JPH04325459A - Dielectric ceramics and production thereof - Google Patents

Dielectric ceramics and production thereof

Info

Publication number
JPH04325459A
JPH04325459A JP3097744A JP9774491A JPH04325459A JP H04325459 A JPH04325459 A JP H04325459A JP 3097744 A JP3097744 A JP 3097744A JP 9774491 A JP9774491 A JP 9774491A JP H04325459 A JPH04325459 A JP H04325459A
Authority
JP
Japan
Prior art keywords
tio2
mgo
titanate
mixed
excess
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3097744A
Other languages
Japanese (ja)
Other versions
JP3034073B2 (en
Inventor
Kazunori Soroe
揃 和紀
Tomoji Kawaguchi
川口 智司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=14200399&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JPH04325459(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP3097744A priority Critical patent/JP3034073B2/en
Publication of JPH04325459A publication Critical patent/JPH04325459A/en
Application granted granted Critical
Publication of JP3034073B2 publication Critical patent/JP3034073B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To improve acid resistance by mixing magnesium titanate powder with calcium titanate powder so that the molar amt. of TiO2 to MgO is made excess, molding and firing the mixture. CONSTITUTION:The molar amt. of TiO2 to MgO in starting material is made excess. For example, calcium titanate is blended with magnesidum titanate having <1 molar ratio of MgO to TiO2 or calcium titanate is mixed with magnesium titanate having >=1 molar ratio of MgO to TiO2 and TiO2 is further added so as to make the amt. of TiO2 excess The powdery starting material is mixed in a resin mill, spray-dried, pulverized to a prescribed grain size, mixed with a binder and spraydried again. The resulting secondary particles are press- molded and fired to obtain magnesium titanate-calcium titanate dielectric ceramics not contg. the crystal structure of Mg2TiO4 and having improved acid resistance. Even when the ceramics is subjected to acid treatment at the time of Cu plating, it is not etched and a Cu film can be satisfactorily deposited.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、チタン酸マグネシウム
−チタン酸カルシウム系誘電体セラミックスの製造方法
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing magnesium titanate-calcium titanate dielectric ceramics.

【0002】0002

【従来の技術】近年、誘電体セラミックスをマイクロ波
に応用したものとして、ディレイライン、フィルター回
路、マイクロ波回路、誘電体フィルター等のマイクロ波
回路(MIC)に用いられる基板や、導波回路、導波線
路、アンテナの媒体用セラミック等があげられる。
[Prior Art] In recent years, dielectric ceramics have been applied to microwaves, such as substrates used in microwave circuits (MIC) such as delay lines, filter circuits, microwave circuits, dielectric filters, waveguide circuits, etc. Examples include waveguide lines, ceramics for antenna media, etc.

【0003】その中で、回路形成時の膜付けは、Ag−
Pd、Cuでの厚膜や薄膜の手法がとられていた。しか
し、Agペーストでは高周波数域での損失が大きく、通
常1GHzが限界であることや、小型化の傾向から、誘
電損失の小さいCuの膜付けが主流になりつつある。
Among these, Ag-
Thick film and thin film methods using Pd and Cu have been used. However, Ag paste has a large loss in a high frequency range, and the limit is usually 1 GHz, and due to the trend toward miniaturization, the use of a Cu film with low dielectric loss is becoming mainstream.

