JPH04325453A - Production of ceramic green sheet - Google Patents

Production of ceramic green sheet

Info

Publication number
JPH04325453A
JPH04325453A JP3124775A JP12477591A JPH04325453A JP H04325453 A JPH04325453 A JP H04325453A JP 3124775 A JP3124775 A JP 3124775A JP 12477591 A JP12477591 A JP 12477591A JP H04325453 A JPH04325453 A JP H04325453A
Authority
JP
Japan
Prior art keywords
ceramic green
green sheet
ceramic
weight
binder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3124775A
Other languages
Japanese (ja)
Inventor
Makoto Miyazaki
宮   崎     信
Masashi Morimoto
森  本   正  士
Yoshio Takeuchi
竹  内   嘉  夫
Norio Nakajima
中  島   規  巨
Shunjiro Imagawa
今  川   俊 次 郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP3124775A priority Critical patent/JPH04325453A/en
Publication of JPH04325453A publication Critical patent/JPH04325453A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)

Abstract

PURPOSE:To produce a ceramic green sheet capable of reducing the size of a laminated ceramic capacitor and increasing the capacity. CONSTITUTION:Ceramic powder is dispersed by 100 pts.wt. in 50-100 pts.wt. org. solvent, 3-15 pts.wt. binder, 2-10 pts.wt. plasticizer and 0.1-2 pts.wt. dispersant. The resulting slurry is molded in <=100mum film thickness to produce a ceramic green sheet. The binder is preferably polyvinyl acetal.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】この発明はセラミックグリーンシ
ートの製造方法に関し、特にたとえば、積層セラミック
コンデンサなどに用いられるセラミックグリーンシート
を製造するための、セラミックグリーンシートの製造方
法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a ceramic green sheet, and more particularly to a method for manufacturing a ceramic green sheet for use in, for example, multilayer ceramic capacitors.

【0002】0002

【従来の技術】従来、セラミックグリーンシートを製造
する場合、セラミック粉末に有機溶剤,バインダ,可塑
剤および分散剤などを添加し、所要時間混練して有機系
スラリーを作製していた。そして、この有機系スラリー
を用いて、ドクターブレード法などによって、セラミッ
クグリーンシートを製造していた。このようにして得ら
れたセラミックグリーンシートは、たとえば積層セラミ
ックコンデンサなどに用いられる。
2. Description of the Related Art Conventionally, when producing ceramic green sheets, organic solvents, binders, plasticizers, dispersants, etc. were added to ceramic powder, and the mixture was kneaded for a required period of time to prepare an organic slurry. Then, using this organic slurry, ceramic green sheets were manufactured by a doctor blade method or the like. The ceramic green sheet thus obtained is used, for example, in a multilayer ceramic capacitor.

【0003】近年、電子部品の小型,軽量,高密度化が
望まれ、積層セラミックコンデンサをはじめとするチッ
プ部品は、より一層小型化が進んでいる。そのため、積
層セラミックコンデンサでは、小型,大容量を達成する
ため、セラミックグリーンシートの薄膜化が図られてい
る。
In recent years, electronic components have been desired to be smaller, lighter, and more dense, and chip components such as multilayer ceramic capacitors are becoming smaller. Therefore, in multilayer ceramic capacitors, efforts are being made to make the ceramic green sheets thinner in order to achieve smaller size and larger capacity.

【0004】0004

【発明が解決しようとする課題】しかしながら、セラミ
ック粉末とバインダとが不均一であると、薄膜化したセ
ラミックグリーンシートを焼成すると、焼結体中に小さ
い空孔が形成され、耐電圧などの信頼性がよくない。信
頼性の高い焼結体を得ることができるセラミックグリー
ンシートを作製するためには、スラリーの分散性を高め
る必要がある。
[Problems to be Solved by the Invention] However, if the ceramic powder and the binder are non-uniform, small pores will be formed in the sintered body when the thin ceramic green sheet is fired, and reliability such as withstand voltage will deteriorate. I don't have good sex. In order to produce a ceramic green sheet from which a highly reliable sintered body can be obtained, it is necessary to improve the dispersibility of the slurry.

