JPH04325526A - Biodegradable resin molding and its production - Google Patents

Biodegradable resin molding and its production

Info

Publication number
JPH04325526A
JPH04325526A JP12280891A JP12280891A JPH04325526A JP H04325526 A JPH04325526 A JP H04325526A JP 12280891 A JP12280891 A JP 12280891A JP 12280891 A JP12280891 A JP 12280891A JP H04325526 A JPH04325526 A JP H04325526A
Authority
JP
Japan
Prior art keywords
phb
crystallinity
molding
biodegradability
resin molded
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP12280891A
Other languages
Japanese (ja)
Other versions
JPH07100739B2 (en
Inventor
Yutaka Tokiwa
豊 常盤
Haruo Nishida
治男 西田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Tokuyama Corp
Original Assignee
Agency of Industrial Science and Technology
Tokuyama Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology, Tokuyama Corp filed Critical Agency of Industrial Science and Technology
Priority to JP12280891A priority Critical patent/JPH07100739B2/en
Publication of JPH04325526A publication Critical patent/JPH04325526A/en
Publication of JPH07100739B2 publication Critical patent/JPH07100739B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Polyesters Or Polycarbonates (AREA)
  • Biological Depolymerization Polymers (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)

Abstract

PURPOSE:To provide a molding which can easily be degraded or decomposed by organisms such as microbes, insects or plants or enzymes or the like secreted from such organisms and a process for producing the same. CONSTITUTION:A biodegradable resin molding made of poly-3-hydroxybutyric acid of a degree of crystallization of below 50%, and a process for producing a biodegradable resin molding comprising melting poly-3-hydroxybutyric acid and solidifying the melt by rapid cooling into a molding of a degree of crystallization of below 50%.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、優れた生分解機能を有
するポリ−3−ヒドロキシ酪酸(Poly(3−hyd
roxybutyrate):以下、PHBともいう)
よりなり、該生分解機能により、微生物、昆虫類、植物
等の生物、これらの生物より分泌される酵素等によって
容易に崩壊或いは分解し得る特性(以下、生分解性とい
う)を有する成形品及びその製造方法に関するものであ
る。
[Industrial Application Field] The present invention is directed to poly-3-hydroxybutyric acid (Poly(3-hydroxybutyric acid)) which has excellent biodegradability.
roxybutyrate): Hereinafter also referred to as PHB)
molded products that have the property of being easily disintegrated or decomposed by living things such as microorganisms, insects, and plants, and enzymes secreted by these living things (hereinafter referred to as biodegradable). The present invention relates to a manufacturing method thereof.

【0002】0002

【従来の技術】従来、微生物等の作用により崩壊する加
工成形品として、例えば、コーンスターチ等の高分子を
樹脂中に配合するにより、その成形品の微生物等による
崩壊性を促進させたフィルムシートなどが上市されてい
るが、これらの成形品は、生態系において分解されない
部分が残存するため、環境汚染が懸念されている。
[Prior Art] Conventionally, processed molded products that disintegrate due to the action of microorganisms, etc. have been processed, such as film sheets, etc., in which polymers such as cornstarch are blended into resin to promote the disintegration of molded products by microorganisms, etc. are on the market, but there are concerns about environmental pollution because some parts of these molded products remain undegradable in the ecosystem.

【0003】これに対して、生態系により分子レベルで
の分解を受ける、生分解機能を有する高分子材料として
、PHBが知られており、日本農芸化学会誌、50巻、
9号、431−436(1976)等に報告されている
On the other hand, PHB is known as a polymeric material with a biodegradable function that undergoes decomposition at the molecular level in the ecosystem, and is published in Journal of the Japanese Society of Agricultural Chemistry, Vol. 50,
9, 431-436 (1976), etc.

【0004】0004

【発明が解決しようとする課題】しかしながら、現状で
は、PHBの生分解機能を十分に活かしたPHB或いは
これを主成分とする生分解性に優れた成形品は、未だ提
案されるに到っていない。即ち、ヒドロキシ酪酸ユニッ
トを主成分とする共重合体の成形品の成形方法に関して
、特開昭57−150393には、溶融押し出し後、重
合体のガラス転移温度を越えた温度で冷却する溶融成形
方法が示されている。しかし、このような成形方法で成
形されたPHB成形品の生分解性は未だ低く、改善の余
地が残されている。
[Problems to be Solved by the Invention] However, at present, PHB that fully utilizes the biodegradability of PHB or molded products with excellent biodegradability based on PHB as a main component have not yet been proposed. do not have. Specifically, regarding a method for molding a copolymer molded product containing hydroxybutyric acid units as a main component, JP-A-57-150393 discloses a melt molding method in which the polymer is cooled at a temperature exceeding the glass transition temperature of the polymer after melt extrusion. It is shown. However, the biodegradability of PHB molded products molded by such a molding method is still low, and there is still room for improvement.

