JPH043254B2 - - Google Patents

Info

Publication number
JPH043254B2
JPH043254B2 JP60145823A JP14582385A JPH043254B2 JP H043254 B2 JPH043254 B2 JP H043254B2 JP 60145823 A JP60145823 A JP 60145823A JP 14582385 A JP14582385 A JP 14582385A JP H043254 B2 JPH043254 B2 JP H043254B2
Authority
JP
Japan
Prior art keywords
flow
contraction
expansion nozzle
nozzle
raw material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60145823A
Other languages
Japanese (ja)
Other versions
JPS627431A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP14582385A priority Critical patent/JPS627431A/en
Priority to CA000504936A priority patent/CA1272661A/en
Priority to DE3610295A priority patent/DE3610295C2/en
Priority to GB8607603A priority patent/GB2175708B/en
Publication of JPS627431A publication Critical patent/JPS627431A/en
Priority to US07/053,555 priority patent/US4909914A/en
Publication of JPH043254B2 publication Critical patent/JPH043254B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45563Gas nozzles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/26Nozzle-type reactors, i.e. the distribution of the initial reactants within the reactor is effected by their introduction or injection through nozzles
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/228Gas flow assisted PVD deposition
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45582Expansion of gas before it reaches the substrate
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45585Compression of gas before it reaches the substrate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00051Controlling the temperature
    • B01J2219/00054Controlling or regulating the heat exchange system
    • B01J2219/00056Controlling or regulating the heat exchange system involving measured parameters
    • B01J2219/00065Pressure measurement
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00162Controlling or regulating processes controlling the pressure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00164Controlling or regulating processes controlling the flow
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00245Avoiding undesirable reactions or side-effects

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • General Chemical & Material Sciences (AREA)
  • Coating Apparatus (AREA)
  • Feeding, Discharge, Calcimining, Fusing, And Gas-Generation Devices (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、例えばガスや、の気相中に浮遊され
た液体又は固体の微粒子等、実質的に気相流とし
得る原料の反応装置に関するもので、更に詳しく
は、縮小拡大ノズルを有する流れ制御系を備えた
反応装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a reactor for reacting raw materials that can be substantially gas-phase flowed, such as gas or liquid or solid fine particles suspended in the gas phase. More specifically, the present invention relates to a reactor equipped with a flow control system having a contraction/expansion nozzle.

本明細書において、縮小拡大ノズルとは、流入
口側から中間部に向つて徐々に開口面積が絞られ
てのど部となり、こののど部から流出口に向つて
徐々に開口面積が拡大されているノズルをいう。
また、反応とは、化学反応だけでなく、気相、液
相及び固相間の原料の相変化、クラスターの生
成、更には原料の活性化等、化学反応は伴なわな
い物性変化をも含むものである。
In this specification, a contracting/expanding nozzle is one in which the opening area is gradually narrowed from the inlet side toward the middle part to form a throat, and the opening area is gradually expanded from this throat toward the outlet. Refers to a nozzle.
In addition, reactions include not only chemical reactions, but also changes in physical properties that are not accompanied by chemical reactions, such as phase changes in raw materials between gas, liquid, and solid phases, cluster formation, and activation of raw materials. It is something that

[従来の技術] 従来、SiO蒸気を発生させる手段と捕集箱との
間に末広ノズルを設けたアモルフアス状SiOの製
造装置が知られている(特公昭59−50601号)。こ
の装置は、発生したSiO蒸気を、末広ノズルを通
して、窒化、炭化又は酸化雰囲気にある捕集箱内
へ噴射して断熱膨張させ、少なくとも表面が窒
化、炭化又は酸化されたアモルフアス状SiOの超
微粒子を生成させるものである。
[Prior Art] Conventionally, an apparatus for producing amorphous SiO is known in which a wide-spread nozzle is provided between a means for generating SiO vapor and a collection box (Japanese Patent Publication No. 59-50601). This device injects the generated SiO vapor through a wide-spread nozzle into a collection box in a nitriding, carbonizing, or oxidizing atmosphere, causing it to expand adiabatically. is generated.

上記装置における末広ノズルは、流過する気相
が、流過時の断熱膨張により急冷されることを利
用して、流過するSiOを急冷し、SiOがSiとSiO2
に分解してしまうのを防止するものである。ま
た、末広ノズルが、流過する気相を超音速にまで
加速でき、流過する気相の広い速度調整領域を有
することを利用して、得られるアモルフアス状
SiOの粒径を調整するものである。即ち、前述の
装置における末広ノズルは、反応場たる捕集箱内
へ原料たるSiOを導入するまでの、原料の反応抑
止手段並びに、生成されるアモルフアス状SiOの
粒径調整手段として利用されているもので、原料
や反応生成物を処理しやすい流れ状態とするため
の流れ制御系として利用されているものではな
い。
The diverging nozzle in the above device uses the fact that the flowing gas phase is rapidly cooled due to adiabatic expansion as it flows, and rapidly cools the flowing SiO, so that the SiO becomes Si and SiO 2
This prevents it from decomposing. In addition, by utilizing the fact that the wide-divergent nozzle can accelerate the flowing gas phase to supersonic speed and has a wide speed adjustment range for the flowing gas phase, it is possible to obtain an amorphous shape.
This is to adjust the particle size of SiO. That is, the wide-spread nozzle in the above-mentioned apparatus is used as a means for suppressing the reaction of the raw material until the raw material SiO is introduced into the collection box that is the reaction field, and as a means for adjusting the particle size of the amorphous SiO produced. It is not used as a flow control system to bring raw materials or reaction products into a flow state that is easy to process.

[発明が解決しようとする問題点] ところで、末広ノズルを用いて、反応抑止に適
した温度まで急冷することや、生成物を所望の粒
径に整えるに適した速度に加速することは、末広
ノズルを流過した気相の流れ状態とは無関係であ
る。
[Problems to be Solved by the Invention] By the way, it is not possible to use a wide-spread nozzle to quickly cool the product to a temperature suitable for suppressing the reaction or to accelerate the product to a speed suitable for adjusting the product to a desired particle size. It is independent of the flow state of the gas phase flowing through the nozzle.

