JPH04325742A - Intake device for engine - Google Patents

Intake device for engine

Info

Publication number
JPH04325742A
JPH04325742A JP9522591A JP9522591A JPH04325742A JP H04325742 A JPH04325742 A JP H04325742A JP 9522591 A JP9522591 A JP 9522591A JP 9522591 A JP9522591 A JP 9522591A JP H04325742 A JPH04325742 A JP H04325742A
Authority
JP
Japan
Prior art keywords
deceleration
engine
fuel
air amount
idling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9522591A
Other languages
Japanese (ja)
Inventor
Hirobumi Nishimura
博文 西村
Noboru Hashimoto
昇 橋本
Akira Kageyama
明 陰山
Yoichi Kuji
久慈 洋一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mazda Motor Corp
Original Assignee
Mazda Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mazda Motor Corp filed Critical Mazda Motor Corp
Priority to JP9522591A priority Critical patent/JPH04325742A/en
Publication of JPH04325742A publication Critical patent/JPH04325742A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B75/00Other engines
    • F02B75/02Engines characterised by their cycles, e.g. six-stroke
    • F02B2075/022Engines characterised by their cycles, e.g. six-stroke having less than six strokes per cycle
    • F02B2075/025Engines characterised by their cycles, e.g. six-stroke having less than six strokes per cycle two

Abstract

PURPOSE:To prevent misfire at the time of shifting from deceleration to idling so as to secure stable combustion in an engine performing lean combustion while making the security of a decelerating feeling at the time of deceleration compatible with stratification at the idling time or scavenging in the case of a two-cycle engine. CONSTITUTION:Deceleration is judged (S4) by whether engine speed N is over the specified speed N1 and an accelerator switch is on. In the case of judging deceleration, a deceleration control flag is set up (S5), and a throttle is totally closed (S6) to cut off fuel (S7). In the case of judging non-deceleration, whether idling or not is judged (S8), and when idling is judged and the flag is still up, the throttle opening theta is gradually enlarged (S10) and fixed to the specified opening K upon exceeding the specified opening K. Fuel return is then performed (S13), and the flag is cleared (S14).

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は希薄燃焼を行うエンジン
の吸気装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an intake system for a lean-burn engine.

【0002】0002

【従来の技術】2サイクルエンジンにおいては膨張行程
と圧縮行程の2行程が繰り返され、その間、下死点側で
まず排気ポートが開き、その後掃気ポートが開いて両ポ
ートのオーバラップ期間に加圧吸気による燃焼室のガス
交換(掃気)が行われ、次いで、排気ポートが閉じて吸
気の充填が行われる。このように、2サイクルエンジン
は加圧吸気で排気ガスを押し出すことによって燃焼室内
のガス交換を行うものであるため、本質的に残留ガスの
量が多く、特にアイドルや軽負荷域では残留ガスの比率
が高くなって燃焼が不安定になりやすい。したがって、
アイドルや軽負荷域では、新気と燃料を点火プラグの近
傍に集め、成層化によって確実な燃焼を行わせるように
することが必要となる。
[Prior Art] In a two-stroke engine, two strokes, an expansion stroke and a compression stroke, are repeated, during which the exhaust port first opens on the bottom dead center side, then the scavenging port opens, and pressurization is applied during the overlap period of both ports. Gas exchange (scavenging) of the combustion chamber by intake air takes place, and then the exhaust port is closed and filling with intake air takes place. In this way, a two-stroke engine exchanges gas in the combustion chamber by pushing out exhaust gas with pressurized intake air, so there is essentially a large amount of residual gas, especially at idle or in a light load range. If the ratio becomes high, combustion tends to become unstable. therefore,
At idle and in light load ranges, it is necessary to gather fresh air and fuel near the spark plug to ensure reliable combustion through stratification.