【0005】以上のように、本質的には優れた生分解機
能を有するPHBも、その性質が十分に発揮されておら
ず、優れた生分解性を有する成形品及び成形方法の開発
が要望されている。
As described above, PHB, which essentially has excellent biodegradability, has not fully demonstrated its properties, and there is a need for the development of molded products and molding methods that have excellent biodegradability. ing.

【0006】[0006]

【課題を解決するための手段】本発明者らは、上記課題
を解決すべく、鋭意研究を重ねた結果、PHB樹脂成形
品のPHBの結晶化度がその生分解性に大きく関連して
いること、及び該PHBの結晶化度をある特定の結晶化
度より低くすることにより、その生分解性が著しく向上
する事実を見いだし、本発明を完成するに到った。即ち
、本発明は、結晶化度が50%未満のポリ−3−ヒドロ
キシ酪酸(PHB)よりなる生分解性樹脂成形品を提供
するものである。
[Means for Solving the Problems] In order to solve the above problems, the present inventors have conducted intensive research and found that the degree of crystallinity of PHB in a PHB resin molded product is greatly related to its biodegradability. The present inventors have now discovered that by lowering the crystallinity of PHB below a certain level, its biodegradability can be significantly improved, leading to the completion of the present invention. That is, the present invention provides a biodegradable resin molded article made of poly-3-hydroxybutyric acid (PHB) having a crystallinity of less than 50%.

【0007】本発明において、PHBは公知の方法によ
り製造されたものが特に制限なく使用される。一般には
、PHB生産菌により、菌体中より産生されたPHBを
、例えば、クロロホルムを用いて抽出する等の公知の方
法によって分離された、平均分子量1万以上、好ましく
は5万以上のものが好適に使用される。
[0007] In the present invention, PHB produced by a known method can be used without any particular restriction. Generally, PHB produced from PHB-producing bacteria is isolated by a known method such as extraction using chloroform, and has an average molecular weight of 10,000 or more, preferably 50,000 or more. Preferably used.

【0008】本発明の樹脂成形体は、上記PHBによる
生分解性に悪影響を与えない程度に他の樹脂を含有して
いても良い。かかる樹脂としては、PHBとの溶融成形
が可能なポリマーであれば公知のものが一般に使用する
ことができる。そのうち、PHBと分子レベルで混じり
合わないポリマーが好ましい。即ち、このようなポリマ
ーは、PHBの生分解機能に影響を与えず、表面積の増
大という意味で生分解機能への補助効果が発現し易いも
のである。PHBと共に好適に使用されるポリマーを具
体的に例示すれば、ポリエチレン、ポリプロピレン、ポ
リスチレン、ポリエチレンテレフタレート、ポリカプロ
ラクトン等の熱可塑性樹脂が挙げられる。また、該樹脂
の配合割合は、PHBに対して、50重量%以下、望ま
しくは、20重量%以下であることが好ましい。
The resin molded article of the present invention may contain other resins to the extent that they do not adversely affect the biodegradability of the PHB. As such resin, any known polymer can be used as long as it is a polymer that can be melt-molded with PHB. Among these, polymers that are immiscible with PHB at the molecular level are preferred. That is, such a polymer does not affect the biodegradation function of PHB and tends to have an auxiliary effect on the biodegradation function in the sense of increasing the surface area. Specific examples of polymers suitable for use with PHB include thermoplastic resins such as polyethylene, polypropylene, polystyrene, polyethylene terephthalate, and polycaprolactone. Further, the blending ratio of the resin is preferably 50% by weight or less, preferably 20% by weight or less, based on PHB.

【0009】本発明の樹脂成形品の最大の特徴は、結晶
化度が50%未満、好ましくは、49.8%以下のPH
Bよりなることである。即ち、樹脂成形品をかかる結晶
化度を有するPHBで構成することにより、該PHBの
生分解機能を飛躍的に向上させることができ、樹脂成形
品の生態系における崩壊或いは分解を短期間で達成する
ことができる。
The most important feature of the resin molded article of the present invention is that the crystallinity is less than 50%, preferably 49.8% or less.
It consists of B. That is, by constructing a resin molded product with PHB having such a degree of crystallinity, the biodegradability of the PHB can be dramatically improved, and the collapse or decomposition of the resin molded product in the ecosystem can be achieved in a short period of time. can do.

【0010】従来、PHBよりなる樹脂成形品について
、PHBの結晶化度が、50%未満のものは、全く報告
されていない。例えば、マクロモレキュールス(Mac
romolecules)、22巻、694−697(
1989)には、キャスティング法により得られた55
%前後の結晶化度を有するPHBが示されている。しか
しながら、上記文献にも、結晶化度が50%未満のPH
Bに関して全く開示されておらず、しかも、結晶化度を
50%未満とすることにより、PHBの生分解機能が著
しく向上するという本発明の技術思想については全く記
載されていない。
[0010] Hitherto, there have been no reports of resin molded articles made of PHB in which the degree of crystallinity of PHB is less than 50%. For example, Macromolecules (Mac
romolecules), vol. 22, 694-697 (
1989), 55 obtained by casting method
PHB with crystallinity of around % is shown. However, the above literature also describes PH with a crystallinity of less than 50%.
B is not disclosed at all, and furthermore, the technical idea of the present invention that the biodegradability of PHB is significantly improved by reducing the degree of crystallinity to less than 50% is not disclosed at all.

