JPH04324980A - Electrostatic field detector element and electrostatic field measuring device - Google Patents

Electrostatic field detector element and electrostatic field measuring device

Info

Publication number
JPH04324980A
JPH04324980A JP9581191A JP9581191A JPH04324980A JP H04324980 A JPH04324980 A JP H04324980A JP 9581191 A JP9581191 A JP 9581191A JP 9581191 A JP9581191 A JP 9581191A JP H04324980 A JPH04324980 A JP H04324980A
Authority
JP
Japan
Prior art keywords
electrostatic field
field detection
detection element
gate electrode
source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9581191A
Other languages
Japanese (ja)
Other versions
JP2982360B2 (en
Inventor
Kazufumi Yamaguchi
山口 和文
Yasunaga Yamamoto
泰永 山本
Riyuuchin Okamoto
龍鎮 岡本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP3095811A priority Critical patent/JP2982360B2/en
Publication of JPH04324980A publication Critical patent/JPH04324980A/en
Application granted granted Critical
Publication of JP2982360B2 publication Critical patent/JP2982360B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Non-Volatile Memory (AREA)

Abstract

PURPOSE:To enable an electrostatic field or an electrostatic field profile to be accurately and quickly measured by a method wherein a source diffusion layer and a drain diffusion layer different from a substrate in conductivity type, an electrically floating gate electrode formed on a thin oxide film, and a dielectric film are provided. CONSTITUTION:A source diffusion layer 2 and a drain diffusion layer 3 different from a substrate 1 in conductivity type are formed on the substrate 1. The gate electrode of an electrostatic electrode is composed of a polycrystalline Si film 4 and an Al film 5 and made to stay in an electrically floating state. A dielectric film 6 is used for converging an electric field, and a thin oxide-film 7 is interposed between the gate electrode and the substrate 1. The thickness of the gate electrode is set much larger than that of the thin oxide film 7. A thick field oxide film 8 is formed to isolate adjacent elements from each other. By this setup, an electrostatic field and the distribution of an electrostatic field can be easily and quickly detected high in degree of resolution.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】複写機、帯電防止器具等において
、静電気の像またはプロファイルの測定の必用性が高ま
っている。本発明は半導体技術を利用して静電界または
静電界のプロファイルを非破壊的に高速、高精度で測定
することを可能にする素子および装置に関する。
[Industrial Field of Application] There is an increasing need to measure static electricity images or profiles in copying machines, antistatic devices, and the like. The present invention relates to an element and a device that make it possible to measure an electrostatic field or a profile of an electrostatic field non-destructively, at high speed, and with high precision using semiconductor technology.

【0002】0002

【従来の技術】従来の静電界の測定装置としては検電器
、電気天秤等がる。これらは検出器の電極の電荷分布が
静電界により変化し、その結果生ずるクーロン力を指針
によって示すものである。これらは単なるメータであっ
て電気信号として外部に取り出すことはできない。また
、検出部が大型であるために空間的な静電界の分布を測
定できない。昨今、LiNbO3やBSO(Bi12S
iO20)などの光学結晶での電気光学効果を利用した
電界センサや液晶の電界による配向の変化を利用した電
界センサが報告されている。つまり、これらは静電界に
よる検知素子の光透過率の変化を電気信号に変換するも
のであって空間的な静電界の分布を測定できるが、上記
の検知素子以外に光源とイメージセンサが必要になり装
置が複雑で大型である。
2. Description of the Related Art Conventional electrostatic field measuring devices include electroscopes and electric balances. In these, the charge distribution on the detector electrode changes due to an electrostatic field, and the resulting Coulomb force is indicated by a pointer. These are just meters and cannot be taken out as electrical signals. Furthermore, since the detection unit is large, it is not possible to measure the spatial distribution of the electrostatic field. Recently, LiNbO3 and BSO (Bi12S
Electric field sensors that utilize the electro-optic effect of optical crystals such as iO20) and electric field sensors that utilize changes in the orientation of liquid crystals due to electric fields have been reported. In other words, these convert the change in light transmittance of the sensing element due to the electrostatic field into an electrical signal, and can measure the spatial distribution of the electrostatic field, but they require a light source and an image sensor in addition to the sensing element described above. The equipment is complicated and large.