【0004】また、従来よりチタン酸マグネシウム(以
下MTという)−チタン酸カルシウム(以下CTという
)系誘電体セラミックスが広く用いられてきた。この誘
電体セラミックスを製造するには、MgO/TiO2 
のモル比が1であるMTと、CaO/TiO2 のモル
比が1であるCTとを混合し、噴霧乾燥後、仮焼し、さ
らに所定の粒度になるように微粉砕した後、バインダー
を加えて噴霧乾燥し、得られた原料を所定の形状にプレ
ス成形して、焼成するようになっていた。さらに、上記
MTとCTとの混合比を変えることで、誘電率εr の
値を調整することができた。また、このようなMT−C
T系の誘電体セラミックスにおいては、Cuの厚膜を形
成する際に還元雰囲気で処理をすると、抵抗値が急激に
低下するなどの問題があることから、Cuメッキによる
膜付けが検討されている。
Furthermore, magnesium titanate (hereinafter referred to as MT)-calcium titanate (hereinafter referred to as CT) dielectric ceramics have been widely used. To produce this dielectric ceramic, MgO/TiO2
MT in which the molar ratio of CaO/TiO2 is 1 is mixed with CT in which the molar ratio of CaO/TiO2 is 1. After spray drying, calcining, and further pulverizing to a predetermined particle size, a binder is added. The resulting raw material was then press-molded into a predetermined shape and fired. Furthermore, by changing the mixing ratio of MT and CT, the value of the dielectric constant εr could be adjusted. Also, such MT-C
For T-based dielectric ceramics, there are problems such as a sudden drop in resistance when processing in a reducing atmosphere when forming a thick Cu film, so film deposition by Cu plating is being considered. .

【0005】[0005]

【発明が解決しようとする課題】ところが、MT−CT
系誘電体セラミックスにCuメッキを施す場合、表面を
酸処理する工程でセラミックスが浸食されててしまい、
メッキしたCuが内部まで浸透して、絶縁抵抗値を低下
させてしまうという問題点があった。
[Problem to be solved by the invention] However, MT-CT
When applying Cu plating to dielectric ceramics, the ceramics are eroded during the process of acid treatment of the surface.
There was a problem in that the plated Cu penetrated into the interior and lowered the insulation resistance value.

【0006】[0006]

【課題を解決するための手段】そこで、本発明は、MT
−CT系誘電体セラミックスにおいてMg2 TiO4
 の結晶構造を含まないようにしたことを特徴とする。
[Means for Solving the Problems] Therefore, the present invention provides MT
-Mg2 TiO4 in CT-based dielectric ceramics
It is characterized by not containing any crystal structure.

【0007】即ち、本発明者等が種々実験の結果、従来
のMT−CT系誘電体セラミックスにはMg2 TiO
4 が存在しており、このMg2 TiO4 が特に耐
酸性が悪いため、上記Cuメッキ時の酸処理工程で腐食
しやすいことを見出したのである。したがって、Mg2
 TiO4 を含まないMT−CT系誘電体セラミック
スとすることで、耐酸性を高め、Cuメッキを好適に行
うことができる。なお、本発明において、Mg2 Ti
O4 を含まないとは、セラミックス表面をX線回折に
よって分析したときに、Mg2 TiO4 のピークが
検出されないことを意味する。
That is, as a result of various experiments conducted by the present inventors, conventional MT-CT dielectric ceramics contain Mg2TiO.
They found that this Mg2TiO4 has particularly poor acid resistance and is easily corroded in the acid treatment step during the Cu plating. Therefore, Mg2
By using MT-CT dielectric ceramics that do not contain TiO4, acid resistance can be improved and Cu plating can be suitably performed. In addition, in the present invention, Mg2Ti
Not containing O4 means that no Mg2TiO4 peak is detected when the ceramic surface is analyzed by X-ray diffraction.

【0008】また、このようにMg2 TiO4 の存
在しないMT−CT系誘電体セラミックスを製造するた
めには、あらかじめ原料中において、MgOに対するT
iO2 のモル量を過剰としておけばよい。具体的には
、CTと、MgO/TiO2 のモル比が1より小さい
MTとを混合し、この原料を用いて成形、焼成すればよ
い。あるいは、CTと、MgO/TiO2 のモル比が
1以上のMTとを混合した後、さらにTiO2 を添加
してTiO2 量を過剰とし、この原料を用いて成形、
焼成することもできる。
[0008] Furthermore, in order to produce MT-CT dielectric ceramics in which Mg2TiO4 is not present, T
The molar amount of iO2 may be in excess. Specifically, CT and MT having a MgO/TiO2 molar ratio of less than 1 may be mixed, and this raw material may be used to mold and fire. Alternatively, after mixing CT and MT having a MgO/TiO2 molar ratio of 1 or more, TiO2 is further added to make the amount of TiO2 excessive, and this raw material is used for molding.
It can also be baked.