【0011】本発明において、PHBの結晶化度は、X
線回折法によって測定した値である。即ち、X線として
、CuKα線を使用し、反射集中法によって2θが6゜
から40゜までの回折強度を測定する。この回折強度曲
線から、以下の計算によって結晶化度を求めることがで
きる。
In the present invention, the crystallinity of PHB is
This is a value measured by line diffraction method. That is, CuKα rays are used as the X-rays, and the diffraction intensity at 2θ from 6° to 40° is measured by the reflection concentration method. From this diffraction intensity curve, the degree of crystallinity can be determined by the following calculation.

【0012】 結晶化度(%)= P×100/(Q−R)(但し、P
は結晶に基づくピーク部分の面積、Qは曲線下の全面積
、Rは散漫散乱部分の面積を示す。)上記した散漫散乱
部分の面積とは、2θが6゜から40゜の2点間を結ぶ
直線下の面積を表す。このX線回折法による結晶化度測
定においては、結晶の配向が結晶化度に大きな影響を及
ぼすため、測定試料として用いる成形品は、無配向のも
のかまたは細かく粉砕した粉末状のものが一般に使用さ
れる。
Crystallinity (%) = P×100/(QR) (However, P
is the area of the peak portion based on the crystal, Q is the total area under the curve, and R is the area of the diffuse scattering portion. ) The above-mentioned area of the diffuse scattering portion represents the area under the straight line connecting two points with 2θ of 6° to 40°. When measuring crystallinity using this X-ray diffraction method, the orientation of the crystals has a large effect on the degree of crystallinity, so the molded product used as the measurement sample is generally unoriented or in the form of finely ground powder. used.

【0013】尚、PHBに他のポリマーを配合した樹脂
組成物については、該樹脂組成物の解析パターンを予め
測定し、次にその配合割合に応じた解析強度で樹脂組成
物全体の解析強度曲線より差し引くことにより、PHB
に基づく解析曲線が得られ、該解析曲線より上記計算式
を用いてPHBの結晶化度を求めれば良い。
[0013] For resin compositions in which PHB is blended with other polymers, the analysis pattern of the resin composition is measured in advance, and then the analysis strength curve of the entire resin composition is determined using the analysis strength according to the blending ratio. By subtracting from PHB
An analytical curve based on is obtained, and the degree of crystallinity of PHB can be determined from the analytical curve using the above calculation formula.

【0014】本発明において、生分解機能とは、生態系
により分子レベルでの分解を受ける機能をいい、具体的
には、生分解機能デポリメラーゼ等の分解酵素、デポリ
メラーゼ生産菌、具体的には、PHB分解菌、デポリメ
ラーゼ含有物等によって分解されることを言う。また、
樹脂成形体の生分解性は、該生分解機能により、微生物
、昆虫類、植物等の生物、これらの生物より分泌される
酵素等によって容易に崩壊或いは分解し得る特性をいう
。一般には、かかる酵素及び/又は菌体が存在する環境
下、例えば、土壌などの自然環境下、埋立地などの部分
的自然環境下、都市ゴミや下水処理場の余剰汚泥、豚排
泄物などの処理法として知られている好気条件下での急
速堆肥化処理環境下等で該樹脂成形体が崩壊、更には分
解されることが挙げられる。
[0014] In the present invention, the biodegradation function refers to a function that undergoes decomposition at the molecular level by an ecosystem, and specifically includes degrading enzymes such as biodegradation function depolymerase, depolymerase-producing bacteria, and specifically means that it is decomposed by PHB-degrading bacteria, depolymerase-containing substances, etc. Also,
The biodegradability of a resin molded article refers to the property that it can be easily disintegrated or decomposed by organisms such as microorganisms, insects, and plants, and enzymes secreted by these organisms due to the biodegradation function. Generally, such enzymes and/or bacterial cells are present in environments such as natural environments such as soil, partial natural environments such as landfills, municipal waste, excess sludge from sewage treatment plants, pig excrement, etc. As a treatment method, the resin molded article may be disintegrated or even decomposed in a rapid composting treatment environment under aerobic conditions, which is known as a treatment method.