上流室の圧力と下流室の圧力との比が臨界圧力
比以上であると、末広ノズルから噴出される気相
の流れは減速流となつて噴出後拡散され、その噴
出速度が音速を越えることもない。末広ノズルの
のど部の圧力が臨界圧力比未満となつた場合、末
広ノズルからの噴出速度は超音波となり得るが、
末広ノズルから噴出された流れの状態は、噴出時
の気相流の圧力Pjと末広ノズルの下流側の圧力P
はほぼ一致するか否かによつて左右される。Pj
Pのときが適正膨張、Pj>Pのときが不足膨張、
Pj<Pのときが過膨張と称せられている。適正膨
張の場合、末広ノズルを流過する気相は、末広ノ
ズルの流出口壁面方向に沿つて、ほぼ断面方向に
均一な速度分布を有する流れとして噴出される。
また、不足膨張や過膨張の場合、減速流となつて
噴出されて拡散を生ずることになる。
When the ratio of the pressure in the upstream chamber and the pressure in the downstream chamber is greater than or equal to the critical pressure ratio, the gas phase flow ejected from the wide-spread nozzle becomes a decelerated flow and is diffused after ejection, causing the ejection speed to exceed the speed of sound. Nor. When the pressure at the throat of the divergent nozzle becomes less than the critical pressure ratio, the ejection velocity from the divergent nozzle can be ultrasonic, but
The state of the flow ejected from the wide-spread nozzle is determined by the pressure P j of the gas phase flow at the time of ejection and the pressure P on the downstream side of the wide-spread nozzle.
depends on whether or not they almost match. P j =
When P, there is proper expansion; when P j > P, there is insufficient expansion.
When P j <P, it is called overexpansion. In the case of proper expansion, the gas phase flowing through the divergent nozzle is ejected as a flow having a substantially uniform velocity distribution in the cross-sectional direction along the direction of the outlet wall surface of the divergent nozzle.
In addition, in the case of underexpansion or overexpansion, a decelerated flow is ejected and diffusion occurs.

しかしながら、従来の装置における末広ノズル
は、前述のように、上記適正膨張流を形成するこ
ととは無関係に用いられており、末広ノズルから
噴出される流れが拡散流となつてしまうことを避
けることができない。このような拡散流になる
と、例えば前記従来の装置においては、SiO微粉
が捕集箱全体に拡散し、一部がその内壁面と接触
してそのまま付着したり活性を消失することが生
じる。これは、反応生成物の収率低下や、反応生
成物中への未反応物質の混入等の問題を引き起こ
す。また、拡散流として反応生成物が送られて来
たのでは所望の位置に捕集しにくく、これも収率
を低下させる原因となる。更には、原料や反応生
成物の種類によつては、末広ノズルを流過した原
料や反応生成物を、例えばレーザー光の照射やプ
ラズマによつて活性化させて捕集する場合、拡散
流ではこのようなエネルギー付与を効率的に行い
にくく、汎用性のある反応装置としにくい問題も
ある。
However, as mentioned above, the diverging nozzle in the conventional device is used without regard to forming the appropriate expansion flow, and it is important to avoid the flow ejected from the diverging nozzle from becoming a diffusion flow. I can't. When such a diffusion flow occurs, for example, in the conventional apparatus described above, the SiO fine powder spreads throughout the collection box, and some of the SiO powder comes into contact with the inner wall surface of the collection box and remains attached thereto, or loses its activity. This causes problems such as a decrease in the yield of the reaction product and the mixing of unreacted substances into the reaction product. Furthermore, if the reaction product is sent as a diffusion stream, it is difficult to collect it at a desired position, which also causes a decrease in yield. Furthermore, depending on the type of raw material or reaction product, when the raw material or reaction product that has passed through the wide-spread nozzle is activated and collected by, for example, laser light irradiation or plasma, diffusion flow may be used. There are also problems in that it is difficult to efficiently provide such energy and it is difficult to provide a versatile reactor.

[問題点を解決するための手段] 上記問題点を解決するために講じられた手段
を、本発明の一実施例に対応する第1図で説明す
ると、縮小拡大ノズル1による流れ制御系を備え
ている反応装置とし、原料又は反応生成物の流れ
をビーム化できるようにしたことによつて上記問
題点を解決したものである。
[Means for Solving the Problems] The means taken to solve the above problems will be explained with reference to FIG. 1, which corresponds to an embodiment of the present invention. The above-mentioned problems have been solved by using a reactor that can convert the flow of raw materials or reaction products into a beam.

第1図においては、説明の便宜上、縮小拡大ノ
ズル1の上流側と下流側は、各々密閉系である上
流室2と下流室3に連結されている。しかし、本
発明における縮小拡大ノズル1の上流側と下流側
は、上流側の圧力P0と下流側の圧力Pの圧力比
P/P0を、臨界圧力比以下の圧力比にできれば、
密閉系であつても開放系であつてもよく、更には
真空系でも加圧系でもよい。
In FIG. 1, for convenience of explanation, the upstream and downstream sides of the contraction/expansion nozzle 1 are connected to an upstream chamber 2 and a downstream chamber 3, respectively, which are closed systems. However, in the upstream and downstream sides of the contraction/expansion nozzle 1 in the present invention, if the pressure ratio P/P 0 between the upstream pressure P 0 and the downstream pressure P can be set to a pressure ratio below the critical pressure ratio,
It may be a closed system or an open system, and further may be a vacuum system or a pressurized system.

[作用] 本発明においては、原料又は反応生成物が、縮
小拡大ノズル1の流入口1aからそののど部1b
へ通し、流出口1cから適正膨張流として噴出さ
せることができる。ここで適正膨張流とは、縮小
拡大ノズル1から噴出される流れであつて、噴出
時の圧力Pjが縮小拡大ノズル1の下流側の圧力P
とほぼ等しくなる流れをいう。
[Function] In the present invention, the raw material or the reaction product flows from the inlet 1a of the contraction/expansion nozzle 1 to the throat portion 1b.
It can be passed through the outlet port 1c and jetted out as an appropriately expanded flow. Here, the appropriate expansion flow is a flow ejected from the contraction/expansion nozzle 1, and the pressure P j at the time of ejection is the pressure P on the downstream side of the contraction/expansion nozzle 1.
A flow that is approximately equal to

例えば、流れが縮小拡大ノズル1内で断熱膨張
すると仮定し、流れの速度をu、その点における
音速をa、流れの比熱比をγとすると、流れの到
達マツハ数Mは、上流室2の圧力P0と下流室3
の圧力Pとから次式で定まる。
For example, assuming that the flow expands adiabatically in the contraction/expansion nozzle 1, the velocity of the flow is u, the sound velocity at that point is a, and the specific heat ratio of the flow is γ, the Matsuha number M reached by the flow is Pressure P 0 and downstream chamber 3
It is determined by the following equation from the pressure P.

尚、音速aは局所温度をT、気体定数をRとす
ると、次式で求めることができる。
Note that the sound velocity a can be determined by the following equation, where T is the local temperature and R is the gas constant.

a=√ また、流出口1cの開口面積A及びのど部1bの
開口面積A*と到達マツハ数Mとの間には次の関
係がある。
a=√ Furthermore, the following relationship exists between the opening area A of the outflow port 1c, the opening area A * of the throat portion 1b, and the reached Matsuha number M.