【0003】2サイクルエンジンにおけるアイドル時や
軽負荷時の成層化を達成する手段としては、例えば特開
昭63−201311号公報に記載されたようなものが
従来から知られている。上記公報に記載の2サイクルエ
ンジンでは、吸気通路をスロットルバルブ下流で高負荷
用と低負荷用の2系統に分けて、低負荷時には高負荷用
の吸気通路に設けた制御弁を開じて低負荷用の吸気ポー
トからのみ吸気を流入させ、別途手段によりスワールさ
せつつ再流入させた排気ガスの上に新気を乗せるように
することで成層化を達成している。
[0003] As a means for achieving stratification during idle or light load in a two-stroke engine, a method such as that described in, for example, Japanese Patent Laid-Open No. 63-201311 has been known. In the two-stroke engine described in the above publication, the intake passage is divided into two systems, one for high load and one for low load, downstream of the throttle valve, and when the load is low, the control valve provided in the intake passage for high load is opened to reduce the Stratification is achieved by allowing intake air to flow in only from the load intake port, and by swirling it using a separate means and placing fresh air on top of the re-inflowing exhaust gas.

【0004】また、4サイクルエンジンの場合でも、希
薄燃焼によって燃費向上を図る必要があることから、混
合気の成層化が多用されている。そして、2サイクルエ
ンジンであるか4サイクルエンジンであるかを問わず、
アイドル時を含む軽負荷域での成層燃焼を達成するため
には、アクセル全閉でもスロットルバルブをある程度開
いて空気流量を確保するようにしなければならない。し
かしながら、単に、アクセル全閉でもスロットルバルブ
がある程度開いているようにしたのでは、減速時にもス
ロットルバルブがある程度開いたままとなるため、ポン
ピングロスが小さくなり、減速感(所謂、エンブレ感)
が悪化してしまう。そこで、成層燃焼を行うエンジンに
おいては、通常のアイドル時にはスロットルバルブを所
定量だけ開いておき、一方、減速時には、燃料の供給を
停止するとともにスロットルバルブを完全に閉じるよう
にすることが提案されている。
[0004] Also, in the case of a four-cycle engine, stratification of the air-fuel mixture is often used because it is necessary to improve fuel efficiency through lean combustion. And, regardless of whether it is a 2-stroke engine or a 4-stroke engine,
In order to achieve stratified charge combustion in the light load range, including when idling, the throttle valve must be opened to a certain extent to ensure air flow even when the accelerator is fully closed. However, if the throttle valve is simply kept open to a certain extent even when the accelerator is fully closed, the throttle valve will remain open to a certain extent even during deceleration, resulting in less pumping loss and a feeling of deceleration (so-called engine braking).
becomes worse. Therefore, in engines that perform stratified combustion, it has been proposed to keep the throttle valve open by a predetermined amount during normal idling, but to stop the fuel supply and completely close the throttle valve during deceleration. There is.

【0005】[0005]

【発明が解決しようとする課題】上記のようにアイドル
時にはスロットルバルブを所定量だけ開いておき、減速
時には燃料の供給を停止するとともにスロットルバルブ
を閉じるような制御を行うと、減速時のエンブレ感を確
保しつつアイドル時の成層化による希薄燃焼を達成して
燃費向上を図ることが一応可能となる。しかし、このよ
うな制御を行ったのでは、減速からアイドルに移行する
際には、吸気が抑制ないし停止された状態でいきなり燃
料復帰されることになり、オーバリッチによる失火が生
じやすくなる。また、特に2サイクルエンジンの場合に
は、減速時にも掃気を行って燃焼室内から燃焼ガスを完
全に追い出し、減速状態を脱して通常のアイドルに移行
し、あるいは加速に転じた時の失火を防いで燃焼安定性
を確保できるようにしたいという要求があるが、上記の
ように減速時にスロットルバルブを閉じるのでは、減速
中に掃気が行われないことになって、燃料復帰時に燃焼
室内に残留する燃焼ガスの量が多くなり、そのため失火
が生じたりして燃焼安定性が悪化する。
[Problem to be Solved by the Invention] As described above, if control is performed such that the throttle valve is opened by a predetermined amount during idling, and the fuel supply is stopped and the throttle valve is closed during deceleration, the engine engine vibration feeling during deceleration will be reduced. It is possible to improve fuel efficiency by achieving lean combustion through stratification during idling while maintaining the fuel efficiency. However, if such control is performed, when transitioning from deceleration to idling, fuel is suddenly returned while intake air is suppressed or stopped, making misfires due to overrich more likely to occur. In addition, especially in the case of a two-stroke engine, scavenging is performed even during deceleration to completely expel combustion gas from the combustion chamber, preventing misfires when the deceleration state is exited and the engine enters a normal idle state, or when acceleration begins. However, if the throttle valve is closed during deceleration as described above, scavenging air will not be carried out during deceleration, and fuel will remain in the combustion chamber when the fuel is returned. The amount of combustion gas increases, causing misfires and deteriorating combustion stability.