【0015】本発明の成形品の製造方法は特に制限され
ない。最も代表的な製法を例示すれば、ポリ−3−ヒド
ロキシ酪酸を溶融後、急冷固化し、該PHBの結晶化度
が50%未満の成形体を得ることを特徴とする生分解性
樹脂成形品の製造方法が挙げられる。即ち、本発明者ら
は、PHBを或いは、前記熱可塑性樹脂を含有するPH
Bを溶融後、直ちに、急冷固化して成形することにより
、優れた生分解性を示す樹脂成形品が、容易に且つ再現
性良く得られることを見いだした。上記急冷温度は、低
いほど好ましいが、一般に、溶融樹脂をPHBのガラス
転移温度以下の温度、具体的には、15℃以下、好まし
くは5℃以下、更に好ましくは0℃以下の温度まで冷却
を行えばよい。
The method for producing the molded article of the present invention is not particularly limited. The most typical manufacturing method is a biodegradable resin molded product characterized by melting poly-3-hydroxybutyric acid and then rapidly solidifying it to obtain a molded product with a PHB crystallinity of less than 50%. The manufacturing method is mentioned. That is, the present inventors discovered that PHB or PH containing the thermoplastic resin
It has been found that by immediately quenching and solidifying B and molding it after melting, a resin molded article exhibiting excellent biodegradability can be easily obtained with good reproducibility. The lower the quenching temperature is, the more preferable it is, but generally the molten resin is cooled to a temperature below the glass transition temperature of PHB, specifically to a temperature below 15°C, preferably below 5°C, more preferably below 0°C. Just go.

【0016】上記溶融後の成形方法は、特に限定されな
い。例えば、押出成形、射出成形、ブロー成形、注型加
工、真空成形、溶融紡糸、カレンダー成形の他、発泡成
形等の各種成形方法が使用される。
[0016] The molding method after the above-mentioned melting is not particularly limited. For example, various molding methods such as extrusion molding, injection molding, blow molding, casting, vacuum molding, melt spinning, calendar molding, and foam molding are used.

【0017】また、上記成形方法において、急冷は、各
成形方法おいて適切な冷却手段が適宜採用される。例え
ば、押し出し成形においてフィルムあるいはシートを成
形する場合には、冷媒を内部に流してロール表面を前記
冷却温度に冷却した一対またはそれ以上のチルドロール
を、押し出し成形機のTダイの出口間近に取り付け、T
ダイより押し出されてきた溶融物を急冷する等の方法を
採用することができる。また、射出成形においては、金
型中に冷媒を流し、金型温度を前記冷却温度に設定する
ことにより急冷を行うことができる。
[0017] Furthermore, in the above molding method, for the rapid cooling, a cooling means appropriate for each molding method is appropriately employed. For example, when forming a film or sheet by extrusion molding, a pair or more chilled rolls whose surfaces are cooled to the cooling temperature by flowing a refrigerant inside are installed near the exit of the T-die of the extrusion molding machine. , T
A method such as rapidly cooling the molten material extruded from a die can be adopted. Furthermore, in injection molding, rapid cooling can be performed by flowing a refrigerant into a mold and setting the mold temperature to the cooling temperature.

【0018】また、上記急冷において、急冷時間は、設
定された冷却温度に対して、樹脂成形品の厚さなどを考
慮してPHBの結晶化度が50%未満となる範囲を適宜
決定すれば良いが、可及的短時間であることが望ましい
。一般には、30秒以下、好ましくは10秒以下が適当
である。
[0018] In the above-mentioned quenching, the quenching time is appropriately determined within a range where the crystallinity of PHB is less than 50%, taking into account the thickness of the resin molded product, etc., with respect to the set cooling temperature. Good, but preferably for as short a time as possible. Generally, a time of 30 seconds or less, preferably 10 seconds or less is appropriate.

【0019】本発明の樹脂成形品は、フィルム状、シー
ト状、糸状、テープ状、板状、構造体等任意の形状を採
ることができるが、樹脂成形品の生分解性が最も発揮さ
れるのは、後記する製造方法によって結晶化度の制御が
容易なフィルム状、シート状、糸状、テープ状等の成形
体の肉厚が2mm以下の薄物成形体である。具体的な樹
脂成形体の態様としては、繊維、フィルム、パッキング
、ケース、ボトル、紙おむつ、各種発泡容器などのディ
スポーザブル包装用材料等の日用品、温室ハウス用フィ
ルム、地表被覆用フィルム、苗用ポット、紐、肥料用袋
、徐放性農薬材料等の農林業材料、漁網、釣り糸などの
漁業用材料、レジャーバッグ、釣り用品包装材料等のレ
ジャー用品およびドラッグデリバリーシステム材料、縫
合糸、骨接合材料、衛生用品などの医療材料などが挙げ
られる。
The resin molded product of the present invention can take any shape such as film, sheet, thread, tape, plate, structure, etc., but the biodegradability of the resin molded product is best exhibited. This is a thin molded product having a wall thickness of 2 mm or less in the form of a film, sheet, thread, tape, etc. whose crystallinity can be easily controlled by the manufacturing method described later. Specific examples of resin moldings include fibers, films, packing, cases, bottles, paper diapers, disposable packaging materials such as various foam containers, and other daily necessities, films for greenhouses, films for covering the ground, pots for seedlings, Agriculture and forestry materials such as strings, fertilizer bags, slow-release pesticide materials, fishing materials such as fishing nets and fishing lines, leisure goods such as leisure bags and fishing supplies packaging materials, drug delivery system materials, suture threads, osteosynthesis materials, Examples include medical materials such as sanitary products.