【0005】また、多層化がすすむ中で、内部電極に用
いられる貴金属の製品に占めるコストアップが問題とな
っており、内部電極の卑金属化が図られている。積層セ
ラミックコンデンサのように、セラミックグリーンシー
トと内部電極とを同時焼成する場合、内部電極に卑金属
を使用すると、焼成の際に電極が酸化されやすい。その
ため、内部電極に卑金属を使用する場合、非酸化性雰囲
気中での焼成が必要となる。このように非酸化性雰囲気
中で焼成すると、脱バインダ後に残存している炭素が燃
焼しにくい。そして、残った炭素が空孔の原因となる。
[0005] Furthermore, as the number of layers increases, an increase in the cost of noble metal products used for internal electrodes has become a problem, and efforts are being made to use base metals for internal electrodes. When a ceramic green sheet and an internal electrode are simultaneously fired as in a multilayer ceramic capacitor, if a base metal is used for the internal electrode, the electrode is likely to be oxidized during firing. Therefore, when using a base metal for the internal electrodes, firing in a non-oxidizing atmosphere is required. When fired in such a non-oxidizing atmosphere, the carbon remaining after binder removal is difficult to burn. The remaining carbon causes vacancies.

【0006】それゆえに、この発明の主たる目的は、信
頼性の高い焼結体を得ることができるセラミックグリー
ンシートを製造するための、セラミックグリーンシート
の製造方法を提供することである。
[0006] Therefore, the main object of the present invention is to provide a method for producing a ceramic green sheet that can produce a highly reliable sintered body.

【0007】[0007]

【課題を解決するための手段】この発明は、セラミック
粉末に有機溶剤,バインダ,可塑剤および分散剤を添加
し、混練して得たスラリーを用いたセラミックグリーン
シートの製造方法であって、セラミック粉末を有機溶剤
,バインダ,可塑剤および分散剤に分散させて、100
μm以下の膜厚に成形する、セラミックグリーンシート
の製造方法である。ここで、セラミック粉末100重量
部に、有機溶剤を50〜100重量部、バインダを3〜
15重量部、可塑剤を2〜10重量部、分散剤を0.1
〜2重量部添加して得たスラリーを用いることが望まし
い。また、バインダがポリビニルアセタールからなるこ
とが望ましい。
[Means for Solving the Problems] The present invention is a method for producing a ceramic green sheet using a slurry obtained by adding an organic solvent, a binder, a plasticizer, and a dispersant to ceramic powder and kneading the mixture. The powder is dispersed in an organic solvent, a binder, a plasticizer, and a dispersant.
This is a method for manufacturing ceramic green sheets that is formed into a film thickness of μm or less. Here, 100 parts by weight of ceramic powder, 50 to 100 parts by weight of organic solvent, and 3 to 3 parts by weight of binder.
15 parts by weight, 2 to 10 parts by weight of plasticizer, 0.1 part of dispersant
It is desirable to use a slurry obtained by adding ~2 parts by weight. Further, it is desirable that the binder is made of polyvinyl acetal.

【0008】[0008]

【発明の効果】この発明の方法によれば、スラリーの分
散性が高いため、セラミック粉末とバインダとが均一に
混合する。また、非酸化性雰囲気下でも脱炭素しやすい
。そのため、セラミックグリーンシートを薄膜化するこ
とができ、しかも焼成しても焼結体中に空孔が発生しに
くい。したがって、薄膜化した高信頼性を有するセラミ
ックを得ることができる。
According to the method of the present invention, the slurry has high dispersibility, so that the ceramic powder and the binder are mixed uniformly. Furthermore, it is easy to decarbonize even in a non-oxidizing atmosphere. Therefore, the ceramic green sheet can be made into a thin film, and moreover, even when fired, pores are less likely to be generated in the sintered body. Therefore, it is possible to obtain a highly reliable ceramic having a reduced thickness.

【0009】この発明の上述の目的,その他の目的,特
徴および利点は、以下の実施例の詳細な説明から一層明
らかとなろう。
The above objects, other objects, features and advantages of the present invention will become more apparent from the following detailed description of the embodiments.