【0006】本発明は上記問題点に鑑みてなされたもの
であって、混合気の成層化により希薄燃焼を行わせるエ
ンジンにおいて、減速時の減速感の確保とアイドル時の
成層化ないしは2サイクルエンジンの場合の掃気を両立
させつつ、減速からアイドルに移行する際の失火を防止
し燃焼安定性を向上させることを目的とする。
The present invention has been made in view of the above-mentioned problems, and is aimed at ensuring a sense of deceleration during deceleration and improving stratification during idling in an engine that performs lean combustion by stratifying the air-fuel mixture. The objective is to prevent misfires and improve combustion stability when transitioning from deceleration to idling, while also achieving scavenging.

【0007】[0007]

【課題を解決するための手段】本発明は、減速からアイ
ドルに移行する際の燃料復帰を、燃焼室内の空気密度を
十分に高め、あるいは掃気を十分に行った後に行えるよ
うにしたものであって、その構成は図1に示すとおりで
ある。すなわち、本発明に係るエンジンの吸気装置は、
エンジンの運転状態を検出する運転状態検出手段と、前
記運転状態検出手段の出力に基づいて該エンジンのアイ
ドル状態を判定するアイドル判定手段と、前記アイドル
判定手段の出力を受け、アイドル時に該エンジンの吸入
空気量調整手段を制御して吸入空気量をアイドル時設定
空気量とするアイドル時空気量制御手段と、前記運転状
態検出手段の出力に基づいて該エンジンの所定の減速状
態を判定する減速判定手段と、該減速判定手段の出力を
受け、所定の減速状態に入った時に燃料供給手段を制御
して燃料供給を停止し、減速状態を脱した時に燃料供給
を復帰させる減速時燃料停止手段と、前記減速判定手段
の出力を受け、前記所定の減速状態と判定された時に該
エンジンの吸入空気量を前記アイドル時設定空気量より
も小さい空気量とする減速時空気量減量手段を備えたエ
ンジンの吸気装置において、前記減速時燃料停止手段に
よる燃料復帰時に、燃料復帰に先立って前記減速時空気
量減量手段の作動を解除する燃料復帰前減量解除手段を
備えたことを特徴とする。
[Means for Solving the Problems] The present invention makes it possible to restore fuel when transitioning from deceleration to idling after sufficiently increasing the air density in the combustion chamber or after sufficiently scavenging air. Its configuration is as shown in FIG. That is, the engine intake device according to the present invention has the following features:
an operating state detecting means for detecting the operating state of the engine; an idle determining means for determining the idle state of the engine based on the output of the operating state detecting means; idling air amount control means that controls the intake air amount adjustment means to make the intake air amount equal to the set idling air amount; and deceleration determination that determines a predetermined deceleration state of the engine based on the output of the operating state detection means. and deceleration fuel stop means that receives the output of the deceleration determining means, controls the fuel supply means to stop the fuel supply when entering a predetermined deceleration state, and resumes the fuel supply when the deceleration state is exited. , an engine comprising deceleration air amount reducing means that receives the output of the deceleration determining means and makes the intake air amount of the engine smaller than the set air amount at idle when the predetermined deceleration state is determined. The intake system is characterized in that, when the fuel is restored by the deceleration fuel stop means, a pre-fuel return reduction canceling means is provided for canceling the operation of the deceleration air amount reduction means prior to fuel restoration.