【0020】[0020]

【効果】本発明の生分解性樹脂成形品は、後述する実施
例及び比較例に示すように、通常の溶融成形によって製
造された結晶化度の高い樹脂成形品或いは、キャスティ
ングによって得られた樹脂成形品と比べて、PHBの生
分解機能が高く、これにより優れた生分解性を発揮する
ことができる。
[Effects] As shown in the Examples and Comparative Examples described below, the biodegradable resin molded product of the present invention is a highly crystalline resin molded product manufactured by ordinary melt molding, or a resin molded product obtained by casting. Compared to molded products, PHB has a higher biodegradability and can exhibit excellent biodegradability.

【0021】従って、本発明の樹脂成形品を土壌中に埋
没、微生物による分解処理に供すると、該樹脂成形品を
より短い期間で、効率よく無害化処理することが可能で
ある。
[0021] Therefore, when the resin molded article of the present invention is buried in soil and subjected to decomposition treatment by microorganisms, the resin molded article can be efficiently rendered harmless in a shorter period of time.

【0022】また、本発明の生分解性樹脂成形品の製造
方法は、上記の良好な生分解性を有する樹脂成形体を容
易に再現性良く得ることができると共に、急冷条件を適
当に変化させることによって、得られる樹脂成形体の生
分解性を一定の範囲でコントロールする手段としても有
用である。
[0022] Furthermore, the method for producing a biodegradable resin molded article of the present invention allows the resin molded article having the above-mentioned good biodegradability to be easily obtained with good reproducibility, and the quenching conditions can be appropriately changed. This is also useful as a means for controlling the biodegradability of the resulting resin molded product within a certain range.

【0023】[0023]

【実施例】以下に、本発明を更に具体的に説明するため
、実施例を挙げるが、本発明はこれらの実施例に限定さ
れるものではない。
[Examples] In order to explain the present invention more specifically, Examples are given below, but the present invention is not limited to these Examples.

【0024】実施例1、2及び比較例1、2(1)結晶
性の異なる樹脂シートの作製綿状の樹脂(微生物:アル
カリゲネス  ユートロファスを用いて発酵合成したも
のを、クロロフォルム/ヘキサン系により溶解−再沈殿
処理によって精製したもの、分子量約20万)をクロロ
ホルムに約4重量/容量%の濃度で溶解した。これをシ
ャーレに移し、室温下静置してキャストフィルム(厚さ
約0.4〜0.5mm)を作製した。次にこのシートか
ら16×12mmの4枚の試験片を切り出した。切り出
した試験片は、それぞれテンプレート中に保持した状態
で190℃のオーブン中に約13分保持して溶融させた
。上記溶融樹脂は10秒以内に表1に示す冷却方法によ
って急冷して、表1に示すA〜Dの成形体を得た。
Examples 1 and 2 and Comparative Examples 1 and 2 (1) Preparation of resin sheets with different crystallinity A cotton-like resin (fermented and synthesized using microorganisms: Alcaligenes eutrophus) was dissolved in a chloroform/hexane system. A product purified by reprecipitation treatment (molecular weight approximately 200,000) was dissolved in chloroform at a concentration of approximately 4% by weight/volume. This was transferred to a Petri dish and allowed to stand at room temperature to produce a cast film (thickness approximately 0.4 to 0.5 mm). Next, four test pieces of 16 x 12 mm were cut out from this sheet. The cut test pieces were held in a template and held in an oven at 190° C. for about 13 minutes to melt them. The above molten resin was rapidly cooled within 10 seconds by the cooling method shown in Table 1 to obtain molded bodies A to D shown in Table 1.

【0025】(2)結晶化度の測定 上記(1)で得られた各サンプルの結晶化度を以下の測
定条件で測定した。
(2) Measurement of Crystallinity The crystallinity of each sample obtained in (1) above was measured under the following measurement conditions.

【0026】測定方法:反射集中法 X線    :CuKα(波長 1.54056オング
ストローム)管電圧  :50KV 導電流  :32mA ゴニオメーター:広角ゴニオメーター 2θ    :6゜〜40゜ 走査速度:2.000゜/min 発散スリット:1゜ 散乱スリット:1゜ 測定温度:室温 各サンプルの結晶化度は、得られた回折曲線強度より前
述した計算式から求めた。その結果を表1に示した。ま
た、サンプルAおよびサンプルCの回折曲線を図1及び
図2にそれぞれ示した。
Measurement method: Reflection focusing method Diverging slit: 1° Scattering slit: 1° Measurement temperature: room temperature The degree of crystallinity of each sample was determined from the above-mentioned calculation formula from the intensity of the obtained diffraction curve. The results are shown in Table 1. Further, the diffraction curves of Sample A and Sample C are shown in FIGS. 1 and 2, respectively.

【0027】(3)生分解性の測定 土壌より分離したPHB分解細菌SC−17株を用いて
、以下の組成の培地中で分解を行った。
(3) Measurement of biodegradability PHB-degrading bacteria strain SC-17 isolated from soil was used to perform decomposition in a medium having the following composition.