そして、上流室2の圧力P0と下流室3の圧力
Pの圧力比P/P0から(1)式で定まるマツハ数M
と、流出口1cの開口面積Aとのど部1bの開口
面積A*とから(2)式で定まるマツハ数とが一致す
るとき、流れは適正膨張となる。この場合、P/
P0は臨界圧力比未満で、Mは1以上となる。こ
の流れの速度uは、次の(3)式で求めることができ
る。
Then, from the pressure ratio P/P 0 of the pressure P 0 in the upstream chamber 2 and the pressure P in the downstream chamber 3, the Matsuha number M determined by equation (1)
When the opening area A of the outflow port 1c and the opening area A * of the throat portion 1b match the Matsuha number determined by equation (2), the flow becomes properly expanded. In this case, P/
P 0 is less than the critical pressure ratio, and M is 1 or more. The velocity u of this flow can be determined using the following equation (3).

u=M(1+γ−1/2M2-1/2 ……(3) 縮小拡大ノズル1の流出口1cから噴出される
流れは、適正膨張流となると、縮小拡大ノズル1
の流出口1c内壁面方向に沿つた、断面方向にほ
ぼ均一な速度分布を有する流れとなり、ビーム化
される。ここでビームとは、周囲の空間より高い
密度で指向性をもつて一定方向に流れる噴流をい
い、その断面形状は問わないものである。そし
て、流れがビーム化されて拡散が最小限に抑えら
れるので、縮小拡大ノズル1から噴出される原料
や反応生成物を、下流室3の壁面と干渉のない空
間的に独立状態におくことができ、壁面との接触
による悪影響を防止できる。また、ビーム化され
た流れを維持している間に、例えば基体4上に捕
集するようにすれば、拡散による収率の低下を防
止できる。更には、原料や反応生成物を、例えば
レーザー光の照射やプラズマによつて活性化する
場合にも、ビーム化された流れに対してこれらの
エネルギー付与を行うことによつて、無駄なく効
率的に行うことができる。
u=M(1+γ-1/2M 2 ) -1/2 ...(3) When the flow ejected from the outlet 1c of the contraction/expansion nozzle 1 becomes a proper expansion flow, the flow ejected from the contraction/expansion nozzle 1
The flow has a substantially uniform velocity distribution in the cross-sectional direction along the inner wall surface direction of the outlet 1c, and is formed into a beam. Here, the beam refers to a jet stream that flows in a fixed direction with higher density and directivity than the surrounding space, and its cross-sectional shape is not limited. Since the flow is made into a beam and diffusion is minimized, the raw materials and reaction products ejected from the contraction/expansion nozzle 1 can be kept spatially independent without interference with the wall surface of the downstream chamber 3. This prevents negative effects from contact with walls. Furthermore, by collecting the particles on, for example, the substrate 4 while maintaining the beam-formed flow, it is possible to prevent the yield from decreasing due to diffusion. Furthermore, even when raw materials and reaction products are activated by, for example, laser light irradiation or plasma, by applying these energies to the beam-formed flow, it can be done efficiently without waste. can be done.

一方、流れの持つ熱エネルギーをt、運動エネ
ルギーをvとすると、tとvは次の関係にある。
On the other hand, if the thermal energy of the flow is t and the kinetic energy is v, then t and v have the following relationship.

t2/γ−1+1/2v2=一定 ……(4) 従つて、ビーム化される流れの速度に応じて流
れの温度を調整でき、特に本発明では、流れは超
音速となるので、原料や反応生成物の凍結状態や
過冷却状態を作り出すことができる。
t 2 /γ−1+1/2v 2 = constant ... (4) Therefore, the temperature of the flow can be adjusted according to the speed of the flow to be beamed. In particular, in the present invention, since the flow is supersonic, the material It is possible to create a frozen state or a supercooled state for reaction products.

前記(1)及び(2)式は、流れが断熱膨張するときに
成立するもので、縮小拡大ノズル1内で流れに発
熱又は吸熱があるときには成立しない。しかし、
このような場合でも、この発熱又は吸熱量に合わ
せてP/P0やA/A*を調整することによつて適
正膨張流とすることができる。
Equations (1) and (2) above hold true when the flow undergoes adiabatic expansion, but do not hold true when the flow generates heat or absorbs heat within the contraction/expansion nozzle 1. but,
Even in such a case, an appropriate expansion flow can be achieved by adjusting P/P 0 and A/A * according to the amount of heat generated or absorbed.

縮小拡大ノズル1を流過する流れの質量流量m〓
は、次の式(5)式で求められるもので、上流室2の
圧力P0と温度T0が一定だとすると、のど部1b
の開口面積A*で決定され、逆にのど部1bの開
口面積A*が一定だとすると、上流室2の圧力P0
と温度で決定される。
Mass flow rate m of the flow passing through the contraction/expansion nozzle 1〓
is determined by the following equation (5), and assuming that the pressure P 0 and temperature T 0 of the upstream chamber 2 are constant, the throat part 1b
On the other hand, if the opening area A* of the throat portion 1b is constant, then the pressure in the upstream chamber 2 P0
and temperature.

従つて、連続的に一定量ずつの反応生成物を容
易に得られ、また反応量に見合つた量の原料の供
給も容易である。
Therefore, it is easy to continuously obtain a constant amount of the reaction product, and it is also easy to supply raw materials in an amount commensurate with the amount of reaction.

[実施例] 第1図は、本発明の一実施例の概略図で、図中
1は縮小拡大ノズル、2は上流室、3は下流室で
ある。
[Embodiment] FIG. 1 is a schematic diagram of an embodiment of the present invention, in which 1 is a contraction/expansion nozzle, 2 is an upstream chamber, and 3 is a downstream chamber.

上流室2と下流室3は、縮小拡大ノズル1を介
して連結されており、上流室2には原料Aを供給
するためのバルブ5aと、上流室2内の圧力を検
出する圧力センサーS1が接続されている。
The upstream chamber 2 and the downstream chamber 3 are connected through a contraction/expansion nozzle 1, and the upstream chamber 2 includes a valve 5a for supplying raw material A and a pressure sensor S1 for detecting the pressure inside the upstream chamber 2. is connected.

下流室3には、原料Aと反応する原料Bを供給
するためのバルブ5bが接続されていると共に、
縮小拡大ノズル1の流出口1cと向き合う位置に
は、原料AとBの反応によつて得られる反応生成
物Cを捕集するための基体4が設けられている。
基体4は、駆動部10によつて移動可能に支持さ
れているものである。また、下流室3には、下流
室3内を排気するポンプ6がバルブ5cを介して
接続され、更に下流室3内の圧力を検出する圧力
センサーS2が接続されている。
A valve 5b for supplying raw material B to react with raw material A is connected to the downstream chamber 3, and
At a position facing the outlet port 1c of the contraction/expansion nozzle 1, a base body 4 for collecting a reaction product C obtained by the reaction of raw materials A and B is provided.
The base body 4 is movably supported by a drive unit 10. Further, a pump 6 for evacuating the inside of the downstream chamber 3 is connected to the downstream chamber 3 via a valve 5c, and a pressure sensor S 2 for detecting the pressure inside the downstream chamber 3 is further connected.

縮小拡大ノズル1は、上流室2に流入口1aを
開口させ、下流室3に流出口1cを開口させて取
付けられている。そして、その流出口1c付近に
は、噴出時の流れの圧力を検出するための圧力セ
ンサーS3が接続されている。
The contraction/expansion nozzle 1 is installed with an inlet 1a opened in the upstream chamber 2 and an outlet 1c opened in the downstream chamber 3. A pressure sensor S3 for detecting the pressure of the flow at the time of ejection is connected near the outlet 1c.

