電解により陽極から生成し、同時に陰極か
らは水素(N2)ガスが生成する。該NF3ガスとN2
ガスは混合すると僅かな着火エネルギーで点火し激しい
爆発を起こす、  NFs−L−Nz 3元系において
、混合ガスの爆発範囲はNFjガスが10容量%以上、
N2ガスが5容量%以上と広い範囲にわたり、電解槽内
でNF3ガスとN2ガスが僅かでも混合すると爆発を引
き起こす式がある。
NF3 gas is generated from the anode by electrolysis, and at the same time hydrogen (N2) gas is generated from the cathode. The NF3 gas and N2
When gases are mixed, they ignite with a small amount of ignition energy and cause a violent explosion.In the NFs-L-Nz ternary system, the explosion range of the mixed gas is NFj gas at 10% by volume or more,
There is a formula in which N2 gas has a wide range of 5% by volume or more, and if even a small amount of NF3 gas and N2 gas are mixed in an electrolytic cell, an explosion will occur.

このようなNFsガスとN2ガスの混合は殆どが電解中
に起こる。この主な原因は隔壁が分極して隔壁上でガス
発生が起こったり、陽極気相部と陰極気相部の圧力均衡
が崩れて液面に偏差が生じ、高圧側のガスが隔壁下端を
くぐり低圧側に流入する、等である。しかし、NF3ガ
ス、N2ガスの生成しない電解停止中には前記の現象は
起こり得ない。
Most of the mixing of NFs gas and N2 gas occurs during electrolysis. The main reason for this is that the partition wall is polarized and gas is generated on the partition wall, or the pressure balance between the anode gas phase and the cathode gas phase is disrupted, causing a deviation in the liquid level, and the gas on the high pressure side passes through the lower end of the partition wall. It flows into the low pressure side, etc. However, the above phenomenon cannot occur during electrolysis suspension when NF3 gas and N2 gas are not produced.

Niあるいはptは該溶融塩中に浸漬すると、自然腐食
が起こりN2ガスを発生することは知られている。しか
し、その発生量は通常は非常に少ない。
It is known that when Ni or PT is immersed in the molten salt, natural corrosion occurs and N2 gas is generated. However, the amount generated is usually very small.

このため、電解停止後に陽極側気相部に残留するNF、
ガスと自然腐食により発生するN2ガスが混合し、爆発
を引き起こすことは常識的には殆ど考えられない。
For this reason, NF remaining in the anode side gas phase after stopping electrolysis,
In common sense, it is almost impossible to imagine that gas and N2 gas generated by natural corrosion would mix and cause an explosion.

しかし、本発明者等は電解停止中に陽極側気相部の水素
濃度が爆発範囲内になる現象に遭遇したのである。この
原因は陰極側気相部のN2ガスが陽極側に侵入したもの
ではないため、原因の究明を行なった結果、ニッケル或
はニッケルを主体とする陽極の溶融塩中での自然腐食に
よる水素発生速度(発生量)が、電解を停止した直後に
おいては異常に速く (多く)、陽極側気相部の全部或
は−部においてH!ガス濃度が爆発範囲内となり得るこ
とを突き止めた。
However, the present inventors encountered a phenomenon in which the hydrogen concentration in the gas phase on the anode side fell within the explosive range while electrolysis was stopped. The cause of this was not that N2 gas in the gas phase on the cathode side entered the anode side, but as a result of investigating the cause, we found that hydrogen was generated due to natural corrosion in nickel or molten salt of the anode mainly composed of nickel. Immediately after stopping electrolysis, the speed (amount generated) is abnormally fast (a lot), and H! It was determined that the gas concentration could be within the explosive range.

電解の停止と同時に陽極気相部のガスを不活性ガスによ
り追い出す方法があるが、該方法は比較的長い時間の電
解停止においては効果的な対策である。しかし、陽極気
相部に不活性ガスを通気するので、陽極気相部ガスの追
い出しが完了するまでの間は電解を再開出来ず、短時間
の電解停止を必要とする場合は、不活性ガスにより追い
出しする方法は電解槽の稼働率を下げるため好ましくな
い。
There is a method of expelling the gas in the anode gas phase using an inert gas at the same time as electrolysis is stopped, but this method is an effective measure when electrolysis is stopped for a relatively long time. However, since an inert gas is vented into the anode gas phase, electrolysis cannot be restarted until the anode gas phase has been expelled, so if a short electrolysis stop is required, inert gas The method of expelling the electrolyte is not preferable because it lowers the operating rate of the electrolytic cell.