【0010】0010

【実施例】まず、セラミック粉末として、BaCO3 
,CaCO3 ,SiO2 を1:2:1の組成比とな
るように秤量して、秤量物を準備した。この秤量物をラ
イカイ器で1時間混合後、アルミナるつぼ中で1350
℃で溶解し、融液を得た。この融液を急冷したものを粉
砕して、粉末を得た。この粉末8重量部と、BaCO3
 ,TiO2 より仮焼,粉砕したBaTiO3 粉末
100重量部とを、ボールミルで湿式混合したのち、脱
水,乾燥して、1100℃で2時間仮焼し、粉砕してセ
ラミック粉末を得た。また、バインダとして、ポリビニ
ルアルコールをブチラール化したブチラール度65±3
モル%の積水化学工業株式会社製のエスレックB,BL
−1(商品名)を準備した。さらに、可塑剤として、ジ
ブチルフタレート(DBP)を準備した。また、有機溶
剤として、トルエン,エタノールを1:1組成比に混合
したものを準備した。
[Example] First, as a ceramic powder, BaCO3
, CaCO3, and SiO2 were weighed to have a composition ratio of 1:2:1 to prepare a weighed material. After mixing this weighed material for 1 hour in a Raikai device,
The mixture was dissolved at ℃ to obtain a melt. This melt was rapidly cooled and pulverized to obtain a powder. 8 parts by weight of this powder and BaCO3
, 100 parts by weight of BaTiO3 powder calcined and crushed from TiO2 were wet mixed in a ball mill, dehydrated, dried, calcined at 1100° C. for 2 hours, and crushed to obtain a ceramic powder. In addition, as a binder, polyvinyl alcohol is converted into butyral with a butyral degree of 65 ± 3.
Mol% of S-LEC B and BL manufactured by Sekisui Chemical Co., Ltd.
-1 (product name) was prepared. Furthermore, dibutyl phthalate (DBP) was prepared as a plasticizer. Further, as an organic solvent, a mixture of toluene and ethanol in a composition ratio of 1:1 was prepared.

【0011】(実施例)セラミック粉末100重量部に
バインダ6重量部,可塑剤5重量部,有機溶剤80重量
部,ノニオン系分散剤として親水性−親油性バランス4
.3のソルビタンエステル0.5重量部を添加し、直径
10mmのPSZ製玉石を入れたボールミルで15時間
混合して、混合物を得た。この混合物を真空脱泡したの
ち、ドクターブレード法によって、厚さ50μmのセラ
ミックグリーンシートを作製した。この成形体の片面に
、ニッケル粉末を有機ビヒクル中に分散させたペースト
を、スクリーン印刷によって塗布した。これを100層
重ねて、100℃、50kg/cm2 で熱圧着した。 さらに、300℃の自然雰囲気中でバインダを燃焼させ
た後、N2 +H2 中で1250℃で2時間焼成して
、多層誘電体磁器組成物を得た。
(Example) 100 parts by weight of ceramic powder, 6 parts by weight of binder, 5 parts by weight of plasticizer, 80 parts by weight of organic solvent, and a hydrophilic-lipophilic balance of 4 as a nonionic dispersant.
.. 0.5 parts by weight of the sorbitan ester No. 3 was added thereto and mixed for 15 hours in a ball mill containing PSZ cobblestones with a diameter of 10 mm to obtain a mixture. After degassing this mixture under vacuum, a ceramic green sheet with a thickness of 50 μm was produced using a doctor blade method. A paste containing nickel powder dispersed in an organic vehicle was applied to one side of the molded body by screen printing. 100 layers of these were stacked and thermocompression bonded at 100°C and 50kg/cm2. Furthermore, after burning the binder in a natural atmosphere at 300°C, it was fired in N2 + H2 at 1250°C for 2 hours to obtain a multilayer dielectric ceramic composition.

【0012】(比較例1)実施例と同じ条件で、分散剤
を使用せずに、多層誘電体磁器組成物を得た。
(Comparative Example 1) A multilayer dielectric ceramic composition was obtained under the same conditions as in the example without using a dispersant.

【0013】(比較例2)実施例と同じ条件で、バイン
ダとして株式会社クラレ製のポリビニルアルコールであ
るポバール205(商品名)を使用して、多層誘電体磁
器組成物を得た。
(Comparative Example 2) A multilayer dielectric ceramic composition was obtained under the same conditions as in the example, using Poval 205 (trade name), a polyvinyl alcohol manufactured by Kuraray Co., Ltd., as a binder.