【0028】   分解性評価用培地(培地I)     無機塩類溶液               
           100      ml   
 酵母抽出物(Yeast Extract)    
        100      ppm    p
H                        
          7.1500cc三角フラスコ中
に、上記培地I、100mlを入れ、綿栓を施した後1
21℃で20分間オートクレーブによる滅菌を行った。 次に、(1)で作製したサンプルシートをエタノール殺
菌し秤量した後、投入した。 続いて、予め培養しておいたPHB分解菌SC−17株
の培養液1mlを接種した。接種後、ロータリーシェー
カーを用い、30℃、180rpmで72時間攪拌培養
を行い微生物分解を行った。その後、培養液から残存サ
ンプルシートを取り出し、純水で洗浄後、室温下で一晩
真空乾燥を行った。分解前のサンプル重量(Xg)、分
解後、乾燥したサンプル重量(Yg)を秤量し、下記式
により算出される重量の減少率をもって生分解率とした
[0028] Degradability evaluation medium (medium I) Inorganic salt solution
100ml
Yeast Extract
100 ppm p
H
7. Pour 100 ml of the above medium I into a 1500 cc Erlenmeyer flask, plug it with a cotton plug, and then
Sterilization was performed by autoclaving at 21° C. for 20 minutes. Next, the sample sheet prepared in (1) was sterilized with ethanol, weighed, and then introduced. Subsequently, 1 ml of a culture solution of a PHB-degrading bacterium strain SC-17 that had been cultured in advance was inoculated. After inoculation, microbial decomposition was performed using a rotary shaker at 30° C. and 180 rpm for 72 hours. Thereafter, the remaining sample sheet was taken out from the culture solution, washed with pure water, and vacuum-dried overnight at room temperature. The weight of the sample before decomposition (Xg) and the weight of the sample after decomposition and drying (Yg) were weighed, and the weight reduction rate calculated by the following formula was taken as the biodegradation rate.

【0029】 生分解率(%)=(X−Y)×100/X上記生分解率
の結果を表1に併せて示した。
Biodegradation rate (%)=(X-Y)×100/X The results of the above biodegradation rate are also shown in Table 1.

【0030】[0030]

【表1】[Table 1]

【0031】実施例3及び比較例3 (1)結晶性の異なる樹脂シートの作製ペレット状のP
HB(イギリス、インペリアル  ケミカル  インダ
ストリーズピーエルシー製、商品名:BX  GV9(
EE))を原料として、押し出し成形を行った。シリン
ダー温度を185℃とし、Tダイより押し出されてきた
シートを、Tダイの出口間近に取り付けられ表面温度を
−10℃に冷却した一対のチルドロールに通す事により
急冷し、更に、チルドロールの直後に設置した0℃の冷
却水槽中にチルドロールより出てきた約0.5mm厚の
シートを導入してPHBシートよりなる樹脂成形品(サ
ンプルE)を得た。
Example 3 and Comparative Example 3 (1) Preparation of resin sheets with different crystallinity Pellet-shaped P
HB (manufactured by Imperial Chemical Industries PLC, UK, product name: BX GV9 (
Extrusion molding was performed using EE)) as a raw material. The cylinder temperature was set at 185°C, and the sheet extruded from the T-die was rapidly cooled by passing it through a pair of chilled rolls installed near the outlet of the T-die and whose surface temperature was cooled to -10°C. Immediately after, the approximately 0.5 mm thick sheet that came out of the chilled roll was introduced into a cooling water tank at 0° C. to obtain a resin molded product (sample E) made of a PHB sheet.

【0032】一方、比較のため、上記チルドロールの温
度を60℃に設定し、水槽の温度を約30℃とした以外
は同様の操作により樹脂成形品(サンプルF)を得た。
On the other hand, for comparison, a resin molded product (sample F) was obtained by the same operation except that the temperature of the chilled roll was set at 60°C and the temperature of the water bath was set at about 30°C.

【0033】(2)結晶化度の測定 上記(1)で得られた各成形品の一部分を液体窒素によ
り冷却した後、粉砕機を用いて細かな粉状とし、結晶化
度測定サンプルとした。結晶化度の測定、算出は、実施
例1と同様の測定条件で行い、結晶化度を求めた。その
結果を表2に示した。
(2) Measurement of crystallinity degree A portion of each molded product obtained in (1) above was cooled with liquid nitrogen, and then ground into fine powder using a pulverizer, which was used as a sample for crystallinity measurement. . The degree of crystallinity was measured and calculated under the same measurement conditions as in Example 1, and the degree of crystallinity was determined. The results are shown in Table 2.

【0034】(3)生分解性の測定 上記(1)で作製したシートから16×12mmの生分
解性評価用サンプルを切り出し、実施例1と同様の方法
で微生物分解性を測定した。結果を表2に併せて示す。
(3) Measurement of biodegradability A 16×12 mm sample for biodegradability evaluation was cut out from the sheet prepared in (1) above, and microbial degradability was measured in the same manner as in Example 1. The results are also shown in Table 2.