〔課題を解決するための手段〕[Means to solve the problem]

本発明者等はかかる状況に鑑み、鋭意検討を重ねた結果
、電解停止後に溶融塩中においてNF3ガスの発生が起
こらず、かつN2ガス発生も起こらない電位に陽極の電
位を電解停止直後から設定することで、電解停止中の陽
極においてN2ガスの発生を防止し得ることを突き止め
、本発明を完成するに至ったものである。
In view of this situation, the inventors of the present invention have conducted extensive studies and have determined that the anode potential is set immediately after electrolysis is stopped to a potential at which no NF3 gas is generated in the molten salt and no N2 gas is generated after electrolysis is stopped. By doing so, it was discovered that it was possible to prevent the generation of N2 gas at the anode during electrolysis suspension, and the present invention was completed.

即ち、本発明は弗化アンモニウムまたは/及び酸性弗化
アンモニウムと無水弗化水素酸を原料とする溶融塩電解
法による三弗化窒素ガスの製造方法において、三弗化窒
素ガスの発生を停止させるに際し、陽極及び陰極の電極
間に電圧を連続的に印加し、あるいは断続的に印加せし
むることを特徴とする三弗化窒素ガスの製造方法に関す
る。
That is, the present invention is a method for producing nitrogen trifluoride gas by molten salt electrolysis using ammonium fluoride or/and acidic ammonium fluoride and anhydrous hydrofluoric acid as raw materials, in which the generation of nitrogen trifluoride gas is stopped. The present invention relates to a method for producing nitrogen trifluoride gas, which comprises applying a voltage continuously or intermittently between an anode and a cathode.

〔発明の詳細な開示] 以下、本発明の詳細な説明する。[Detailed disclosure of the invention] The present invention will be explained in detail below.

本発明は三弗化窒素ガスの発生の停止([解停止)直後
から三弗化窒素ガスの発生再開(を解再開)までの間に
実施されるものであり、本発明を実施するには、直前ま
で所定の電解槽で所定の陽極を使用し、電解が行なわれ
ている必要がある。
The present invention is carried out immediately after stopping the generation of nitrogen trifluoride gas ([stopping decomposition]) and before restarting the generation of nitrogen trifluoride gas (resuming decomposition). , it is necessary that electrolysis has been carried out using a predetermined anode in a predetermined electrolytic cell until just before the start of the test.

第1図は電解装置の一例を示す図であり、電解中には陽
極3からはNF、ガスが、陰極4からはH2ガスが発生
するが、NF3ガスとH2ガスが混合すると爆発するの
で、この混合を防ぐため陽極3と陰極4との間には隔壁
5が設けである。また、電解にあたっては、陽極3側及
び陽極4側にそれぞれN、ガス等の不活性ガスをキャリ
アーガスとして送入する場合もある。
FIG. 1 is a diagram showing an example of an electrolyzer. During electrolysis, NF and gas are generated from the anode 3 and H2 gas is generated from the cathode 4. However, if NF3 gas and H2 gas are mixed, it will explode. In order to prevent this mixing, a partition wall 5 is provided between the anode 3 and the cathode 4. Further, during electrolysis, an inert gas such as N or gas may be introduced as a carrier gas to the anode 3 side and the anode 4 side, respectively.

高純度NFsガスを製造するために、陽極にはNi或は
Niを主体とする合金;モネル、インコネルを使用する
。Pt或はptを主体とする合金も使用可能であるが、
電解に供する電流のうち白金を溶解するために使われる
電流の割合(電極溶解の電流効率)は10%以上に達し
、工業的な電解において使用するのは好ましくない、ま
た鉄(Fe)、銅(Cu)、チタン(Ti)等の他の金
属では電極溶解のt流動率はほぼ100%であり、使用
には全く適さない、モネル、インコネルも使用不可能で
はないが、−船釣には専ら純分が90%以上のNiを使
用するのが好ましい、陽極の大きさ、形状に関してはこ
れを特に制約するものではないが、取り扱いの面から電
極単体当りの重量については考慮する必要がある。
In order to produce high-purity NFs gas, Ni or a Ni-based alloy; Monel or Inconel is used for the anode. Pt or an alloy mainly composed of pt can also be used, but
The proportion of current used for dissolving platinum (electrode dissolution current efficiency) of the current used for electrolysis reaches 10% or more, making it undesirable to use in industrial electrolysis. For other metals such as (Cu) and titanium (Ti), the t-flow rate of electrode melting is almost 100%, making them completely unsuitable for use. Monel and Inconel are also not impossible to use, but - for boat fishing. It is preferable to use Ni with a purity of 90% or more.There are no particular restrictions on the size and shape of the anode, but the weight per electrode must be considered from the viewpoint of handling. .