下流室3内をポンプ6で排気しながら原料Aと
Bを供給すると、原料Aは上流室2から縮小拡大
ノズル1を通つて下流室3内に噴出し、下流室3
内の原料Bと接触反応して、反応生成物Cとなつ
て基体4に捕集される。このとき、圧力センサー
S3で検出される圧力Pjと圧力センサーS2で検出さ
れる圧力Pとがほぼ等しくなるよう圧力センサー
S1とS2で検出される圧力P0とPを調整すること
により、流れは適正膨張流となつてビーム化され
る。また、必要な圧力P0とPに合わせてのど部
1bの開口面積A*と流出口1cの開口面積の比
A/A*を調整した縮小拡大ノズル1を設けるよ
うにしてもよい。
When raw materials A and B are supplied while exhausting the inside of the downstream chamber 3 with the pump 6, the raw material A is ejected from the upstream chamber 2 through the contraction/expansion nozzle 1 and into the downstream chamber 3.
The reaction product C is collected on the substrate 4 by contacting and reacting with the raw material B inside. At this time, the pressure sensor
The pressure sensor is adjusted so that the pressure P j detected by S 3 and the pressure P detected by pressure sensor S 2 are almost equal.
By adjusting the pressures P 0 and P detected at S 1 and S 2 , the flow becomes a properly expanded flow and becomes a beam. Further, a contraction/expansion nozzle 1 may be provided in which the ratio A/A * of the opening area A * of the throat portion 1b and the opening area of the outlet 1c is adjusted in accordance with the required pressures P0 and P.

原料Aがビーム化された流れとして下流室3内
へ噴出され、ビーム流として下流室3内を流れる
間に原料Bと接触して、反応生成物Cとなつてそ
のまま基体4に捕集されるので、原料A及び反応
生成物Cは、ほとんど下流室3内に拡散されるこ
とがなく、収率よく反応物Cを連続的に得ること
ができる。原料Bの一部はポンプ6によつて系外
へ排出されるが、これは循環利用することが可能
である。
Raw material A is ejected into the downstream chamber 3 as a beam stream, comes into contact with raw material B while flowing in the downstream chamber 3 as a beam stream, becomes a reaction product C, and is collected as is on the substrate 4. Therefore, the raw material A and the reaction product C are hardly diffused into the downstream chamber 3, and the reactant C can be continuously obtained with good yield. A part of the raw material B is discharged outside the system by the pump 6, but this can be recycled.

ところで、ビーム化した流れとなる原料Aと、
下流室3内の原料Bを十分接触反応させる必要が
ある。原料Bを気体として、下流室3内における
その気体分子の平均自由行程長をlとすると、気
体分子はlの間隔で下流室3内に存在すると考え
ることができる。従つて、下流室3内における気
体分子の平均自由行程lを一定であるとすると、
下流室3内を移送される間に原料Aが原料Bの分
子と接触する度合は、下流室3内における流路長
を調整することによつて制御できる。この流路長
の制御は、例えば駆動部10で基体4を流路方向
に移動させることによつて行うことができる。ま
た、下流室3内における流路長を一定とすると、
気体分子の平均自由行程長lを調整することによ
つて上記制御を行うこともできる。
By the way, raw material A that becomes a beam-shaped flow,
It is necessary to cause the raw material B in the downstream chamber 3 to undergo a sufficient contact reaction. If the raw material B is a gas and the mean free path length of the gas molecules in the downstream chamber 3 is l, it can be considered that the gas molecules exist in the downstream chamber 3 at intervals of l. Therefore, assuming that the mean free path l of gas molecules in the downstream chamber 3 is constant,
The degree to which raw material A contacts molecules of raw material B while being transferred within downstream chamber 3 can be controlled by adjusting the length of the flow path within downstream chamber 3. This flow path length can be controlled by, for example, moving the base body 4 in the flow path direction using the drive unit 10. Furthermore, assuming that the flow path length in the downstream chamber 3 is constant,
The above control can also be performed by adjusting the mean free path length l of gas molecules.

ここで、下流室3内の原料Bの気体分子の直径
をσ、単位体積当りの分子数をnとすると、その
平均自由行程長lは近似的に次の(6)式で求められ
る。
Here, if the diameter of the gas molecules of the raw material B in the downstream chamber 3 is σ, and the number of molecules per unit volume is n, then the mean free path length l can be approximately determined by the following equation (6).

l=1/√2πnσ2 ……(6) また、気体分子の質量をmとすると、その密度ρ
はρ=mnであるので、上記(6)式は下記(6′)式
に変形できる。
l=1/√2πnσ 2 ...(6) Also, if the mass of the gas molecule is m, its density ρ
Since ρ=mn, the above equation (6) can be transformed into the following equation (6').

l=m/√2πρσ2 ……(6′) 上記(6′)式において、mとσは気体の種類に
よつて定まる一定値であるので、lはρによつて
調整でき、これによつて原料Aと原料Bの分子の
衝突度合を制御できるものである。また、ρを一
定に保つことによつてlを一定に保つことができ
る。
l=m/√2πρσ 2 ...(6') In equation (6') above, m and σ are constant values determined by the type of gas, so l can be adjusted by ρ, and from this Therefore, the degree of collision between the molecules of raw material A and raw material B can be controlled. Furthermore, by keeping ρ constant, l can be kept constant.

一方、ρは、気体定数をR、下流室3内の温度
をt′とすると、次の(7)式によつて求められる。
On the other hand, ρ is determined by the following equation (7), where R is the gas constant and t' is the temperature in the downstream chamber 3.

ρ=P/Rt′ ……(7) 従つて、ρの制御は、下流室3の圧力P又は温
度t′を調整することによつて行うことができる。
また、前述のように、上流室2内の温度が一定で
あれば、同一の縮小拡大ノズル1から噴出される
流れの速度はP/P0によつて決まる。従つて、
気体分子密度ρを一定に制御するに際してP/
P0を一定に保つようにすれば、同一の流れの速
度を維持できる。特に原料Aの活性寿命が短かい
ときに、A/A*とP/P0から定まる速度で、こ
の寿命内に流過できる下流室3内の流路長さと
し、原料Bの気体分子密度ρの制御と共にP/
P0を一定に保つようにすれば、原料Aの活性状
態において十分原料Bを接触させることができ
る。
ρ=P/Rt' (7) Therefore, ρ can be controlled by adjusting the pressure P or temperature t' of the downstream chamber 3.
Furthermore, as described above, if the temperature in the upstream chamber 2 is constant, the speed of the flow ejected from the same contraction/expansion nozzle 1 is determined by P/P 0 . Therefore,
When controlling the gas molecule density ρ to be constant, P/
By keeping P 0 constant, the same flow velocity can be maintained. In particular, when the active life of raw material A is short, the length of the flow path in the downstream chamber 3 that can flow within this life at a speed determined from A/A * and P/P 0 is set, and the gas molecular density of raw material B is ρ. With the control of P/
By keeping P 0 constant, raw material B can be brought into sufficient contact with raw material A in its active state.