【0035】[0035]

【表2】[Table 2]

【0036】実施例4及び比較例4 (1)結晶性の異なる樹脂成形品の作製ペレット状のP
HB(イギリス、インペリアル  ケミカル  インダ
ストリーズピーエルシー製、商品名:BX  GV9(
EE))を原料として、射出成形を行い鉢状容器(厚さ
約0.5mm)を成形した。シリンダー温度190℃、
金型温度は−5℃(サンプルG)をと35℃(サンプル
H)の二通りの冷却温度に設定して成形を行った。なお
、保持時間は90秒とした。
Example 4 and Comparative Example 4 (1) Preparation of resin molded products with different crystallinity Pellet-shaped P
HB (manufactured by Imperial Chemical Industries PLC, UK, product name: BX GV9 (
Using EE)) as a raw material, injection molding was performed to form a pot-shaped container (approximately 0.5 mm thick). Cylinder temperature 190℃,
The mold temperature was set at two cooling temperatures: -5°C (sample G) and 35°C (sample H), and molding was performed. Note that the holding time was 90 seconds.

【0037】(2)結晶化度の測定 上記(1)で得られた各成形品の一部分を液体窒素によ
り冷却した後、粉砕機を用いて細かな粉状とし、結晶化
度測定サンプルとした。結晶化度の測定、算出は、実施
例1と同様の測定条件で行い、結晶化度を計算した。そ
の結果を表3に示した。
(2) Measurement of crystallinity A portion of each molded product obtained in (1) above was cooled with liquid nitrogen, and then ground into fine powder using a pulverizer, and used as a sample for crystallinity measurement. . The degree of crystallinity was measured and calculated under the same measurement conditions as in Example 1. The results are shown in Table 3.

【0038】(3)生分解性の測定 また、上記(1)で得られた成形品から16×12mm
の生分解性評価用サンプルを切り出し、実施例1と同様
の方法で微生物分解を行い、分解率を算出した。その結
果を表3に併せて示す。
(3) Measurement of biodegradability Also, from the molded product obtained in (1) above, a 16 x 12 mm
A sample for biodegradability evaluation was cut out and subjected to microbial decomposition in the same manner as in Example 1, and the decomposition rate was calculated. The results are also shown in Table 3.

【0039】[0039]

【表3】[Table 3]

【0040】実施例5 (1)結晶性の異なる樹脂シートの作製ペレット状のP
HB(イギリス、インペリアル  ケミカル  インダ
ストリーズピーエルシー製、商品名:BX  GV9(
EE))90重量%及び、ポリスチレン10重量%より
なる配合組成の樹脂を原料として、実施例3と同様な方
法によって押出成形を行い、約0.5mm厚のPHBシ
ートよりなる樹脂成形品(サンプルI)を得た。
Example 5 (1) Preparation of resin sheets with different crystallinity Pellet-shaped P
HB (manufactured by Imperial Chemical Industries PLC, UK, product name: BX GV9 (
EE)) and 10% by weight of polystyrene as raw materials, extrusion molding was performed in the same manner as in Example 3 to obtain a resin molded product (sample) consisting of a PHB sheet with a thickness of about 0.5 mm. I) was obtained.

【0041】一方、比較のため、上記チルドロールの温
度を60℃に設定し、水槽の温度を約30℃とした以外
は同様の操作により樹脂成形品(サンプルJ)を得た。
On the other hand, for comparison, a resin molded product (Sample J) was obtained by the same operation except that the temperature of the chilled roll was set at 60°C and the temperature of the water bath was set at about 30°C.

【0042】(2)結晶化度の測定 上記(1)で得られた成形品の一部分を液体窒素により
冷却した後、粉砕機を用いて細かな粉状とし、結晶化度
測定サンプルとした。結晶化度の測定は、実施例1と同
様な方法で行った。また、結晶化度の算出は、上記シー
トと同様の方法で得られたポリスチレン単独のシートの
X線解析パターンをその配合比に応じて縮小して行った
(2) Measurement of crystallinity degree A part of the molded product obtained in the above (1) was cooled with liquid nitrogen, and then ground into fine powder using a pulverizer to prepare a sample for crystallinity measurement. The crystallinity was measured in the same manner as in Example 1. Further, the crystallinity was calculated by reducing the X-ray analysis pattern of a sheet made of polystyrene alone obtained in the same manner as the above-mentioned sheet according to its blending ratio.

【0043】(3)生分解性の測定 また、上記(1)で得られた成形品から16×12mm
の生分解性評価用サンプルを切り出し、実施例1と同様
の方法で微生物分解を行い、分解率を算出した。結果を
表4に示す。
(3) Measurement of biodegradability Also, from the molded product obtained in (1) above, a 16 x 12 mm
A sample for biodegradability evaluation was cut out and subjected to microbial decomposition in the same manner as in Example 1, and the decomposition rate was calculated. The results are shown in Table 4.

【0044】[0044]

【表4】[Table 4]

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】実施例1で得られたサンプルAのX線回折曲線
を示す。
FIG. 1 shows an X-ray diffraction curve of Sample A obtained in Example 1.