陰極4は電解中には電気的に防蝕された状態にあるため
、材質の選択は容易である。一般に安価に入手可能であ
るFeが使用される0本発明の実施においてもFeを使
用したが、これは他の材質の使用を制約するものではな
い、陰極4の大きさ、形状に関してはこれを特に制約す
るものではないが、陰極4での電圧降下をできるだけ小
さくするためには極力、陰極表面積を大きくするのが望
ましい。
Since the cathode 4 is electrically protected from corrosion during electrolysis, the material can be easily selected. Fe is generally available at low cost. Although Fe was used in the implementation of the present invention, this does not limit the use of other materials. Regarding the size and shape of the cathode 4, Fe is used. Although not particularly restricted, in order to minimize the voltage drop at the cathode 4, it is desirable to increase the cathode surface area as much as possible.

溶融塩はNH4HF!或はNHaFとHFを電解槽中で
混合調製する。NH,OF、とHPを原料とした場合、
重量比57 : (10〜30)で混合調製する。得ら
れた溶融塩は100〜150°Cの範囲で保持するのが
好ましい。
The molten salt is NH4HF! Alternatively, NHaF and HF are mixed and prepared in an electrolytic bath. When NH, OF, and HP are used as raw materials,
Mix and prepare at a weight ratio of 57: (10 to 30). The obtained molten salt is preferably maintained at a temperature in the range of 100 to 150°C.

原料のN11.1(F2は吸湿性があり水分を含有して
いる。また、該溶融塩自体も極めて吸湿性が強く、この
ため調製された溶融塩も1〜2%の水分を含有している
。かかる水分を含有した溶融塩を電解すると、この水分
の影響でOLガスとH2ガスが副生じ、このOF2ガス
とH2ガスは陽極から発生するNFsガス中に混入し爆
発の原因となる。
The raw material N11.1 (F2) is hygroscopic and contains water. Also, the molten salt itself is extremely hygroscopic, so the prepared molten salt also contains 1 to 2% water. When a molten salt containing such moisture is electrolyzed, OL gas and H2 gas are generated as by-products due to the influence of this moisture, and these OF2 gas and H2 gas are mixed into the NFs gas generated from the anode, causing an explosion.

従って、溶融塩電解法によるNFsガスの製造において
は、予め電解(本電解)時の電流密度よりも低い電流を
流して行なう、いわゆる脱水電解が不可欠であり、脱水
電解終了後引続いて本電解に移行する。 溶融塩中の水
分が1.0%以下ではOF、ガスとH2ガスの副生量が
少なく、爆発の危険性はなくなるため(特願平0l−3
34811)、溶融塩中の水分が1.0%以下となるま
で脱水電解を行なう。
Therefore, in the production of NFs gas by molten salt electrolysis, so-called dehydration electrolysis, in which a current density lower than the current density during electrolysis (main electrolysis) is passed in advance, is essential. to move to. When the water content in the molten salt is 1.0% or less, the amount of by-products of OF, gas, and H2 gas is small, and there is no danger of explosion (Patent Application No. 01-3).
34811), dehydration electrolysis is performed until the water content in the molten salt becomes 1.0% or less.

水分の定置に関しては0.2%程度までならば簡便な水
分測定法であるカールフィッシャー法を適用し行なうこ
とができる。
Regarding the fixation of moisture, the Karl Fischer method, which is a simple moisture measurement method, can be applied if the moisture content is up to about 0.2%.

脱水電解が終了したならば、電流密度を大きくし、本電
解に移行する。1を解の継続により陽極からNFSガス
が発生し、溶融塩は消費され減少し、やがては陽極3と
陰極4との間の隔壁5の下端をくぐり抜け、低圧側に流
入しNF3ガスとH2ガスが混合し爆発の原因となる。
When the dehydration electrolysis is completed, the current density is increased and the main electrolysis begins. By continuing to solve 1, NFS gas is generated from the anode, the molten salt is consumed and reduced, and eventually passes through the lower end of the partition wall 5 between the anode 3 and cathode 4, flows into the low pressure side, and becomes NF3 gas and H2 gas. may mix and cause an explosion.

このため、適宜、熔融塩を補給しなければならない。Therefore, molten salt must be replenished as appropriate.