【0008】[0008]

【作用】エンジンが所定の減速状態にあると判定される
と、燃料供給が停止されるとともに吸入空気量がアイド
ル時の空気量よりも小さくされる。そのため、減速時に
はポンピングロスが増大して減速感が向上する。また、
減速からアイドルに移行する際は、燃料復帰に先立って
吸入空気量の減量が解除され、所定の空気量まで復帰し
た段階で燃料供給が再開される。そのため、燃焼室内の
空気密度が十分に高まり、あるいは掃気が十分に行われ
た状態で燃料が供給されることになり、オーバリッチや
掃気不良による失火が防がれる。
[Operation] When it is determined that the engine is in a predetermined deceleration state, fuel supply is stopped and the amount of intake air is made smaller than the amount of air at idle. Therefore, during deceleration, pumping loss increases and the feeling of deceleration improves. Also,
When transitioning from deceleration to idling, the reduction in intake air amount is canceled prior to fuel return, and fuel supply is resumed once the air amount has returned to a predetermined level. Therefore, fuel is supplied in a state where the air density in the combustion chamber is sufficiently increased or scavenging is sufficiently performed, and misfires due to overrichness or poor scavenging are prevented.

【0009】[0009]

【実施例】以下、本発明の実施例を図面に基づいて説明
する。
Embodiments Hereinafter, embodiments of the present invention will be explained based on the drawings.

【0010】図2は本発明の一実施例の全体システム図
である。この実施例において、エンジン1は筒内直噴の
ユニフロー式2サイクルエンジンであって、シリンダ2
の下部に掃気ポート3が形成され、シリンダ2のヘッド
部に排気ポート4が形成されている。そして、シリンダ
2のヘッド部には、図示しない動弁機構によりクランク
軸回転と同期して駆動されて上記排気ポート4を開閉す
る排気バルブ5が設けられ、また、点火プラグ6と燃料
噴射用のインジェクタ7が配置されている。
FIG. 2 is an overall system diagram of one embodiment of the present invention. In this embodiment, the engine 1 is a uniflow two-stroke engine with in-cylinder direct injection, and the cylinder 2
A scavenging port 3 is formed at the bottom of the cylinder 2, and an exhaust port 4 is formed at the head of the cylinder 2. The head of the cylinder 2 is provided with an exhaust valve 5 that is driven by a valve mechanism (not shown) in synchronization with the rotation of the crankshaft to open and close the exhaust port 4. An injector 7 is arranged.

【0011】掃気ポート3は排気バルブ5が開いた後の
所定クランク角で開き始め、排気バルブ5が閉じた後の
所定クランク角で閉じるようピストン8によって開閉さ
れる。そして、エアクリーナ9から延びる吸気通路10
が上記掃気ポート3に連通され、該吸気通路10のエア
クリーナ9の直下流には、吸入空気量を検出するエアフ
ローメータ11が設けられ、その下流にスロットルバル
ブ12が、また、スロットルバルブ12の下流に機械式
過給機13が設けられている。また、吸気通路10には
、機械式過給機13をバイパスするバイパス通路14が
設けられ、該バイパス通路14にバイパス制御バルブ1
5が設けられている。
The scavenging port 3 begins to open at a predetermined crank angle after the exhaust valve 5 opens, and is opened and closed by the piston 8 so as to close at a predetermined crank angle after the exhaust valve 5 closes. An intake passage 10 extending from the air cleaner 9
is connected to the scavenging port 3, and an air flow meter 11 for detecting the amount of intake air is provided immediately downstream of the air cleaner 9 in the intake passage 10. A mechanical supercharger 13 is provided at the . Further, the intake passage 10 is provided with a bypass passage 14 that bypasses the mechanical supercharger 13, and a bypass control valve 1 is provided in the bypass passage 14.
5 is provided.