【0009】[0009]

【実施例】以下本発明の実施例を説明する。[Examples] Examples of the present invention will be described below.

【0010】MT−CT系誘電体セラミックスにおいて
、MT、CTの組成比と誘電率εr との関係を調べた
ところ、図1のような結果であった。また、誘電率εr
 の温度係数τf が0ppm/℃となる組成はεr 
=21付近にあることが実験により得られた。そこで、
以下εr =21、24、27となる組成のものについ
て実験を行った。
When we investigated the relationship between the composition ratio of MT and CT and the dielectric constant εr in MT-CT dielectric ceramics, we found the results shown in FIG. Also, the dielectric constant εr
The composition for which the temperature coefficient τf of is 0 ppm/℃ is εr
It was experimentally found that the value is around 21. Therefore,
Experiments were conducted on the following compositions with εr =21, 24, and 27.

【0011】実験例1 MT材として、表1に示すようにMgO/TiO2 の
モル比が異なる3種類の原料を用意した。また、CT材
としてCaO/TiO2 のモル比が1.00のものを
用意した。
Experimental Example 1 Three types of raw materials having different MgO/TiO2 molar ratios as shown in Table 1 were prepared as MT materials. In addition, a CT material with a CaO/TiO2 molar ratio of 1.00 was prepared.

【0012】0012

【表1】[Table 1]

【0013】これら3種類のMT材と1種類のCT材を
用いて、それぞれ、誘電率εr =21、24、27と
なるような組成比とした。これらの原料粉末を樹脂ミル
中に入れ、ジルコニアボールで混合した後、噴霧乾燥し
、さらに所定の粒度になるように微粉砕した後、バイン
ダーを加えて噴霧乾燥し、得られた2次粒子を成形圧力
1ton/cm2 でプレス成形し、焼成して、直径1
0mmで1cm3 の大きさのテストピース、直径20
mmで厚み5mmのテストピース、および2×2インチ
で厚み0.6mmのテストピースを得た。これらのテス
トピースを用いて、X線回折によるMg2 TiO4 
の存在の確認、誘電率εr の測定、耐酸性評価、Cu
メッキ後の抵抗値低下の有無を調べた。結果は表2に示
す通りである。
Using these three types of MT materials and one type of CT material, the composition ratios were set such that the dielectric constant εr=21, 24, and 27, respectively. These raw material powders are placed in a resin mill, mixed with zirconia balls, spray-dried, finely pulverized to a predetermined particle size, then a binder is added and spray-dried, and the resulting secondary particles are Press molded at a molding pressure of 1 ton/cm2 and fired to a diameter of 1
0mm and 1cm3 size test piece, diameter 20
A test piece measuring 2 mm and 5 mm thick and a test piece measuring 2×2 inches and 0.6 mm thick were obtained. Using these test pieces, Mg2TiO4 by X-ray diffraction
Confirmation of existence of Cu, measurement of dielectric constant εr, evaluation of acid resistance, Cu
The presence or absence of a decrease in resistance value after plating was investigated. The results are shown in Table 2.

【0014】表2中の、No.1、4、7に示したもの
は、MgO/TiO2 のモル比が1以上の材料(MT
−A)を用いた比較例である。これらの比較例は、いず
れもMg2 TiO4 が存在し、耐酸性が0.3〜0
.5mg/cm・10minと悪く、Cuメッキ後の抵
抗値低下があった。
[0014] In Table 2, No. 1, 4, and 7 are materials with a MgO/TiO2 molar ratio of 1 or more (MT
This is a comparative example using -A). In all of these comparative examples, Mg2TiO4 is present and the acid resistance is 0.3 to 0.
.. It was poor at 5 mg/cm for 10 min, and the resistance value decreased after Cu plating.