補給方法としては溶融塩が少量となった時点で電解を停
止し、再度原料を調製した後再び脱水電解、本電解を繰
り返し行なうという回分式方法と、電解中に間歇的に或
は連続的に溶融塩を補給する方法がある。後者の問題点
は補給する溶融塩中の水分により、電解槽中の溶融塩の
水分が1.0%を超える虞があるので、最初に行なう脱
水電解を十分に行ない、かつ補給する溶融塩中の水分が
2%を超えなければ、連続的な供給は十分可能である。
There are two replenishment methods: one is a batch method in which electrolysis is stopped when the molten salt becomes small, the raw materials are prepared again, and then dehydration electrolysis and main electrolysis are repeated, and the other is intermittently or continuously during electrolysis. There is a way to replenish molten salt. The latter problem is that there is a risk that the water content of the molten salt in the electrolytic cell may exceed 1.0% due to the moisture in the molten salt to be replenished. Continuous supply is fully possible as long as the water content does not exceed 2%.

本発明実施に必要な電力の供給方法としては、電解に使
用する直流電源が定電圧制御の行なえるものであれば該
直流電源にて所定の電圧を印加するか、あるいは該直流
電源とは別に定電圧制御の可能な直流電源を使用する、
等が考えられる。
As a method of supplying the power necessary to carry out the present invention, if the DC power supply used for electrolysis is capable of constant voltage control, the specified voltage may be applied by the DC power supply, or by applying a predetermined voltage separately from the DC power supply. Uses a DC power supply that can be controlled at constant voltage.
etc. are possible.

ここでいう印加とは、電源装置を用いて外部から電圧を
かけることをいう。
Application here means applying a voltage from the outside using a power supply device.

連続的に電圧を印加するには前記のままで行なえば良い
が、断続的に電圧を印加する場合は、更に直流電源の制
御が必要である。市販の関数発生器18による電圧信号
を直流電源に入力し、この電圧信号に連動させるのが一
般的な方法である。
To apply a voltage continuously, it is sufficient to carry out the procedure as described above, but to apply a voltage intermittently, it is necessary to further control the DC power supply. A common method is to input a voltage signal from a commercially available function generator 18 to a DC power source and to make it interlock with this voltage signal.

電解停止方法としては電流を徐々に絞るか、或は瞬時に
遮断するなどの方法が考えられる。いずれの方法に於い
ても電解を停止した瞬間に異常が発生する様なことはな
いため、電解の停止方法は特に制限されない。
Possible methods for stopping electrolysis include gradually reducing the current or cutting it off instantaneously. In either method, no abnormality occurs the moment electrolysis is stopped, so the method for stopping electrolysis is not particularly limited.

本発明の実施には、電解停止後、前記の方法において電
圧を印加するだけでよい、印加する電圧は陰極に対する
陽極の電位が0〜2.8■の範囲で行なわれる。陽極及
び陰極が複数配置される電解槽において、陰極と陽極が
直列に複数接続される場合では該電圧は複極数倍される
To carry out the present invention, it is only necessary to apply a voltage in the manner described above after stopping the electrolysis, and the applied voltage is such that the potential of the anode relative to the cathode is in the range of 0 to 2.8 . In an electrolytic cell in which a plurality of anodes and cathodes are arranged, when a plurality of cathodes and anodes are connected in series, the voltage is multiplied by the number of the plurality of electrodes.

印加される電圧が2.8■を超えると理論的にはNF3
ガスの発生が可能となるため不都合である。
If the applied voltage exceeds 2.8■, theoretically NF3
This is disadvantageous because gas can be generated.

実際には諸々の過電圧が加わるため2.8vではNF3
ガスの発生は起こらないが、不必要な電圧はエネルギー
の損失になるので好ましくない。0v未満の場合は陽極
上で水素発生が始まる電圧に近くなるため不都合である
In reality, NF3 is applied at 2.8V due to various overvoltages.
Although gas generation does not occur, unnecessary voltage is undesirable because it results in energy loss. If it is less than 0V, it is disadvantageous because the voltage is close to the voltage at which hydrogen generation starts on the anode.

断続的に電圧を印加する場合において、無通電時間が著
しく長くなると陽極からはH2ガスが発生するので好ま
しくない。また、無通電時間より通電時間が短い場合に
おいても、H2ガスが発生するので好ましくない。
When a voltage is applied intermittently, if the non-current period becomes significantly long, H2 gas will be generated from the anode, which is not preferable. Further, even if the energizing time is shorter than the non-energizing time, H2 gas is generated, which is not preferable.