【0012】排気ポート4に接続された排気通路16に
は触媒装置17が設けられ、また、排気ポート4下流で
触媒装置17の上流に空燃比センサ18が配設されてい
る。
A catalyst device 17 is provided in the exhaust passage 16 connected to the exhaust port 4, and an air-fuel ratio sensor 18 is provided downstream of the exhaust port 4 and upstream of the catalyst device 17.

【0013】スロットルバルブ12は、スロットルモー
タ19によって電気的に駆動される。そして、マイクロ
コンピュータからなるコントロールユニット20が設け
られ、該コントロールユニット20には、上記エアフロ
ーメータ11からの吸入空気量信号,上記空燃比センサ
18からの空燃比信号,アクセルペダル21の踏込量が
ゼロになった時にオン出力となるアクセルスイッチ信号
,エンジン回転信号といった各種信号が情報として入力
される。コントロールユニット20では、これら情報に
基づいて点火時期,燃料噴射量,スロットル開度および
バイパス制御量が演算され、点火プラグ6に接続された
イグナイタ22,インジェクタ7,スロットルモータ1
9およびバイパス制御バルブ15にそれぞれの制御信号
が出力される。
The throttle valve 12 is electrically driven by a throttle motor 19. A control unit 20 consisting of a microcomputer is provided, and the control unit 20 receives the intake air amount signal from the air flow meter 11, the air-fuel ratio signal from the air-fuel ratio sensor 18, and the amount by which the accelerator pedal 21 is pressed to zero. Various signals such as an accelerator switch signal and an engine rotation signal, which are turned on when the engine speed is reached, are input as information. The control unit 20 calculates the ignition timing, fuel injection amount, throttle opening, and bypass control amount based on this information, and calculates the igniter 22, injector 7, and throttle motor 1 connected to the spark plug 6.
Control signals are output to the bypass control valve 9 and the bypass control valve 15, respectively.

【0014】点火時期は、エンジンの回転数(N)と負
荷(Q/N)に応じたマップ値によって制御される。ま
た、燃料噴射量は、吸入空気量(Q)とエンジン回転数
(N)に基づいて算出された値に吹き抜け補正のマップ
値を掛けたものを基本量とし、これに空燃比センサ18
の出力に応じたフィードバック補正値を掛けることによ
って求められる。そして、演算された燃料噴射量に相当
するパルス巾の噴射信号がインジェクタ7に出力される
。また、スロットル開度はアクセル開度信号に応じて制
御され、バイパス制御量はエンジン回転数(N)および
負荷(Q/N)に応じて制御される。
[0014] The ignition timing is controlled by a map value depending on the engine speed (N) and load (Q/N). The basic amount of fuel injection is the value calculated based on the intake air amount (Q) and the engine speed (N) multiplied by the map value of the blow-through correction, and this is added to the value calculated based on the intake air amount (Q) and the engine speed (N).
It is obtained by multiplying the feedback correction value according to the output of . Then, an injection signal having a pulse width corresponding to the calculated fuel injection amount is output to the injector 7. Further, the throttle opening degree is controlled according to the accelerator opening degree signal, and the bypass control amount is controlled according to the engine rotation speed (N) and the load (Q/N).

【0015】また、この実施例では、エンジン回転数(
N)が所定回転数以下でアクセルスイッチがオンである
ことをもってアイドル判定を行い、アイドル時にはスロ
ットルバルブ12を全閉よりやや開いた所定開度に制御
する。一方、アクセルスイッチがオンでエンジン回転数
(N)が所定回転数以上であれば、減速時と判定し、減
速時には、燃料カットを行うとともにスロットルバルブ
12を完全に閉じる。そして、減速が進んで回転が所定
回転数まで落ちると燃料復帰を行うが、その際に、燃料
復帰に先立ってスロットルバルブ12を徐々に開き、所
定のスロットル開度となったところで燃料噴射を再開す
る。
Furthermore, in this embodiment, the engine speed (
An idle determination is made based on the fact that the accelerator switch is on when N) is below a predetermined rotation speed, and when the throttle valve 12 is idle, the throttle valve 12 is controlled to a predetermined opening slightly more than fully closed. On the other hand, if the accelerator switch is on and the engine speed (N) is above a predetermined speed, it is determined that deceleration is occurring, and during deceleration, fuel is cut and the throttle valve 12 is completely closed. Then, when the deceleration progresses and the rotation drops to a predetermined number of revolutions, the fuel is restored. At this time, the throttle valve 12 is gradually opened before the fuel is restored, and fuel injection is restarted when the throttle opening reaches the predetermined opening. do.