【0003】0003

【発明が解決しようとする課題】従来の静電気測定装置
または静電界センサは検出部が大型であり、静電界の分
布を高い解像度で測定できない。つまり光学結晶の電気
光学効果を用いた電界センサや液晶の電界による配向現
象を用いた静電界センサでは電界に応答するのはこれら
の材料の光学的性質であって、電気信号として取り出す
ために更に光源とイメージセンサが必要である。従って
、検出部が大型になると同時に電界から透過率、透過率
から電気信号への2回の変換過程を要するために測定誤
差が増大しやすい。
The conventional electrostatic measuring device or electrostatic field sensor has a large detecting section and cannot measure the distribution of the electrostatic field with high resolution. In other words, in electric field sensors that use the electro-optic effect of optical crystals and electrostatic field sensors that use the alignment phenomenon caused by the electric field of liquid crystals, it is the optical properties of these materials that respond to the electric field, and in order to extract them as electrical signals, further processing is required. A light source and an image sensor are required. Therefore, as the detection unit becomes larger, measurement errors tend to increase because two conversion processes are required: from electric field to transmittance and from transmittance to electric signal.

【0004】0004

【課題を解決するための手段】静電界検出素子は半導体
Si基板上に形成した基板とは異なる導電型のソース、
ドレイン拡散層と、両拡散層の間に介在する薄い酸化膜
上に形成した電気的にフローティングのゲート電極と、
ゲート電極上に形成した誘電体膜からなる。ゲート電極
の厚さはゲート直下の酸化膜に比べて充分厚くする。誘
電体膜は電界をゲート電極上に収束させるもので、比誘
電率の大きい材料とする。
[Means for solving the problem] An electrostatic field detection element has a source formed on a semiconductor Si substrate and has a conductivity type different from that of the substrate.
A drain diffusion layer, an electrically floating gate electrode formed on a thin oxide film interposed between both diffusion layers,
It consists of a dielectric film formed on the gate electrode. The thickness of the gate electrode is made sufficiently thicker than the oxide film directly under the gate. The dielectric film focuses the electric field onto the gate electrode, and is made of a material with a high relative dielectric constant.

【0005】静電界検出装置は一定のピッチで配列した
前記静電界検出素子のドレインを接続した第1の共通ラ
インと、前記静電界検出素子のソースに接続される電界
効果トランジスタと、この電界効果トランジスタのソー
スを接続した第2の共通ラインと、前記電界効果トラン
ジスタのゲート電極に対する電圧の印加を制御する制御
手段とを備え、電界検出素子が発生する信号電流を順次
第1または第2の共通ラインから出力させるものである
The electrostatic field detection device includes a first common line connecting the drains of the electrostatic field detection elements arranged at a constant pitch, a field effect transistor connected to the source of the electrostatic field detection elements, and a field effect transistor connected to the source of the electrostatic field detection elements. A second common line to which the sources of the transistors are connected, and a control means for controlling the application of voltage to the gate electrode of the field effect transistor, and the signal current generated by the electric field detection element is sequentially connected to the first or second common line. It is output from the line.

【0006】[0006]

【作用】静電界検出素子のフローティング状態のゲート
電極は電界中で、ゲート電極中の電荷が表裏面で分極す
る。ゲート電極の厚さがゲート直下の酸化膜に比べて充
分厚いので、ゲート直下の半導体表面はゲート裏面つま
りゲートの酸化膜側の電荷の影響をより強く受け、その
電界の作用で半導体表面の導電型が反転しソース、ドレ
イン間が導通する。導通抵抗は外部の静電界の関数であ
り、ドレインとソース間に一定電圧を与えると、ある閾
値以上の静電界で検出信号を信号電流として出力させる
ことができる。静電界をアナログ値として検出するには
ゲート直下の半導体表面はデプレッション型とすること
によって、電界に比例する信号電流を出力させることが
できる。ゲート電極上につけた誘電体膜は電界を収束さ
せる作用をするために高感度で静電界を検出できる。
[Operation] When the floating gate electrode of the electrostatic field detection element is in an electric field, the charges in the gate electrode are polarized on the front and back surfaces. Since the thickness of the gate electrode is sufficiently thicker than the oxide film directly under the gate, the semiconductor surface directly under the gate is more strongly influenced by the charge on the back side of the gate, that is, the oxide film side of the gate, and the conductivity of the semiconductor surface is reduced by the action of the electric field. The type is reversed and conduction occurs between the source and drain. Conduction resistance is a function of an external electrostatic field, and if a constant voltage is applied between the drain and source, a detection signal can be output as a signal current when the electrostatic field exceeds a certain threshold. In order to detect the electrostatic field as an analog value, the semiconductor surface directly under the gate should be of a depression type, thereby making it possible to output a signal current proportional to the electric field. The dielectric film placed on the gate electrode has the effect of converging the electric field, so it is possible to detect the electrostatic field with high sensitivity.