断続的に電圧を印加する場合は、少なくとも無通電時間
を10秒未満に、通電時間が0.5秒を越える必要があ
る。
When applying a voltage intermittently, the non-current time must be less than 10 seconds and the current time must exceed 0.5 seconds.

本発明の実施と並行して、電解槽気相部を不活性ガスで
追い出すことは、安全上、より好ましい。
In parallel with the implementation of the present invention, it is more preferable for safety to purge the gas phase portion of the electrolytic cell with an inert gas.

但しこの場合は、少なくとも陽極側気相部9にはキャリ
アガスの供給口6が必要である。
However, in this case, a carrier gas supply port 6 is required at least in the anode side gas phase section 9.

不活性ガスとしては窒素(N2)、ヘリウム(He)、
アルゴン(Ar)等が容易に入手できるがN2ガスは入
手が容易且つ安価であるため適当である。
Inert gases include nitrogen (N2), helium (He),
Although argon (Ar) and the like are easily available, N2 gas is suitable because it is easy to obtain and inexpensive.

尚、電解停止直後でない状態での自然腐食によるH22
ガス生現象に関しても、本発明の実施は安全性の向上に
寄与することは言うまでもない。
In addition, H22 due to natural corrosion not immediately after stopping electrolysis.
It goes without saying that implementation of the present invention also contributes to improved safety with regard to gaseous phenomena.

(実施例) 以下、実施例により本発明を更に具体的に説明する。尚
、以下において%は特記しない限り容量基準を表わす。
(Example) Hereinafter, the present invention will be explained in more detail with reference to Examples. Note that in the following, % represents a capacity standard unless otherwise specified.

実施例1 第1図に示す電解装置を使用して、溶融塩電解によるN
Fsガスの製造を行なった。
Example 1 N by molten salt electrolysis using the electrolyzer shown in Figure 1.
Fs gas was produced.

即ち、電解槽1に酸性弗化アンモニウム(NH4F・H
F)を24kg仕込み、120°Cの温度まで昇温しな
がらこれに無水のHFを8.5kg徐々に添加して溶融
塩2を調製した(HF/NH4Fモル比2.0、水分含
有量1.8重量%)。
That is, acidic ammonium fluoride (NH4F.H
Molten salt 2 was prepared by charging 24 kg of F) and gradually adding 8.5 kg of anhydrous HF while raising the temperature to 120°C (HF/NH4F molar ratio 2.0, water content 1). .8% by weight).

しかる後、陽極3から陰極4へ20アンペア(A)の電
流を流して、脱水電解を72時間行なった。この時点の
溶融塩2の水分含有量は0.32重量%であったので、
it流を80Aに上昇して本電解に移行した。
Thereafter, a current of 20 amperes (A) was passed from the anode 3 to the cathode 4 to perform dehydration electrolysis for 72 hours. Since the water content of molten salt 2 at this point was 0.32% by weight,
The current was increased to 80 A and the main electrolysis started.

本電解の続行により電解槽1中の溶融塩2が減少するの
で、予め原料槽11で調製した)IP/NI1.Fモル
比が2゜0、水分含有量が1.8重量%の溶融塩12を
、12時間毎に0.5kgずつ間歇的に電解槽1に補給
して、本電解を300時間行なった。
As the main electrolysis continues, the molten salt 2 in the electrolytic cell 1 decreases, so the IP/NI1. Molten salt 12 having an F molar ratio of 2.0 and a water content of 1.8% by weight was intermittently replenished into the electrolytic cell 1 in an amount of 0.5 kg every 12 hours, and the main electrolysis was carried out for 300 hours.

電解停止中の電圧の印加を行う方法としては、電解用直
流電源16とは別に定電圧制御の可能な補助直流11t
ifl17を使用し、市販の関数発生器18による電圧
信号を該直流電源に入力し、この電圧信号に連動させる
方法を採用した。
As a method for applying voltage while electrolysis is stopped, an auxiliary DC 11t capable of constant voltage control is used separately from the DC power supply 16 for electrolysis.
Ifl17 was used, a voltage signal from a commercially available function generator 18 was input to the DC power supply, and a method was adopted in which the voltage signal was linked to this voltage signal.

電解の停止は本発明の実施状況を明瞭にするため、電流
を瞬時(1秒以内)に遮断することで行なった。陽極3
と陰極4間の電位差は電解中は4〜5■程度あるが、電
流の遮断と同時に電位差は急激に小さくなる。電位差が
約1vとなったところで直流電源を電解用直流電源16
より補助直流電源17に切り替えた。
In order to clarify the implementation status of the present invention, electrolysis was stopped by cutting off the current instantaneously (within 1 second). Anode 3
The potential difference between the cathode 4 and the cathode 4 is about 4 to 5 μm during electrolysis, but the potential difference decreases rapidly as soon as the current is interrupted. When the potential difference becomes approximately 1V, connect the DC power source to the electrolytic DC power source 16.
Therefore, the switch was made to the auxiliary DC power supply 17.