【0016】図3はこの実施例における上記アイドル時
および減速時の制御を実行するフローチャートである。 なお、S1〜16は各ステップを示す。
FIG. 3 is a flowchart for executing the control during idling and deceleration in this embodiment. Note that S1 to S16 indicate each step.

【0017】上記フローチャートにおいて、スタートす
ると、まず、S1でエンジン回転信号から回転周期を求
めて、S2でエンジン回転数Nを算出し、次いで、S3
でアクセルスイッチ信号を読む。
In the above flowchart, when started, first, the rotation period is determined from the engine rotation signal in S1, the engine rotation speed N is calculated in S2, and then, in S3
Read the accelerator switch signal.

【0018】そして、S4で、エンジン回転数Nが所定
回転数N1以上で、かつ、アクセルスイッチがオンであ
るかどうかによって減速かどうかを判定し、減速と判定
したときは、S5へ行って減速フラグαを立てる(α=
1)。そして、S6でスロットル全閉(スロットル開度
θ=0)とし、S7で燃料をカットする。
[0018] In S4, it is determined whether or not deceleration is occurring depending on whether or not the engine speed N is greater than a predetermined speed N1 and the accelerator switch is on. When it is determined that deceleration is occurring, the process proceeds to S5 to decelerate. Set flag α (α=
1). Then, in S6, the throttle is fully closed (throttle opening θ=0), and in S7, the fuel is cut.

【0019】また、S4でノーとなれば、エンジン回転
数Nが所定回転数N1より低くなったかアクセルが踏み
込まれたかのいずれかということで、S8へ行って、ま
ず、アイドルか否かを判定する。すなわち、S8では、
N<N1でかつアクセルスイッチがオンかどうかを見る
。そして、イエスならアイドルと判定し、S9へ行って
フラグαが1かどうかを見る。
[0019] If the result in S4 is NO, it means that either the engine speed N has become lower than the predetermined speed N1 or the accelerator has been depressed, so the process goes to S8 and first it is determined whether or not the engine is idling. . That is, in S8,
Check whether N<N1 and the accelerator switch is on. If YES, it is determined to be idle, and the process goes to S9 to check whether flag α is 1 or not.

【0020】S9でフラグαが依然1であれば、S10
へ行って、スロットル開度θを所定量Cだけ大きくし、
徐々にスロットルバルブを開いていく。そして、S11
でθを判定し、θがK(減速時の制御のためのマップ値
)以上となったら、S12でθをKに固定する。そして
、その後、S13で燃料復帰を行い、S14でフラグα
をクリアする。
If the flag α is still 1 in S9, then S10
Go to and increase the throttle opening θ by a predetermined amount C.
Gradually open the throttle valve. And S11
θ is determined, and if θ is equal to or greater than K (map value for control during deceleration), θ is fixed at K in S12. Then, in S13, the fuel is restored, and in S14, the flag α
Clear.

【0021】また、S9でフラグαが1でなければ、通
常のアイドル状態ということで、S15に行って、アイ
ドル時のマップ値Kによってスロットル開度θを制御す
る。
If the flag α is not 1 in S9, it means that the engine is in a normal idle state, and the process goes to S15, where the throttle opening degree θ is controlled using the map value K during idle.

【0022】また、S8でノーということは、アイドル
を脱したということで、この時はS16へ行って、非ア
イドル時(走行時)のマップ値Kによってスロットル開
度θを制御する。
Further, if the answer in S8 is NO, it means that the engine has left the idle state, and in this case, the process goes to S16, and the throttle opening degree θ is controlled using the map value K during the non-idling state (during running).