【0007】静電界検出装置はアクセス用の電界効果ト
ランジスタのゲート電極に制御手段から電圧を印加する
ことによって第2の共通ラインから順次、静電界の分布
に対応した信号を時系列に得ることができる。
The electrostatic field detection device can sequentially obtain signals corresponding to the distribution of the electrostatic field from the second common line in time series by applying a voltage from the control means to the gate electrode of the access field effect transistor. can.

【0008】又、集積回路技術を利用して電界検出素子
の面積を縮小することにより、極めて高解像で静電界の
分布を高精度で検出できる。
Furthermore, by reducing the area of the electric field detection element using integrated circuit technology, the distribution of the electrostatic field can be detected with extremely high resolution and high precision.

【0009】[0009]

【実施例】以下、本発明の実施例を図面を参照しながら
説明する。
Embodiments Hereinafter, embodiments of the present invention will be described with reference to the drawings.

【0010】図1は本発明の一実施例である静電界検出
素子の断面図(a)および平面図(b)である。半導体
基板1と異なる導電型のソース拡散層2およびドレイン
拡散層3が基板上に形成されている。多結晶Si膜4お
よびAl膜5は静電界検出素子のゲート電極を形成し、
電気的にはフローティング状態にある。誘電体膜6は電
界を収束するためのである。薄い酸化膜7はゲート電極
と基板1の間に介在する。ゲート電極の厚さは薄い酸化
膜7の厚さに比べて充分大きくしている。厚いフィール
ド酸化膜8は隣接する素子の分離のため形成される。配
線用のAl膜9は、ソース拡散層2およびドレイン拡散
層3に電圧を印加する。パッシベーション膜10は基板
を保護する。
FIG. 1 is a sectional view (a) and a plan view (b) of an electrostatic field detection element according to an embodiment of the present invention. A source diffusion layer 2 and a drain diffusion layer 3 having a conductivity type different from that of the semiconductor substrate 1 are formed on the substrate. The polycrystalline Si film 4 and the Al film 5 form the gate electrode of the electrostatic field detection element,
Electrically, it is in a floating state. The dielectric film 6 is for converging the electric field. A thin oxide film 7 is interposed between the gate electrode and the substrate 1. The thickness of the gate electrode is made sufficiently larger than the thickness of the thin oxide film 7. A thick field oxide film 8 is formed to isolate adjacent devices. The wiring Al film 9 applies voltage to the source diffusion layer 2 and drain diffusion layer 3. Passivation film 10 protects the substrate.

【0011】本実施例では、プラス方向の静電界を検出
する例を示すので、ソース、ドレイン間の導電型はNチ
ャンネルであり、基板はP型でソースおよびドレインは
N型にである。
In this embodiment, since an example is shown in which an electrostatic field in the positive direction is detected, the conductivity type between the source and drain is N-channel, the substrate is P-type, and the source and drain are N-type.

【0012】多結晶Si膜4は周知のMOSプロセスと
同様にCVD法で形成し、Al膜5は蒸着法で形成する
。誘電体膜6は窒化SiまたはBiTiO3やPZT等
の強誘電体の膜からなり、ゲート電極を覆うように形成
する。電界収束効果を大きくするには誘電率が大きく厚
い方がよい。
The polycrystalline Si film 4 is formed by a CVD method similar to the well-known MOS process, and the Al film 5 is formed by a vapor deposition method. The dielectric film 6 is made of a ferroelectric film such as Si nitride, BiTiO3, or PZT, and is formed to cover the gate electrode. In order to increase the electric field convergence effect, it is better to have a large dielectric constant and be thick.