【0014】得られた各セラミックグリーンシートに関
して、焼結前において排出粘度,平均粒度分布D50,
成形密度,引張強度,伸び率,顕微鏡透過観察について
調べ、焼結後において耐電圧信頼性NG数について調べ
、その結果を表1に示した。
Regarding each ceramic green sheet obtained, the discharge viscosity, average particle size distribution D50,
The molded density, tensile strength, elongation rate, and microscopic transmission observation were investigated, and after sintering, the withstand voltage reliability NG number was investigated, and the results are shown in Table 1.

【0015】[0015]

【表1】[Table 1]

【0016】ここで、排出粘度は、材料のボールミル混
合後の取り出し粘度であり、BH型粘度計により測定し
た。分散剤の添加によって、粘度は低下していることが
わかる。平均粒度分布D50は、光散乱を利用して粒度
分布を測定するマイクロトラック(日機装株式会社製)
による平均粒度分布の測定値である。その数値が小さい
ほど、セラミック粉体が微小化していることがわかる。 成形密度は、セラミックグリーンシートの成形密度であ
り、重量と体積の関係から測定した。分散性が向上すれ
ば、セラミックの充填度が上がり、成形密度は高くなる
。引張強度は、1cm/minの引張速度で測定した。 伸び率は、引張試験により測定した。顕微鏡透過観察は
、厚さ20μm以下のセラミックグリーンシートに下か
ら透過光をあて、反対側から100倍程度のレンズで観
察して、セラミックの分散性の様子を調べた。分散性の
悪いものでは、セラミックやバインダの凝集がみられる
。なお、表中の「○」は分散性が良いこと、「×」は分
散性が悪いことを示す。耐電圧信頼性NG数は、まず、
多層誘電体磁器の側面に、銀とガラスフリットとビヒク
ルとからなる導電性ペーストを塗布して乾燥した。 これを大気中、550℃で20分間焼付けして、積層セ
ラミックコンデンサを得た。これに85℃の恒温槽中で
16Vの電圧を印加し、1000時間経過までのショー
トした個数を耐電圧信頼性NG数とした。
[0016] Here, the discharge viscosity is the viscosity taken out after mixing the materials in a ball mill, and was measured using a BH type viscometer. It can be seen that the viscosity is reduced by adding the dispersant. The average particle size distribution D50 is measured using Microtrack (manufactured by Nikkiso Co., Ltd.), which measures particle size distribution using light scattering.
This is the measured value of the average particle size distribution. It can be seen that the smaller the value, the finer the ceramic powder. The molded density is the molded density of the ceramic green sheet, and was measured from the relationship between weight and volume. If the dispersibility improves, the degree of filling of the ceramic increases and the molding density increases. The tensile strength was measured at a tensile speed of 1 cm/min. The elongation rate was measured by a tensile test. For microscopic transmission observation, a ceramic green sheet with a thickness of 20 μm or less was irradiated with transmitted light from below and observed from the opposite side with a lens of about 100 times magnification to examine the dispersibility of the ceramic. If the dispersibility is poor, agglomeration of the ceramic or binder may be observed. In addition, "○" in the table indicates that the dispersibility is good, and "x" indicates that the dispersibility is poor. First, the number of failures in voltage resistance reliability is as follows:
A conductive paste consisting of silver, glass frit, and vehicle was applied to the side surface of the multilayer dielectric porcelain and dried. This was baked in the air at 550° C. for 20 minutes to obtain a multilayer ceramic capacitor. A voltage of 16 V was applied to this in a constant temperature bath at 85° C., and the number of short circuits after 1000 hours was defined as the number of failures in voltage resistance reliability.