縮小拡大ノズル1としては、前述のように、流
入口1aから徐々に開口面積が絞られてのど部1
bとなり、再び徐々に開口面積が拡大して流出口
1cとなつているものであればよいが、第2図a
に拡大して示してあるように、流出口1cの内周
面が、中心軸に対してほぼ平行であることが好ま
しい。これは、噴出流の流れ方向が、流出口1c
の内周面の方向に沿つた方向となるので、できる
だけ平行流にさせやすくするためである。しか
し、第2図bに示されるように、のど部1bから
流出口1cへ至る内周面の中心軸に対する角度α
を、7°以下好ましくは5°以下とすれば、剥離現象
を生じにくく、噴出流の流れはほぼ直線状に維持
されるので、この場合ことさら上記平行部を形成
しなくともよい。平行部の形成を省略することに
より、縮小拡大ノズル1の作製が容易となる。ま
た、縮小拡大ノズル1を第2図cに示されるよう
な矩形のものとすれば、スリツト状の流れとして
噴出させることができる。
As described above, the contraction/expansion nozzle 1 has an opening area gradually narrowed from the inlet 1a to the throat portion 1.
b, and the opening area gradually expands again to form the outflow port 1c.
As shown in the enlarged view, it is preferable that the inner circumferential surface of the outlet 1c is substantially parallel to the central axis. This means that the flow direction of the jet flow is the outlet 1c.
This is to make parallel flow as easy as possible since the direction is along the direction of the inner circumferential surface of. However, as shown in FIG. 2b, the angle α of the inner circumferential surface extending from the throat portion 1b to the outlet 1c with respect to the central axis is
If it is set to 7° or less, preferably 5° or less, the separation phenomenon is less likely to occur and the flow of the jet flow is maintained in a substantially straight line, so in this case it is not necessary to form the above-mentioned parallel portion. By omitting the formation of the parallel portion, the contraction/expansion nozzle 1 can be manufactured easily. Further, if the contraction/expansion nozzle 1 is made rectangular as shown in FIG. 2c, it is possible to eject the liquid in a slit-like flow.

ここで、前記剥離現象とは縮小拡大ノズル1の
内面に突起物等があつた場合に、縮小拡大ノズル
1の内面と流過流体間の境界層が大きくなつて、
流れが不均一になる現象をいい、噴出流が高速に
なるほど生じやすい。前述の角度αは、この剥離
現象防止のために、縮小拡大ノズル1の内面仕上
げ精度が劣るものほど小さくすることが好まし
い。縮小拡大ノズル1の内面は、JIS B 0601に
定められる、表面仕上げ精度を表わす逆三角形マ
ークで三つ以上、最適には四つ以上が好ましい。
特に、縮小拡大ノズル1の拡大部における剥離現
象が、その後の流れに大きく影響するので、上記
仕上げ精度を、この拡大部を重点にして定めるこ
とによつて、縮小拡大ノズル1の作製を容易にで
きる。また、やはり剥離現象の発生防止のため、
のど部1bは滑らかな湾曲面とし、断面積変化率
における微係数が∞とならないようにする必要が
ある。
Here, the above-mentioned separation phenomenon means that when there is a protrusion on the inner surface of the contraction/expansion nozzle 1, the boundary layer between the inner surface of the contraction/expansion nozzle 1 and the flowing fluid becomes large.
This is a phenomenon in which the flow becomes non-uniform, and the higher the speed of the jet flow, the more likely it is to occur. In order to prevent this peeling phenomenon, the above-mentioned angle α is preferably made smaller as the inner surface finish accuracy of the contraction/expansion nozzle 1 is inferior. The inner surface of the contraction/expansion nozzle 1 has three or more, preferably four or more, inverted triangular marks indicating surface finish accuracy as defined in JIS B 0601.
In particular, the peeling phenomenon at the enlarged part of the contraction/expansion nozzle 1 greatly affects the subsequent flow, so by determining the finishing accuracy with emphasis on this enlarged part, the production of the contraction/expansion nozzle 1 can be made easier. can. In addition, in order to prevent the occurrence of peeling phenomenon,
It is necessary that the throat portion 1b has a smooth curved surface so that the differential coefficient in the rate of change of cross-sectional area does not become ∞.

縮小拡大ノズル1の材質としては、例えば鉄、
ステンレススチールその他の金属の他、ポリフツ
化エチレン、アクリル樹脂、ポリ塩化ビニル、ポ
リエチレン、ポリスチレン、ポリプロピレン等の
合成樹脂、セラミツク材料、石英、ガラス等、広
く用いることができる。この材質の選択は、原料
A、Bや反応生成物Cとの非反応性、加工性、減
圧系内におけるガス放出性等を考慮して行えばよ
い。また、縮小拡大ノズル1の内面に、反応を生
じにくい材料をメツキ又はコートすることもでき
る。具体例としては、ポリフツ化エチレンのコー
ト等を挙げることができる。
Examples of the material of the contraction/expansion nozzle 1 include iron,
In addition to stainless steel and other metals, a wide variety of materials can be used, including polyethylene fluoride, acrylic resin, polyvinyl chloride, synthetic resins such as polyethylene, polystyrene, and polypropylene, ceramic materials, quartz, and glass. This material may be selected by taking into consideration non-reactivity with raw materials A and B and reaction product C, processability, gas release properties in a reduced pressure system, and the like. Furthermore, the inner surface of the contraction/expansion nozzle 1 can be plated or coated with a material that is less likely to cause a reaction. A specific example is a polyfluorinated ethylene coating.

縮小拡大ノズル1の長さは、装置の大きさ等に
よつて任意に定めることができる。ところで、縮
小拡大ノズル1を流過するときに、流れは、保有
する熱エネルギーが運動エネルギーに変換され
る。そして、速度を大きくして熱エネルギーを小
さくすれば、過冷却状態を作り出すこともでき
る。また、原料A中に凝縮成分が含まれている場
合、上記温度降下によつて積極的にこれらを凝縮
させ、これによつて微粒子を形成させることも可
能である。また、この場合、十分な凝縮を行うた
めに、縮小拡大ノズル1は長い方が好ましい。一
方、上記のような凝縮を生ずると、これによつて
熱エネルギーが増加して速度エネルギーは低下す
る。従つて、高速噴出の維持を図る上では、凝縮
拡大ノズル1は短い方が好ましい。
The length of the contraction/expansion nozzle 1 can be arbitrarily determined depending on the size of the device and the like. By the way, when the flow passes through the contraction/expansion nozzle 1, the thermal energy it possesses is converted into kinetic energy. By increasing the speed and reducing the thermal energy, it is possible to create a supercooled state. Furthermore, if the raw material A contains condensed components, it is also possible to actively condense them by the temperature drop and thereby form fine particles. Further, in this case, in order to perform sufficient condensation, it is preferable that the contraction/expansion nozzle 1 be long. On the other hand, when condensation occurs as described above, thermal energy increases and velocity energy decreases. Therefore, in order to maintain high-speed jetting, it is preferable that the condensing and expanding nozzle 1 be short.