印加する電圧は電圧計19で1■とし、連続して約2時
間通電し、この間30分置きに電解槽中のガスを採取し
、ガスクロマトグラフィーにて分析を行なった。
The applied voltage was set to 1.sup. with a voltmeter 19, and the current was applied continuously for about 2 hours. During this period, gas in the electrolytic cell was sampled every 30 minutes and analyzed by gas chromatography.

尚、ガスの比重を考慮して、ガスの採取位置は陽極側気
相部の上部及び陽極側気相部の下部(液面付近)とした
In addition, in consideration of the specific gravity of the gas, the gas sampling positions were set at the upper part of the anode side gas phase part and the lower part of the anode side gas phase part (near the liquid level).

その結果、第1表に示すようにN2ガスの発生は見られ
なかった。
As a result, as shown in Table 1, no generation of N2 gas was observed.

実施例2〜3 実施例1において印加する電圧を0.5■、2Vとした
以外は実施例1と同様に行なった。
Examples 2 to 3 The same procedure as in Example 1 was carried out except that the voltage applied in Example 1 was changed to 0.5V, 2V.

その結果、第1表に示すようにN2ガスの発生は見られ
なかった。
As a result, as shown in Table 1, no generation of N2 gas was observed.

実施例4 実施例1において行なった通電を連続して行なわず、印
加する電圧を1■、通電時間0.5秒及び無通電時間0
.5秒で断続した通電を繰り返し行なった以外は実施例
1と同様に行なった。
Example 4 The energization performed in Example 1 was not performed continuously, but the applied voltage was 1■, the energization time was 0.5 seconds, and the non-energization time was 0.
.. The same procedure as in Example 1 was carried out except that energization was repeated intermittently every 5 seconds.

その結果、第1表に示すようにN2ガスの発生は殆ど見
られず、120分経過後も安全域であった。
As a result, as shown in Table 1, almost no N2 gas was generated, and it remained within the safe range even after 120 minutes.

実施例5 実施例1において行なった通電を連続して行なわず、印
加する電圧を1■、通電時間1秒及び無通電時間0.5
秒で断続した通電を繰り返し行なった以外は実施例1と
同様に行なった。
Example 5 The energization performed in Example 1 was not carried out continuously, but the applied voltage was 1■, the energization time was 1 second, and the non-energization time was 0.5
The same procedure as in Example 1 was carried out except that energization was repeated intermittently every second.

その結果、第1表に示すようにN2ガスの発生は殆ど見
られず、120分経過後も安全域であった。
As a result, as shown in Table 1, almost no N2 gas was generated, and it remained within the safe range even after 120 minutes.

比較例1 実施例1において印加する電圧を一1vとした以外は実
施例1と同様に行なった。
Comparative Example 1 The same procedure as in Example 1 was carried out except that the voltage applied in Example 1 was changed to -1 V.

その結果、第2表に示すようにN2ガス発生の増加が見
られ、30分経過後から陽極側気相部上部のN2ガス濃
度が爆発範囲に近くなったので、ただちに不活性ガス供
給口6よりNtガスを通気させ、爆発範囲外とした。
As a result, as shown in Table 2, an increase in N2 gas generation was observed, and after 30 minutes, the N2 gas concentration in the upper part of the gas phase on the anode side approached the explosive range, so the inert gas supply port 6 More Nt gas was vented to keep it out of the explosion range.

比較例2 実施例1において連続して通電を行なわず、印加する電
圧を1v、通電時間10秒及び無通電時間10秒で断続
した通電を行なった以外は実施例1と同様に行なった。
Comparative Example 2 The same procedure as in Example 1 was carried out, except that energization was not carried out continuously in Example 1, but the applied voltage was 1 V, and the energization was carried out intermittently with a energization time of 10 seconds and a non-energization time of 10 seconds.

その結果、第2表に示すように82ガス発生の増加が見
られ、90分経過後から陽極側気相部上部のN2ガス濃
度が爆発範囲に近くなったので、ただちに不活性ガス供
給口6よりN2ガスを通気させ、爆発範囲外とした。
As a result, as shown in Table 2, an increase in the generation of 82 gas was observed, and after 90 minutes, the N2 gas concentration in the upper part of the gas phase on the anode side approached the explosive range, so the inert gas supply port 6 N2 gas was then vented to remove the area from the explosion range.