【0015】これに対し、No.2、3、5、6、8、
9に示したものは、MgO/TiO2 のモル比が1よ
り小さい材料(MT−B、MT−C)を用いた本発明実
施例である。これらの実施例は、いずれもMg2 Ti
O4 が存在せず、耐酸性が0.01mg/cm・10
min以下と優れており、Cuメッキ後の抵抗値低下が
なかった。したがって、Mg2 TiO4 の存在をな
くすことで、耐酸性を向上できることがわかる。
On the other hand, No. 2, 3, 5, 6, 8,
9 is an example of the present invention using materials (MT-B, MT-C) in which the MgO/TiO2 molar ratio is less than 1. In both of these examples, Mg2Ti
No O4, acid resistance 0.01mg/cm・10
It was excellent, being less than min, and there was no decrease in resistance value after Cu plating. Therefore, it can be seen that the acid resistance can be improved by eliminating the presence of Mg2TiO4.

【0016】なお、比較例であるNo.1と、本発明実
施例であるNo.3について、X線回折を行ったときの
チャート図をそれぞれ図2、図3に示すように、比較例
では明確にMg2 TiO4 のピークが検出されるの
に対し、本発明実施例ではMg2 TiO4 のピーク
が全く検出されなかった。
[0016] As a comparative example, No. 1 and No. 1, which is an embodiment of the present invention. As shown in FIG. 2 and FIG. 3, respectively, the chart diagrams obtained when X-ray diffraction was performed for No. 3, the peak of Mg2 TiO4 was clearly detected in the comparative example, whereas the peak of Mg2 TiO4 was clearly detected in the example of the present invention. No peaks were detected.

【0017】[0017]

【表2】[Table 2]

【0018】実験例2 次に、上記表2中の比較例であるNo.1に対し、Ti
O2 を添加して、同様の実験を行った。結果は表3に
示すように、TiO2 を添加することによって、耐酸
性を向上できることがわかる。これは、もともとTiO
2 量の少なかったMT材(MT−A)に対し、TiO
2 を添加することによって、結果的にMgOに対する
TiO2 のモル量を過剰にできたためであると考えら
れる。
Experimental Example 2 Next, No. 2, which is a comparative example in Table 2 above, was tested. 1, Ti
A similar experiment was performed with the addition of O2. As shown in Table 3, the results show that acid resistance can be improved by adding TiO2. This was originally TiO
2 Compared to the MT material (MT-A), which had a small amount, TiO
This is thought to be because the addition of TiO2 resulted in an excess molar amount of TiO2 relative to MgO.

【0019】[0019]

【表3】[Table 3]

【0020】[0020]

【発明の効果】このように、本発明によれば、MT−C
T系誘電体セラミックスにおいて、Mg2 TiO4 
の結晶構造を含まないようにしたことによって、耐酸性
を優れたものとできる。そのため、Cuメッキ時に酸処
理を行っても腐食せず、良好にCu膜付けができる。
[Effects of the Invention] As described above, according to the present invention, MT-C
In T-based dielectric ceramics, Mg2 TiO4
By not including the crystal structure, it is possible to achieve excellent acid resistance. Therefore, even if acid treatment is performed during Cu plating, corrosion does not occur, and a Cu film can be satisfactorily attached.

【0021】また、このようなMT−CT系誘電体セラ
ミックスを製造するには、MgOに対するTiO2 の
モル量が過剰となるように、MTとCTとを混合し、こ
の原料を用いて成形、焼成すればよく、高品質の誘電体
セラミックスを容易に得ることができる。
[0021] In addition, in order to manufacture such MT-CT dielectric ceramics, MT and CT are mixed so that the molar amount of TiO2 is in excess of MgO, and this raw material is molded and fired. High quality dielectric ceramics can be easily obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】MT−CT系誘電体セラミックスにおける組成
比と誘電率εr との関係を示すグラフである。
FIG. 1 is a graph showing the relationship between composition ratio and dielectric constant εr in MT-CT dielectric ceramics.

【図2】比較例のMT−CT系誘電体セラミックスにお
ける、X線回折チャート図である。
FIG. 2 is an X-ray diffraction chart of an MT-CT dielectric ceramic of a comparative example.