【図2】比較例1で得られたサンプルCのX線回折曲線
を示す。
FIG. 2 shows an X-ray diffraction curve of Sample C obtained in Comparative Example 1.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】結晶化度が50%未満のポリ−3−ヒドロ
キシ酪酸よりなる生分解性樹脂成形品。
1. A biodegradable resin molded article made of poly-3-hydroxybutyric acid having a crystallinity of less than 50%.
【請求項2】ポリ−3−ヒドロキシ酪酸を溶融後、急冷
固化し、該ポリヒドロキシ酪酸の結晶化度が50%未満
の成形体を得ることを特徴とする生分解性樹脂成形品の
製造方法。
2. A method for producing a biodegradable resin molded article, which comprises melting poly-3-hydroxybutyric acid and then rapidly solidifying it to obtain a molded article in which the crystallinity of the polyhydroxybutyric acid is less than 50%. .
JP12280891A 1991-04-26 1991-04-26 Biodegradable resin molded article and manufacturing method thereof Expired - Lifetime JPH07100739B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12280891A JPH07100739B2 (en) 1991-04-26 1991-04-26 Biodegradable resin molded article and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12280891A JPH07100739B2 (en) 1991-04-26 1991-04-26 Biodegradable resin molded article and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JPH04325526A true JPH04325526A (en) 1992-11-13
JPH07100739B2 JPH07100739B2 (en) 1995-11-01

Family

ID=14845152

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12280891A Expired - Lifetime JPH07100739B2 (en) 1991-04-26 1991-04-26 Biodegradable resin molded article and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JPH07100739B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995017454A1 (en) * 1993-12-20 1995-06-29 Monsanto Company Process for preparing films and coatings
US5744516A (en) * 1993-09-14 1998-04-28 Fujitsu Limited Biodegradable resin molded article
WO2003070450A1 (en) * 2002-02-21 2003-08-28 Riken High-strength film of polyhydroxyalkanoic acid and process for producing the same
EP2258761A1 (en) 2001-07-09 2010-12-08 Sony Corporation Polyester molding for use with a casing

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5744516A (en) * 1993-09-14 1998-04-28 Fujitsu Limited Biodegradable resin molded article
WO1995017454A1 (en) * 1993-12-20 1995-06-29 Monsanto Company Process for preparing films and coatings
EP2258761A1 (en) 2001-07-09 2010-12-08 Sony Corporation Polyester molding for use with a casing
WO2003070450A1 (en) * 2002-02-21 2003-08-28 Riken High-strength film of polyhydroxyalkanoic acid and process for producing the same

Also Published As

Publication number Publication date
JPH07100739B2 (en) 1995-11-01

Similar Documents

Publication Publication Date Title
JP6334410B2 (en) Method for producing polymer / biological element alloy
Goldberg A review of the biodegradability and utility of poly (caprolactone)
EP1725614B1 (en) Biodegradable compositions comprising polylactic polymers, adipat copolymers and magnesium silicate
Huang et al. Biodegradable plastics: a review
US6323307B1 (en) Degradation control of environmentally degradable disposable materials
JPH083333A (en) Melt-extruded film of biodegradable aliphatic polyester and bag comprising the same
CA2643725A1 (en) Biodegradable nano-polymer compositions, i.e. compositions including mineral nanoparticles and poly(lactic acid) polymer and biodegradable articles made thereof
KR100545271B1 (en) Aerobic biodegradable-agriculture mulching film and the producing method thereof
AU2004316880A1 (en) Biodegradable poly(lactic acid) polymer composition and films, coatings and products comprising biodegradable poly(lactic acid) polymer composition
JPH0678475B2 (en) Biodegradability control method for plastics
KR20030036891A (en) Absorbent articles comprising biodegradable polyester blend compositions
Barak et al. Biodegradability of Polyhydroxybutyrate (co‐hydroxyvalerate) and Starch‐Incorporated Polyethylene Plastic Films in Soils
Chylińska et al. Novel biocidal N-halamine plastic based on poly (vinyl chloride): preparation and characteristics
JPH04168150A (en) Biodegradable plastic
JPH04325526A (en) Biodegradable resin molding and its production
CN112175369A (en) High-fluidity medical antibacterial degradable composite material and preparation method thereof
JPH06345956A (en) Microbially biodegradable polyethylene carbonate resin composition
KR100800428B1 (en) Aerobic Biodegradable Container and Method for Producing it
JPH0920857A (en) Biodegradable polymer composition
JPH04146929A (en) Polycaprolactone resin molding and its production
KR100903885B1 (en) Aerobic biodegradable compound using poly lactic acid and method for producing it
Janik et al. Biodegradable Polymer Packaging Materials in Seawater Environment
KR100800429B1 (en) Aerobic Biodegradable Compound and Method for Producing it
JPH11279391A (en) Degradable thick-wall vessel
JP3426630B2 (en) Easy disintegration imparting agent and composition

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term