比較例3 実施例1において連続して通電を行なわず、通電時間0
.5秒、無通電時間1秒で断続した通電を行なった以外
は実施例1と同様に行なった。
Comparative Example 3 In Example 1, the current was not applied continuously and the current application time was 0.
.. The same procedure as in Example 1 was carried out except that the energization was conducted intermittently for 5 seconds and the non-energization time was 1 second.

その結果、第2表に示すようにN2ガス発生の増加が見
られ、90分経過後から陽極側気相部上部のN2ガス濃
度が爆発範囲に近くなったので、ただちに不活性ガス供
給口6よりN2ガスを通気させ、爆発範囲外とした。
As a result, as shown in Table 2, an increase in N2 gas generation was observed, and after 90 minutes, the N2 gas concentration in the upper part of the anode side gas phase approached the explosive range, so the inert gas supply port 6 N2 gas was then vented to remove the area from the explosion range.

〔発明の効果〕〔Effect of the invention〕

本発明は以上詳細に説明したように、NH4F −IP
系溶融塩の電解法によりNF3ガスを製造するに際し、
電解を停止した際に起こる自然腐食によるH2ガスと陽
極側気相部に残留するNF3ガスとの混合・爆発を防止
するにきわめて有効な方法である。
As explained in detail above, the present invention provides NH4F-IP
When producing NF3 gas by electrolyzing molten salt,
This is an extremely effective method for preventing the mixing and explosion of H2 gas and NF3 gas remaining in the gas phase on the anode side due to natural corrosion that occurs when electrolysis is stopped.

したがって、電解を長時間または一時的に中断し、再び
電解を再開するに際し、陽極側気相部にNhガス以外の
ガスが存在せず、電解を再開しても爆発の危険性もなく
、極めてスムースに短時間のうちに電解が再開できるの
で好都合である。
Therefore, when electrolysis is interrupted for a long time or temporarily and then restarted, there is no gas other than Nh gas in the gas phase on the anode side, and there is no risk of explosion even if electrolysis is restarted. This is advantageous because electrolysis can be restarted smoothly in a short time.

また、断続的な通電を行う場合についても効果は顕著で
あり、電力の削減、電極の溶解による消耗の削減に期待
される。
Furthermore, the effect is remarkable even when electricity is applied intermittently, and it is expected to reduce power consumption and consumption due to electrode melting.

尚、本発明の方法は、アンモニアと無水弗化水素酸を原
料として、溶融塩電解法によってNF、ガスを製造する
方法にも適用できることは勿論である。
It goes without saying that the method of the present invention can also be applied to a method for producing NF and gas by molten salt electrolysis using ammonia and anhydrous hydrofluoric acid as raw materials.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は実施例及び比較例で使用した電解装置を示す図
である。 図において、 ■−−−電解槽、    2 3−m−陽極、 5−m−隔壁、 6−−−不活性ガス供給口 7−−−NF3ガス出口管、 8−一一82ガス出口管、9 10−−一加熱装置、 12−m−溶融塩、   13 14−−一弁、     15 16−−−電解用直流電源 17−−−補助直流電源、18 19−m−電圧計、 を示す。 溶融塩、 陰極、 一一陽極側気相部、 原料槽、 m−原料補給管、 一加熱装置、 関数発生器
FIG. 1 is a diagram showing an electrolysis device used in Examples and Comparative Examples. In the figure, ■---Electrolytic cell, 2-3-m-anode, 5-m-partition wall, 6---Inert gas supply port 7--NF3 gas outlet pipe, 8-1182 gas outlet pipe, 9 10--1 heating device, 12-m-molten salt, 13 14--1 valve, 15 16--DC power supply for electrolysis 17--auxiliary DC power supply, 18 19-m-voltmeter. Molten salt, cathode, anode side gas phase, raw material tank, m-raw material supply pipe, heating device, function generator

Claims (1)