第4図に示されるように、縮小拡大ノズル1の
のど部1bより流入口1a寄りに供給孔9を形成
し、縮小拡大ノズル1内を流れる原料と反応する
他の原料を供給することもできる。供給孔9の縮
小拡大ノズル1内開口位置を、のど部1bから十
分離しておくことによつて、縮小拡大ノズル1か
ら噴出される流れの乱れを防止することができ、
ビーム化が維持される。このような供給孔9を設
けた縮小拡大ノズル1とすれば、例えば2種以上
の原料をビーム状流れ内で反応させるときに、上
流室2内で全原料を供給混合する必要がないの
で、上流室2内で反応が開始されてその壁面に付
着してしまうのを防止できる。
As shown in FIG. 4, it is also possible to form a supply hole 9 closer to the inlet 1a than the throat 1b of the contraction/expansion nozzle 1 to supply other raw materials that react with the raw material flowing inside the contraction/expansion nozzle 1. . By keeping the opening position of the supply hole 9 in the contraction/expansion nozzle 1 sufficiently away from the throat portion 1b, disturbance of the flow ejected from the contraction/expansion nozzle 1 can be prevented.
Beam formation is maintained. If the contraction/expansion nozzle 1 is provided with such a supply hole 9, it is not necessary to supply and mix all the raw materials in the upstream chamber 2, for example, when two or more kinds of raw materials are reacted in a beam-shaped flow. It is possible to prevent the reaction from starting within the upstream chamber 2 and adhering to the wall surface thereof.

更に縮小拡大ノズル1は、第5図に示されるよ
うに、二以上ののど部1b,1b…を有するもの
とすることもできる。このような多段の縮小拡大
ノズル1で適正膨張流を形成すれば、縮小拡大ノ
ズル1内で流れは加速と減速を繰返し、これに伴
つて流れの温度も降下と上昇を繰返すことにな
る。従つて、このような温度変化を利用して反応
を促すこと等も可能となる。
Further, the contraction/expansion nozzle 1 may have two or more throat portions 1b, 1b, . . . as shown in FIG. If a proper expansion flow is formed with such a multi-stage contraction/expansion nozzle 1, the flow will repeatedly accelerate and decelerate within the contraction/expansion nozzle 1, and the temperature of the flow will also repeatedly drop and rise accordingly. Therefore, it is also possible to promote reactions by utilizing such temperature changes.

必要に応じて、例えば原料Aを縮小拡大ノズル
1内又は噴出後に活性化することもできる。縮小
拡大ノズル1内で活性化エネルギーを付与するに
は、縮小拡大ノズル1を石英等の絶縁体で形成
し、マイクロ波を付与してプラズマをたてたり、
縮小拡大ノズル1を透光体で形成して、紫外、赤
外、レーザー光等の各種の波長を持つ光を流れに
照射することが挙げられる。また、第3図a,b
に示されるように、縮小拡大ノズル1を、電気的
絶縁体製の絶縁部7を介して組合わされた、電気
的良導体製の二分割片8a,8bで形成し、両片
8a,8bを一対の電極として、これに高周波又
は直流電流を付与してプラズマを発生させること
もできる。縮小拡大ノズル1から噴出後に活性化
を図る場合、ビームに対して光やプラズマを付与
するようにすればよい。
If necessary, for example, the raw material A can be activated within the contraction/expansion nozzle 1 or after being ejected. To apply activation energy within the contraction/expansion nozzle 1, the contraction/expansion nozzle 1 is made of an insulator such as quartz, and microwaves are applied to generate plasma.
An example of this is to form the contraction/expansion nozzle 1 from a transparent material and irradiate the flow with light having various wavelengths such as ultraviolet, infrared, and laser light. Also, Figure 3 a, b
As shown in , the contraction/expansion nozzle 1 is formed of two halves 8a and 8b made of a good electrical conductor, which are combined through an insulating part 7 made of an electric insulator, and the two halves 8a and 8b are combined into a pair. Plasma can also be generated by applying high frequency or direct current to this electrode. When activating the beam after it is ejected from the contraction/expansion nozzle 1, light or plasma may be applied to the beam.

縮小拡大ノズル1を上下左右へ傾動させたり一
定間隔でスキヤン可能とすれば、基体4の任意の
範囲に反応生成物Cを捕集することができる。こ
れは、反応生成物Cで基体4の表面に成膜する場
合に有益で、特に第2図cの矩形ノズルと組合わ
せると効果的である。
By tilting the contraction/expansion nozzle 1 vertically, horizontally, or horizontally or by making it possible to scan at regular intervals, the reaction product C can be collected in any desired range of the substrate 4. This is useful when forming a film on the surface of the substrate 4 with the reaction product C, and is particularly effective in combination with the rectangular nozzle shown in FIG. 2c.

基体4を、駆動部10によつて、縮小拡大ノズ
ル1方向へ前進後退可能とすれば、原料Aが原料
Bと反応して基体4に捕集されるまでのタイミン
グを調整することができる。従つて、活性寿命の
著しく短かい原料や反応生成物であつても、その
活性化位置に基体4を近ずけることによつて、活
性状態での捕集も可能となる。また、捕集しやす
い状態とするために、基体4を加熱又は冷却する
こともできる。特に基体4を冷却しておけば、基
体4の表面で成分を凝縮させたり固化させて捕集
することもできる。
If the base body 4 can be moved forward and backward in the direction of the contraction/expansion nozzle 1 by the drive unit 10, the timing until the raw material A reacts with the raw material B and is collected on the base body 4 can be adjusted. Therefore, even if the raw material or reaction product has an extremely short active life, it is possible to collect the raw material or reaction product in the active state by bringing the substrate 4 close to the activated position. Further, the substrate 4 can be heated or cooled to make it easier to collect. In particular, if the substrate 4 is cooled, the components can be condensed or solidified on the surface of the substrate 4 and collected.

基体4を、駆動部10によつて、上下左右に移
動可能又は回転可能に保持し、広い範囲に亘つて
ビームを受けられるようにすることもできる。ま
た、基体4をロール状に巻取つて、これを順次送
り出しながらビームを受けるようにすることによ
つて、長尺の基体4に反応生成物Cによる処理を
施すこともできる。更には、ドラム状の基体4を
回転させながら反応生成物Cによる処理を施して
もよい。
The base body 4 can also be held movably or rotatably in the vertical and horizontal directions by the drive unit 10 so that the beam can be received over a wide range. Further, a long substrate 4 can be treated with the reaction product C by winding the substrate 4 into a roll and sending it out one after another to receive the beam. Furthermore, the treatment with the reaction product C may be performed while rotating the drum-shaped substrate 4.