【図3】本発明実施例のMT−CT系誘電体セラミック
スにおける、X線回折チャート図である。
FIG. 3 is an X-ray diffraction chart of the MT-CT dielectric ceramic according to the example of the present invention.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】Mg2 TiO4 の結晶構造を含まない
、チタン酸マグネシウム−チタン酸カルシウム系の組成
からなることを特徴とする誘電体セラミックス。
1. A dielectric ceramic characterized by having a magnesium titanate-calcium titanate composition that does not contain a Mg2 TiO4 crystal structure.
【請求項2】MgOに対するTiO2 のモル量が過剰
となるように、チタン酸マグネシウムとチタン酸カルシ
ウムの粉末を混合し、成形、焼成する工程からなる誘電
体セラミックスの製造方法。
2. A method for producing dielectric ceramics, which comprises the steps of mixing powders of magnesium titanate and calcium titanate so that the molar amount of TiO2 is in excess of MgO, and then forming and firing the powder.
JP3097744A 1991-04-26 1991-04-26 Dielectric ceramic having plated layer and method of manufacturing the same Expired - Lifetime JP3034073B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3097744A JP3034073B2 (en) 1991-04-26 1991-04-26 Dielectric ceramic having plated layer and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3097744A JP3034073B2 (en) 1991-04-26 1991-04-26 Dielectric ceramic having plated layer and method of manufacturing the same

Publications (2)

Publication Number Publication Date
JPH04325459A true JPH04325459A (en) 1992-11-13
JP3034073B2 JP3034073B2 (en) 2000-04-17

Family

ID=14200399

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3097744A Expired - Lifetime JP3034073B2 (en) 1991-04-26 1991-04-26 Dielectric ceramic having plated layer and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP3034073B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004168579A (en) * 2002-11-19 2004-06-17 Tdk Corp Dielectric porcelain composition and dielectric resonator

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004168579A (en) * 2002-11-19 2004-06-17 Tdk Corp Dielectric porcelain composition and dielectric resonator
JP4569857B2 (en) * 2002-11-19 2010-10-27 Tdk株式会社 Dielectric ceramic composition and dielectric resonator

Also Published As

Publication number Publication date
JP3034073B2 (en) 2000-04-17

Similar Documents

Publication Publication Date Title
CN102224118B (en) Dielectric ceramic composition for high-frequency use and method for producing the same, dielectric ceramic for high-frequency use and method for producing the same, and high-frequency circuit element using the same
CN107235711B (en) Temperature-stable metaantimmonic acid magnesium lithium-based microwave medium composite ceramics and preparation method thereof
US20060264316A1 (en) Dielectric ceramic composition having wide sintering temperature range and reduced exaggerated grain growth
JP2004277226A (en) Dielectric porcelain composition and dielectric resonator using it
JP2009084109A (en) Dielectric porcelain composition
JP2002193662A (en) Dielectric ceramic and its manufacturing method
JPH04325459A (en) Dielectric ceramics and production thereof
CA2010558C (en) Dielectric ceramic material and method of producing same
JP3462517B2 (en) Microwave dielectric porcelain composition
JP3131058B2 (en) Alumina sintered body
JP3100178B2 (en) Microwave dielectric porcelain composition
JPWO2004106261A1 (en) High frequency porcelain composition, method for producing the same, and planar high frequency circuit
JP4238554B2 (en) High frequency dielectric ceramic composition
JP2004168579A (en) Dielectric porcelain composition and dielectric resonator
JPH06338221A (en) Dielectric ceramic composition for high frequency
JP3363296B2 (en) High frequency dielectric ceramic composition
JPH11130544A (en) Dielectric ceramic composition and its production
JP2684248B2 (en) Dielectric porcelain composition for electronic devices
JP3443847B2 (en) High frequency dielectric ceramic composition
JP3443859B2 (en) High frequency dielectric ceramic composition
JP3359427B2 (en) High frequency dielectric ceramic composition
JPH0654604B2 (en) Dielectric porcelain
JP2796905B2 (en) Method for producing transparent microwave dielectric
JP2835253B2 (en) High frequency dielectric ceramic composition and dielectric material
JP3322739B2 (en) Microwave dielectric porcelain composition and method for producing the same