【特許請求の範囲】[Claims] 1)弗化アンモニウムまたは/及び酸性弗化アンモニウ
ムと無水弗化水素酸を原料とする溶融塩電解法による三
弗化窒素ガスの製造方法において、三弗化窒素ガスの発
生を停止させるに際し、陽極及び陰極の電極間に電圧を
連続的に印加し、または断続的に印加せしむることを特
徴とする三弗化窒素ガスの製造方法。
1) In the method for producing nitrogen trifluoride gas by molten salt electrolysis using ammonium fluoride or/and acidic ammonium fluoride and anhydrous hydrofluoric acid as raw materials, when stopping the generation of nitrogen trifluoride gas, the anode and a method for producing nitrogen trifluoride gas, which comprises continuously or intermittently applying a voltage between electrodes of a cathode.
JP2137027A 1990-05-29 1990-05-29 Method for producing nitrogen trifluoride gas Expired - Lifetime JP2896196B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2137027A JP2896196B2 (en) 1990-05-29 1990-05-29 Method for producing nitrogen trifluoride gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2137027A JP2896196B2 (en) 1990-05-29 1990-05-29 Method for producing nitrogen trifluoride gas

Publications (2)

Publication Number Publication Date
JPH0432592A true JPH0432592A (en) 1992-02-04
JP2896196B2 JP2896196B2 (en) 1999-05-31

Family

ID=15189135

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2137027A Expired - Lifetime JP2896196B2 (en) 1990-05-29 1990-05-29 Method for producing nitrogen trifluoride gas

Country Status (1)

Country Link
JP (1) JP2896196B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006311679A (en) * 2005-04-27 2006-11-09 Fuji Electric Systems Co Ltd Power converter board
JP2007074865A (en) * 2005-09-08 2007-03-22 Fuji Electric Systems Co Ltd Power converter
JP2007295748A (en) * 2006-04-26 2007-11-08 Meidensha Corp Cooling and soundproof structure of power converter
WO2013095194A1 (en) * 2011-12-23 2013-06-27 Itkin German Evseevich Energy-saving method for conducting electrolysis

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8945367B2 (en) 2011-01-18 2015-02-03 Air Products And Chemicals, Inc. Electrolytic apparatus, system and method for the safe production of nitrogen trifluoride

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006311679A (en) * 2005-04-27 2006-11-09 Fuji Electric Systems Co Ltd Power converter board
JP2007074865A (en) * 2005-09-08 2007-03-22 Fuji Electric Systems Co Ltd Power converter
JP2007295748A (en) * 2006-04-26 2007-11-08 Meidensha Corp Cooling and soundproof structure of power converter
WO2013095194A1 (en) * 2011-12-23 2013-06-27 Itkin German Evseevich Energy-saving method for conducting electrolysis

Also Published As

Publication number Publication date
JP2896196B2 (en) 1999-05-31

Similar Documents

Publication Publication Date Title
JPH0755807B2 (en) Method for producing nitrogen trifluoride
EP2143826B1 (en) Method of electrolytically synthesizing nitrogen trifluoride
EP0079055A1 (en) Titanium clad copper electrode and method for making
JP2809811B2 (en) Method for producing nitrogen trifluoride gas
JPH0432592A (en) Production of gaseous nitrogen trifluoiride
Jaksic Mutual effect of current density, pH, temperature, and hydrodynamic factors on current efficiency in the chlorate cell process
JP2004353019A (en) Method and device for controlling electric current of gas generation apparatus
JP3229988B2 (en) Method for melting platinum, platinum metal impurities and / or platinum metal alloys by electrolysis
RU2228971C1 (en) Method of production of nitrogen trifluoride
JP2007176768A (en) Method for producing fluorine gas
JPH0456789A (en) Production of gaseous nitrogen trifluoride
JPH08100282A (en) Production of nickel hypophosphite
KR101411714B1 (en) Nickel based electrode and production of nitrogen trifluoride using same
JPH03236488A (en) Method for controlling electrolysis reaction for generating ozone
JP2854952B2 (en) Method for producing nitrogen trifluoride gas
JPH04265203A (en) Method for purification of hydrogen fluoride anhydride
JPH03170307A (en) Production of nitrogen trifluoride
JP3986175B2 (en) Method for producing nitrogen trifluoride gas
SU1175976A1 (en) Method of producing nitrofluoboride
JP3162594B2 (en) Electrolytic solution and method for producing nitrogen trifluoride gas using the same
US2941875A (en) Method of etching a germanium surface
JP2002038288A (en) Method for producing completely fluorinated organic compound with electrochemical fluorination
JP2004011001A (en) Fluorine electrolytic cell
JPH11335882A (en) Production of gaseous nitrogen trifluoride
NO163700B (en) ELECTROLYTIC PROCESS FOR THE PREPARATION OF PURE POTATE POTASSIUM PEROXYD PHOSPHATE.

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090305

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100305

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110305

Year of fee payment: 12

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110305

Year of fee payment: 12