【0017】次に、特許請求の範囲の数値を限定した理
由について説明する。有機溶剤が50重量部未満では、
セラミック粉体がぬれず、また、バインダが全部溶解し
ない場合がある。また、有機溶剤が100重量部を超え
ると、スラリーの粘度が低くなりすぎてシート状に成形
しにくくなる。バインダが3重量部未満では、セラミッ
クグリーンシートの引張強度が弱くなる。また、バイン
ダが15重量部を超えると、焼結前後の体積収縮率が大
きくなり、緻密なセラミックの結晶が得られない。可塑
剤を2重量部以上投入することにより、セラミックグリ
ーンシートの伸び率があがり、実用に耐えるようになる
。しかし、可塑剤が10重量部を超えると、セラミック
グリーンシートの弾性率が小さすぎて、作業がしにくく
なる。分散剤の添加量が0.1重量%より少ないと分散
剤の添加効果がない。また、分散剤の添加量が2.0重
量%を超えるとセラミックグリーンシートに可撓性がで
てきて、積層作業がしにくくなる。
Next, the reason for limiting the numerical values in the claims will be explained. If the organic solvent is less than 50 parts by weight,
The ceramic powder may not get wet and the binder may not completely dissolve. Moreover, when the organic solvent exceeds 100 parts by weight, the viscosity of the slurry becomes too low, making it difficult to form it into a sheet. When the amount of binder is less than 3 parts by weight, the tensile strength of the ceramic green sheet becomes weak. Furthermore, if the binder exceeds 15 parts by weight, the volumetric shrinkage before and after sintering will increase, making it impossible to obtain dense ceramic crystals. By adding 2 parts by weight or more of a plasticizer, the elongation rate of the ceramic green sheet increases, making it suitable for practical use. However, if the plasticizer exceeds 10 parts by weight, the elastic modulus of the ceramic green sheet will be too small, making it difficult to work with. If the amount of the dispersant added is less than 0.1% by weight, there is no effect of the addition of the dispersant. Furthermore, if the amount of the dispersant added exceeds 2.0% by weight, the ceramic green sheets become flexible, making it difficult to perform lamination work.

【0018】表1からわかるように、実施例の多層誘電
体磁器組成物は比較例1,2に比べて分散性がよく、耐
電圧信頼性が高く、薄膜化が可能であり、積層セラミッ
クコンデンサを小型,大容量化することができる。
As can be seen from Table 1, the multilayer dielectric ceramic composition of the example has better dispersibility than Comparative Examples 1 and 2, has high withstand voltage reliability, can be made into a thin film, and is suitable for multilayer ceramic capacitors. can be made smaller and larger in capacity.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】  セラミック粉末に有機溶剤,バインダ
,可塑剤および分散剤を添加し、混練して得たスラリー
を用いたセラミックグリーンシートの製造方法であって
、前記セラミック粉末を前記有機溶剤,前記バインダ,
前記可塑剤および前記分散剤に分散させて、100μm
以下の膜厚に成形する、セラミックグリーンシートの製
造方法。
1. A method for producing a ceramic green sheet using a slurry obtained by adding an organic solvent, a binder, a plasticizer, and a dispersant to ceramic powder and kneading the mixture, the method comprising: binder,
Dispersed in the plasticizer and the dispersant to a diameter of 100 μm
A method for manufacturing ceramic green sheets that is formed to the following thickness.
【請求項2】  前記スラリーは、前記セラミック粉末
100重量部に、前記有機溶剤を50〜100重量部、
前記バインダを3〜15重量部、前記可塑剤を2〜10
重量部および前記分散剤を0.1〜2重量部添加して得
られる、請求項1に記載のセラミックグリーンシートの
製造方法。
2. The slurry comprises 100 parts by weight of the ceramic powder, 50 to 100 parts by weight of the organic solvent,
3 to 15 parts by weight of the binder and 2 to 10 parts by weight of the plasticizer
The method for producing a ceramic green sheet according to claim 1, which is obtained by adding 0.1 to 2 parts by weight of the dispersant and the dispersant.
【請求項3】  前記バインダがポリビニルアセタール
からなる、請求項1または請求項2に記載のセラミック
グリーンシートの製造方法。
3. The method for producing a ceramic green sheet according to claim 1, wherein the binder is made of polyvinyl acetal.
JP3124775A 1991-04-26 1991-04-26 Production of ceramic green sheet Pending JPH04325453A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3124775A JPH04325453A (en) 1991-04-26 1991-04-26 Production of ceramic green sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3124775A JPH04325453A (en) 1991-04-26 1991-04-26 Production of ceramic green sheet

Publications (1)

Publication Number Publication Date
JPH04325453A true JPH04325453A (en) 1992-11-13

Family

ID=14893811

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3124775A Pending JPH04325453A (en) 1991-04-26 1991-04-26 Production of ceramic green sheet

Country Status (1)