縮小拡大ノズル1を開閉する弁を設け、この弁
を断続的に開閉しながら反応を行うこともでき
る。同一の排気条件下とすれば、この断続的開閉
の方が、下流室3を高真空に保持しやすい利点が
ある。逆に上流室2を加圧する場合には、この高
圧を保持しやすくなる。縮小拡大ノズル1内やそ
の下流側で活性化等のためのエネルギー付与を行
う場合、この断続的開閉と同期させて付与を行え
ば無駄なくエネルギー付与を行うことができる。
It is also possible to provide a valve for opening and closing the contraction/expansion nozzle 1 and perform the reaction while opening and closing this valve intermittently. Under the same exhaust conditions, this intermittent opening and closing has the advantage that it is easier to maintain the downstream chamber 3 at a high vacuum. Conversely, when pressurizing the upstream chamber 2, it becomes easier to maintain this high pressure. When energy is applied for activation or the like within the contraction/expansion nozzle 1 or on the downstream side thereof, the energy can be applied without waste if energy is applied in synchronization with this intermittent opening/closing.

第6図a〜dは各々本発明の他の実施例の概略
図である。
6a to 6d are each a schematic diagram of another embodiment of the invention.

aの場合、上流室2に供給された原料Aは、縮
小拡大ノズル1内又はその後のビーム化された流
れ状態にあるときに、えばエネルギー付与による
活性化反応によつて、物性変化したA′となつて、
下流室3の基体4に捕集される。
In the case of a, when the raw material A supplied to the upstream chamber 2 is in the beam-formed flow state within the contraction/expansion nozzle 1 or after that, the physical properties of the raw material A have changed due to an activation reaction caused by energy application. Then,
It is collected on the base body 4 in the downstream chamber 3.

bの場合、上流室2内に互に反応する原料A、
Bが供給され、これが縮小拡大ノズル1内を通つ
て下流室3内の基体4に捕集されるまでに反応生
成物Cが生成されて捕集されることになる。この
場合、縮小拡大ノズル1の少なくとも内面を、原
料A、Bの反応を促す触媒で構成しておくことも
できる。
In the case of b, the raw materials A reacting with each other in the upstream chamber 2,
B is supplied, and by the time it passes through the contraction/expansion nozzle 1 and is collected on the substrate 4 in the downstream chamber 3, a reaction product C is generated and collected. In this case, at least the inner surface of the contraction/expansion nozzle 1 may be made of a catalyst that promotes the reaction of the raw materials A and B.

cの場合、上流室2に供給された原料Aは、そ
のままビーム化されて下流室3の基体4へと至
る。基体4の表面は、原料Aと反応する原料Bと
なつていて、原料Aはビームとして基体4の表面
に衝突し、原料Bと反応して、反応生成物Cとし
て捕集される。この様に基体4の表面で反応を得
る場合、流れがビームとなつて超音速で基体4に
衝突する運動エネルギーを反応に利用することが
できる。また、基体4上の原料Bは固体であつて
も、また基体4に含浸させた液体であつてもよ
い。
In case c, the raw material A supplied to the upstream chamber 2 is converted into a beam as it is and reaches the substrate 4 in the downstream chamber 3. The surface of the base 4 is a raw material B that reacts with the raw material A, and the raw material A collides with the surface of the base 4 as a beam, reacts with the raw material B, and is collected as a reaction product C. When a reaction is obtained on the surface of the substrate 4 in this manner, the kinetic energy of the flow turning into a beam and colliding with the substrate 4 at supersonic speed can be utilized for the reaction. Further, the raw material B on the substrate 4 may be a solid or a liquid impregnated into the substrate 4.

dの場合、原料AとBは、各々別々の上流室
2,2に供給され、別々の縮小拡大ノズル1,1
を通つてビーム化されて同じ下流室3へ流入す
る。そして、下流室3内で両ビームが交差するこ
とによつて原料AとBが反応し、反応生成物Cが
基体4に捕集される。このようにすれば、原料A
とBの反応開始位置を、下流室3内の任意の位置
に定めることができる。
In case d, raw materials A and B are supplied to separate upstream chambers 2, 2, respectively, and are supplied to separate contraction/expansion nozzles 1, 1.
The beam is formed into a beam and flows into the same downstream chamber 3. Then, as the two beams intersect in the downstream chamber 3, the raw materials A and B react, and the reaction product C is collected on the substrate 4. In this way, raw material A
The reaction start position of and B can be set at any position within the downstream chamber 3.

[発明の効果] 本発明によれば、原料や反応生成物がビーム化
されて一定方向に移送されるので、下流室の壁面
との干渉や流れの拡散による収率低下を最小限に
抑えることができるばかりか、空間的に独立した
領域で何らの干渉も受けずに反応を行うことがで
き、理想的な反応場による純度の高い生成物を得
ることもできる。また、流れの拡散が抑えられて
いるので、反応に関与するエネルギー付与を行い
やすく、流量制御がしやすいことも相俟つて、反
応量に見合うだけのエネルギー付与を行つて、エ
ネルギーの無駄な消費を防止することもできる。
特に、本発明においては、原料ばかりか、活性化
エネルギー等の反応開始手段も外部から継続的に
加えることができるので、長期に亘る連続処理が
可能で、工業的量産方法としても効果的である。
[Effects of the Invention] According to the present invention, since the raw materials and reaction products are converted into a beam and transported in a fixed direction, a decrease in yield due to interference with the wall surface of the downstream chamber or flow diffusion can be minimized. Not only is it possible to carry out the reaction in a spatially independent area without any interference, it is also possible to obtain highly pure products due to the ideal reaction field. In addition, since the diffusion of the flow is suppressed, it is easy to apply the energy involved in the reaction, and it is easy to control the flow rate.This also makes it possible to apply just enough energy to match the amount of reaction, eliminating wasteful energy consumption. It can also be prevented.
In particular, in the present invention, not only raw materials but also reaction initiation means such as activation energy can be added continuously from the outside, so continuous treatment over a long period of time is possible and it is effective as an industrial mass production method. .

適正膨張流とすれば、ビーム化された流れによ
る大きな運動エネルギーが得られると共に、その
照射領域を特定できるので、これらを活性した中
性粒子の打ち込みや、切削、エツチングも可能と
なる。
If the flow is properly expanded, large kinetic energy can be obtained from the beam-formed flow, and the irradiation area can be specified, making it possible to implant neutral particles that activate these, and to perform cutting and etching.