【0023】なお、上記実施例においては、減速時の吸
入空気量の減量をスロットルバルブ自体の制御によって
行っているが、スロットルバルブとは別に吸気通路にシ
ャッタバルブを設け、該シャッタバルブを減速時に閉じ
、また、燃料復帰に先立って開くよう構成することも可
能である。また、これらスロットルバルブあるいはシャ
ッタバルブは、減速時に完全に閉じる必要は必ずしもな
く、減速感が確保できる範囲で適宜その開度を設定でき
るものである。
In the above embodiment, the amount of intake air during deceleration is reduced by controlling the throttle valve itself, but a shutter valve is provided in the intake passage separately from the throttle valve, and the shutter valve is operated during deceleration. It can also be configured to close or open prior to fuel return. Further, these throttle valves or shutter valves do not necessarily need to be completely closed during deceleration, and their opening degree can be set as appropriate within a range that ensures a feeling of deceleration.

【0024】また、本発明は、2サイクルエンジンだけ
でなく、希薄燃焼を行う4サイクルエンジン等にも適用
することが可能である。
Furthermore, the present invention can be applied not only to two-stroke engines but also to four-stroke engines that perform lean combustion.

【0025】[0025]

【発明の効果】本発明は以上のように構成されているの
で、希薄燃焼を行わせるエンジンにおいて、減速時のポ
ンピングロスの増大による減速感の向上と、アイドル時
の成層化ないしは2サイクルエンジンの場合の掃気を両
立させることができ、しかも、減速からアイドルに移行
する際の失火を防止して燃焼安定性を確保することがで
きる。
Effects of the Invention Since the present invention is constructed as described above, it is possible to improve the feeling of deceleration due to an increase in pumping loss during deceleration in a lean-burn engine, and to improve the feeling of deceleration due to the increase in pumping loss during deceleration. In addition, it is possible to achieve both scavenging and ensure combustion stability by preventing misfires when transitioning from deceleration to idling.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】本発明の全体構成図[Figure 1] Overall configuration diagram of the present invention

【図2】本発明の一実施例の全体システム図[Figure 2] Overall system diagram of one embodiment of the present invention

【図3】同
実施例の制御を実行するフローチャート
[Figure 3] Flowchart for executing control in the same embodiment

【符号の説明】[Explanation of symbols]

1  エンジン 7  インジェクタ(燃料供給手段) 12  スロットルバルブ(吸入空気量調整手段)19
  スロットルモータ 20  コントロールユニット
1 Engine 7 Injector (fuel supply means) 12 Throttle valve (intake air amount adjustment means) 19
Throttle motor 20 control unit

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  エンジンの運転状態を検出する運転状
態検出手段と、前記運転状態検出手段の出力に基づいて
該エンジンのアイドル状態を判定するアイドル判定手段
と、前記アイドル判定手段の出力を受け、アイドル時に
該エンジンの吸入空気量調整手段を制御して吸入空気量
をアイドル時設定空気量とするアイドル時空気量制御手
段と、前記運転状態検出手段の出力に基づいて該エンジ
ンの所定の減速状態を判定する減速判定手段と、該減速
判定手段の出力を受け、所定の減速状態に入った時に該
エンジンの燃料供給手段を制御して燃料供給を停止し、
減速状態を脱した時に燃料供給を復帰させる減速時燃料
停止手段と、前記減速判定手段の出力を受け、前記所定
の減速状態と判定された時に該エンジンの吸入空気量を
前記アイドル時設定空気量よりも小さい空気量とする減
速時空気量減量手段を備えたエンジンの吸気装置におい
て、前記減速時燃料停止手段による燃料復帰時に、燃料
復帰に先立って前記減速時空気量減量手段の作動を解除
する燃料復帰前減量解除手段を備えたことを特徴とする
エンジンの吸気装置。
1. An operating state detecting means for detecting an operating state of an engine, an idle determining means for determining an idle state of the engine based on an output of the operating state detecting means, and an output of the idle determining means, idling air amount control means that controls an intake air amount adjusting means of the engine during idling to adjust the intake air amount to a set air amount during idling; and a predetermined deceleration state of the engine based on the output of the operating state detection means. a deceleration determination means for determining a deceleration determination means; receiving an output of the deceleration determination means and controlling a fuel supply means of the engine to stop fuel supply when the engine enters a predetermined deceleration state;
a deceleration fuel stop means for restoring fuel supply when the deceleration state is exited; and a deceleration determining means that receives the output of the deceleration determining means and sets the intake air amount of the engine to the idle setting air amount when the predetermined deceleration state is determined. In an engine intake system equipped with a means for reducing air amount during deceleration to reduce an air amount smaller than , when the fuel is restored by the fuel stopping means during deceleration, the operation of the air amount reducing means during deceleration is canceled prior to the return of fuel. An intake system for an engine, characterized in that it is equipped with means for canceling the weight loss before fuel return.
JP9522591A 1991-04-25 1991-04-25 Intake device for engine Pending JPH04325742A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9522591A JPH04325742A (en) 1991-04-25 1991-04-25 Intake device for engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9522591A JPH04325742A (en) 1991-04-25 1991-04-25 Intake device for engine