Country Link
JP (1) JPH04325453A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6579394B1 (en) 1999-07-23 2003-06-17 Murata Manufacturing Co., Ltd Method of producing ceramic slurry, ceramic slurry composition, ceramic green sheet and multilayer ceramic electronic part
WO2006100833A1 (en) * 2005-03-23 2006-09-28 Murata Manufacturing Co., Ltd. Composite dielectric sheet, method for manufacturing same and multilayer electronic component
US7867349B2 (en) * 2004-08-04 2011-01-11 Tdk Corporation Thick film green sheet slurry, production method of thick film green sheet slurry, production method of thick film green sheet and production methods of thick film green sheet and electronic device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01501466A (en) * 1986-11-26 1989-05-25 セラミックス・プロセス・システムズ・コーポレーション Alumina material sintered together with the heat-resistant metallizing part (2) at low temperatures
JPH02227252A (en) * 1989-02-28 1990-09-10 Fujitsu Ltd Film for forming green sheet and manufacture of the green sheet

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01501466A (en) * 1986-11-26 1989-05-25 セラミックス・プロセス・システムズ・コーポレーション Alumina material sintered together with the heat-resistant metallizing part (2) at low temperatures
JPH02227252A (en) * 1989-02-28 1990-09-10 Fujitsu Ltd Film for forming green sheet and manufacture of the green sheet

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6579394B1 (en) 1999-07-23 2003-06-17 Murata Manufacturing Co., Ltd Method of producing ceramic slurry, ceramic slurry composition, ceramic green sheet and multilayer ceramic electronic part
US7867349B2 (en) * 2004-08-04 2011-01-11 Tdk Corporation Thick film green sheet slurry, production method of thick film green sheet slurry, production method of thick film green sheet and production methods of thick film green sheet and electronic device
WO2006100833A1 (en) * 2005-03-23 2006-09-28 Murata Manufacturing Co., Ltd. Composite dielectric sheet, method for manufacturing same and multilayer electronic component
JPWO2006100833A1 (en) * 2005-03-23 2008-08-28 株式会社村田製作所 COMPOSITE DIELECTRIC SHEET, ITS MANUFACTURING METHOD, AND LAMINATED ELECTRONIC COMPONENT
US7635519B2 (en) 2005-03-23 2009-12-22 Murata Manufacturting Co., Ltd. Composite dielectric sheet, method for producing composite dielectric sheet, and multilayer electronic component
JP4697226B2 (en) * 2005-03-23 2011-06-08 株式会社村田製作所 COMPOSITE DIELECTRIC SHEET, ITS MANUFACTURING METHOD, AND LAMINATED ELECTRONIC COMPONENT

Similar Documents

Publication Publication Date Title
JP5569747B2 (en) Gravure printing conductive paste used for multilayer ceramic capacitor internal electrode
JP2012174797A5 (en)
JP2006310760A (en) Multilayer ceramic electronic component and its manufacturing method
KR102000686B1 (en) Laminated ceramic electronic parts
JP2001114569A (en) Ceramic slurry composition, ceramic green sheet and production of multilayer ceramic electronic part
WO2020137290A1 (en) Conductive paste, electronic component, and laminated ceramic capacitor
JP2002245874A (en) Conductive paste and its manufacturing method
JPH11236264A (en) Dielectric porcelain composition, laminated ceramic capacitor and its production
JP2024032861A (en) Conductive paste, electronic components, and multilayer ceramic capacitors
JP4717302B2 (en) Dielectric porcelain composition and electronic component
JP2006005222A (en) Ceramic electronic component and its manufacturing method
JP3828073B2 (en) Dielectric composition for multilayer ceramic capacitor and multilayer ceramic capacitor using the same
CN113168930B (en) conductive paste
JPH04325453A (en) Production of ceramic green sheet
JP2764512B2 (en) Paste for internal electrode of ceramic component and method for producing the same
JPH10214520A (en) Conductive paste
JP6809280B2 (en) Method of manufacturing conductive paste
JP3538706B2 (en) Method for producing ceramic slurry composition and method for producing ceramic green sheet
JP3447488B2 (en) Method for producing conductive paste
KR102064124B1 (en) Laminated ceramic electronic parts
JP3132106B2 (en) Manufacturing method of non-reducing dielectric porcelain
JP5459951B2 (en) Method for producing ceramic slurry
JP4484031B2 (en) Dielectric powder, green sheet containing the dielectric powder, and dielectric material
JPH04317453A (en) Production of ceramic green sheet
JP3362412B2 (en) Manufacturing method of non-reducing dielectric porcelain