一方、本発明によれば、原料や反応生成物を超
音速で移送することになるので、活性寿命の極め
て短かい原料や反応生成物を活性状態のま基体に
受ける必要がある場合にも、十分これを満足し得
る。加えて、縮小拡大ノズル1内で流れを凍結状
態にすることができるので、流れ中の分子のミク
ロな状態を規定し、一つの状態からある状態への
遷移を取り扱うことも可能である。即ち、分子の
持つ各種のエネルギー準位までも規定し、その準
位に相当するエネルギーを付与するという、新た
な方式による気相の化学反応が可能である。ま
た、従来とは異なるエネルギー授受の場が提供さ
れることにより、水素結合やフアンデアワールス
結合等の比較的弱い分子間力で形成される分子間
化合物を容易に生み出すこともできる。
On the other hand, according to the present invention, raw materials and reaction products are transferred at supersonic speed, so even when raw materials and reaction products with extremely short active lives need to be received by the substrate in an active state, This is enough to satisfy me. In addition, since the flow can be frozen in the contraction/expansion nozzle 1, it is also possible to define the microscopic state of molecules in the flow and handle the transition from one state to another. In other words, it is possible to perform chemical reactions in the gas phase using a new method in which various energy levels of molecules are defined and energy corresponding to the levels is imparted. Furthermore, by providing a field for energy exchange different from conventional ones, it is also possible to easily create intermolecular compounds formed by relatively weak intermolecular forces such as hydrogen bonds and Van der Waals bonds.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係る反応装置の一実施例を示
す概略図、第2図a〜cは各々縮小拡大ノズルの
形状例を示す図、第3図a,b、第4図及び第5
図は各々縮小拡大ノズルの他の実施例を示す図、
第6図a〜dは各々本発明の他の実施例を示す概
略図である。 1:縮小拡大ノズル、1a:流入口、1b:の
ど部、1c:流出口、2:上流室、3:下流室、
4:基体、5a〜5c:バルブ、6:ポンプ、
7:絶縁部、8a,8b:電極、9:供給孔、1
0:駆動部、S1〜S3:圧力センサー。
FIG. 1 is a schematic diagram showing an embodiment of the reaction apparatus according to the present invention, FIGS.
The figures are diagrams showing other embodiments of the contraction/expansion nozzle, respectively.
FIGS. 6a to 6d are schematic diagrams showing other embodiments of the present invention. 1: contraction/expansion nozzle, 1a: inlet, 1b: throat, 1c: outlet, 2: upstream chamber, 3: downstream chamber,
4: Base, 5a to 5c: Valve, 6: Pump,
7: Insulating part, 8a, 8b: Electrode, 9: Supply hole, 1
0: Drive unit, S1 to S3 : Pressure sensor.

Claims (1)

【特許請求の範囲】[Claims] 1 縮小拡大ノズルを介して接続された上流室と
下流室とを備えた反応装置であつて、上流室に供
給された第1の原料を下流室にビーム流として噴
出せしめるように上流室と下流室の圧力を調整す
るための圧力調整手段と、第1の原料のビーム流
に対してエネルギーを付与するかもしくは第2の
原料を供給するための手段及びエネルギーを付与
されたもしくは第2の原料を供給された前記ビー
ム流を捕集するための基体を備えたことを特徴と
する反応装置。
1. A reaction device comprising an upstream chamber and a downstream chamber connected via a contraction/expansion nozzle, the upstream chamber and the downstream chamber being connected to each other through a contraction/expansion nozzle, the upstream chamber and the downstream chamber being connected to each other through a contraction/expansion nozzle. pressure regulating means for regulating the pressure of the chamber and means for energizing the beam stream of the first material or supplying the second material and the energized or second material; 1. A reaction device comprising a base body for collecting the beam flow supplied with the beam flow.
JP14582385A 1985-05-11 1985-07-04 Reaction apparatus Granted JPS627431A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP14582385A JPS627431A (en) 1985-07-04 1985-07-04 Reaction apparatus
CA000504936A CA1272661A (en) 1985-05-11 1986-03-24 Reaction apparatus
DE3610295A DE3610295C2 (en) 1985-05-11 1986-03-26 Method and device for converting raw materials
GB8607603A GB2175708B (en) 1985-05-11 1986-03-26 Reaction apparatus
US07/053,555 US4909914A (en) 1985-05-11 1987-05-21 Reaction apparatus which introduces one reacting substance within a convergent-divergent nozzle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14582385A JPS627431A (en) 1985-07-04 1985-07-04 Reaction apparatus

Publications (2)

Publication Number Publication Date
JPS627431A JPS627431A (en) 1987-01-14
JPH043254B2 true JPH043254B2 (en) 1992-01-22

Family

ID=15393951

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14582385A Granted JPS627431A (en) 1985-05-11 1985-07-04 Reaction apparatus

Country Status (1)

Country Link
JP (1) JPS627431A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3282193B2 (en) * 1991-10-30 2002-05-13 ダイキン工業株式会社 Film forming equipment
US8678316B2 (en) * 2009-01-29 2014-03-25 The Boeing Company Amorphous metal riblets
NO334282B1 (en) * 2012-04-27 2014-01-27 Reactive Metal Particles As Apparatus and method for making particulate matter
CA2983234A1 (en) * 2015-04-21 2016-10-27 Arc Aroma Pure Ab Chamber for pulsed electric field generation

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4827962A (en) * 1971-08-16 1973-04-13
JPS544869A (en) * 1977-06-15 1979-01-13 Babcock Hitachi Kk Mixer for reducing agent and diluting agent
JPS60145824A (en) * 1984-01-07 1985-08-01 Nichiman Gomme Kogyo Kk Manufacture of tile with two-color geometrical pattern

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4827962A (en) * 1971-08-16 1973-04-13
JPS544869A (en) * 1977-06-15 1979-01-13 Babcock Hitachi Kk Mixer for reducing agent and diluting agent
JPS60145824A (en) * 1984-01-07 1985-08-01 Nichiman Gomme Kogyo Kk Manufacture of tile with two-color geometrical pattern

Also Published As

Publication number Publication date
JPS627431A (en) 1987-01-14

Similar Documents

Publication Publication Date Title
US4909914A (en) Reaction apparatus which introduces one reacting substance within a convergent-divergent nozzle
US6409851B1 (en) Microwave plasma chemical synthesis of ultrafine powders
TW469512B (en) Precursor deposition using ultrasonic nebulizer
JPH02222134A (en) Thin film forming apparatus
JPS6380843A (en) Reaction apparatus
JPH043254B2 (en)
JPS62253772A (en) Film forming apparatus
JPS6316043A (en) Collection of fine particle
JPS6291233A (en) Flow control device for flow of fine particles
JPS62155934A (en) Vapor phase exciter
RU2405739C1 (en) Method for production of coatings from carbon nanomaterials and device for its realisation
JPS627442A (en) Reaction apparatus
JPS6369538A (en) Reaction device
KR101816450B1 (en) Aerosol chemical vapor deposition method and apparatus for an aerosol chemical vapor deposition realizing the same
JPS6335779A (en) Film forming device
JPS6320483A (en) Fine particle spraying device
JPS62120477A (en) Film forming device
JPS63240940A (en) Treatment of objective
JPS61218815A (en) Minute particle flow control apparatus
JPS6263205A (en) Flow controller of corpuscular stream
JPS62115823A (en) Flow controller
JPS62131510A (en) Fine particle spraying device
JPS62115699A (en) Vapor phase exciter
JPS6242414A (en) Vapor-phase exciting device
JPH0361374A (en) Method and device for forming inorganic film