Publications (1)

Publication Number Publication Date
JPH04325742A true JPH04325742A (en) 1992-11-16

Family

ID=14131813

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9522591A Pending JPH04325742A (en) 1991-04-25 1991-04-25 Intake device for engine

Country Status (1)

Country Link
JP (1) JPH04325742A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0859138A2 (en) * 1997-02-12 1998-08-19 Mazda Motor Corporation Engine control system
US5894827A (en) * 1996-08-09 1999-04-20 Mitsubishi Jidosha Kogyo Kabushiki Kaisha Control device for internal-combustion engine

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5894827A (en) * 1996-08-09 1999-04-20 Mitsubishi Jidosha Kogyo Kabushiki Kaisha Control device for internal-combustion engine
DE19734227C2 (en) * 1996-08-09 2003-09-25 Mitsubishi Motors Corp Control unit for an internal combustion engine
EP0859138A2 (en) * 1997-02-12 1998-08-19 Mazda Motor Corporation Engine control system
EP0859138A3 (en) * 1997-02-12 2000-02-02 Mazda Motor Corporation Engine control system

Similar Documents

Publication Publication Date Title
JP2984688B2 (en) Vehicle operation management method
JP3683681B2 (en) Control device for direct-injection spark-ignition internal combustion engine
JPH0233439A (en) Fuel injection control device for two-cycle direct injection engine
JP3324039B2 (en) Method for reducing harmful exhaust emissions of gasoline engines operated with lean fuel-air mixtures
JPH0385346A (en) Idling rotation controller of two-cycle engine
JPH0416622B2 (en)
JPH08177471A (en) Two-cycle engine
JPH08312438A (en) Fuel injection method and fuel injection control device in two-cycle engine
JP2002047973A (en) Fuel injection controller of direct injection engine
JP3182787B2 (en) Fuel supply control device for internal combustion engine
JP3812138B2 (en) Control device for turbocharged engine
JP3648864B2 (en) Lean combustion internal combustion engine
JPH04325742A (en) Intake device for engine
JP3006221B2 (en) Idling control system for in-cylinder injection internal combustion engine
JP3233031B2 (en) In-cylinder injection spark ignition internal combustion engine
JPS61167129A (en) 2-cycle internal-combustion engine
JPH10274069A (en) Cylinder injection type engine with mechanical supercharger
JPH05321706A (en) Control device of two cycle engine
JP3757998B2 (en) In-cylinder injection type internal combustion engine control device
JP4208994B2 (en) Internal combustion engine
JPH10274071A (en) Cylinder injection type engine with supercharger
JPH06101553A (en) Injection timing control device of engine
JP3073305B2 (en) Control device for two-stroke engine
JPH04325748A (en) Fuel control device for engine
JPH1026040A (en) Air-fuel ratio control method for internal combustion engine