【0013】静電界検出素子をゲート電極を前方にして
靜電界中に挿入するとゲート電極中の電荷が表裏面で分
極する。ゲート電極の厚さがゲート直下の酸化膜に比べ
て充分厚いので、ゲート直下の半導体表面はゲート裏面
つまりゲートの酸化膜側の電荷の影響をより強く受け、
それによる電界の作用で半導体表面の導電型が反転しソ
ース、ドレイン間が導通する。
When the electrostatic field detection element is inserted into a static electric field with the gate electrode facing forward, the charges in the gate electrode are polarized on the front and back surfaces. Since the thickness of the gate electrode is sufficiently thicker than the oxide film directly under the gate, the semiconductor surface directly under the gate is more strongly affected by the charge on the back side of the gate, that is, the oxide film side of the gate.
Due to the effect of the electric field, the conductivity type of the semiconductor surface is reversed and conduction occurs between the source and drain.

【0014】エンハンスメント型の場合、半導体と酸化
膜の諸特性によって決まる閾値電界以上でソース、ドレ
イン間のコンダクタンスは分極電荷による電界の関数と
して増大する。閾値電界以下では非導通である。
In the case of the enhancement type, the conductance between the source and drain increases as a function of the electric field due to polarized charges above a threshold electric field determined by various characteristics of the semiconductor and oxide film. It is non-conductive below the threshold electric field.

【0015】一方、デプレション型の場合、零電界でも
ソース、ドレイン間が導通していて、そのコンダクタン
スは電界の増大と共に増大し、靜電界の強さをアナログ
的に検出できる。ソースとドレイン間に一定のバイアス
電圧を与えることによって静電界に比例する信号電流を
ソースまたはドレイン端子から得ることができる。
On the other hand, in the case of the depletion type, conduction occurs between the source and drain even in a zero electric field, and the conductance increases as the electric field increases, allowing the strength of the static electric field to be detected in an analog manner. By applying a constant bias voltage between the source and drain, a signal current proportional to the electrostatic field can be obtained from the source or drain terminal.

【0016】以降、静電界測定装置について説明する。 図2は本発明の一実施例である静電界測定装置の回路ブ
ロック図である。静電界測定装置は一定のピッチで半導
体基板上に配列した複数個の靜電界検出素子11(11
a〜11e)、アクセス用の電界効果トランジスタ12
(12a〜12e)、電源に接続した第1のライン13
、アクセス用の電界効果トランジスタのソース電極を共
通に接続してなる第2の共通ライン14および制御手段
である走査回路15からなる。
[0016] Hereinafter, the electrostatic field measuring device will be explained. FIG. 2 is a circuit block diagram of an electrostatic field measuring device that is an embodiment of the present invention. The electrostatic field measuring device consists of a plurality of static electric field detection elements 11 (11
a to 11e), access field effect transistor 12
(12a-12e), the first line 13 connected to the power supply
, a second common line 14 formed by commonly connecting the source electrodes of field effect transistors for access, and a scanning circuit 15 serving as a control means.

【0017】各静電界検出素子11の一方の電極は第1
の共通ライン13に、他方の各電極は各々アクセス用の
電界効果トランジスタ12のドレインに接続している。 走査回路15の出力端子はアクセス用の電界効果トラン
ジスタ12のゲート電極に接続し、静電界検出素子11
の検出信号を順次、第2の共通ライン14からなる信号
出力端子から出力することを可能にしている。
One electrode of each electrostatic field detection element 11 is connected to the first electrode.
The other electrodes are respectively connected to the drains of the access field effect transistors 12 to the common line 13 . The output terminal of the scanning circuit 15 is connected to the gate electrode of the field effect transistor 12 for access, and the output terminal of the scanning circuit 15 is connected to the gate electrode of the field effect transistor 12 for access.
It is possible to sequentially output the detection signals from the signal output terminal consisting of the second common line 14.

【0018】これらのすべての素子は集積回路技術によ
り半導体基板上に高密度で形成することができ、400
DPI以上の解像度も可能になる。図3は静電界測定装
置の動作タイミングチャートである。
All of these elements can be formed at high density on a semiconductor substrate using integrated circuit technology, and
Resolutions higher than DPI are also possible. FIG. 3 is an operation timing chart of the electrostatic field measuring device.

【0019】図2、図3を参照しながら本実施例の静電
界測定装置の動作を説明する。クロックパルスCK、ス
タート信号STが印加されると、走査回路15が動作し
てその出力端子から走査信号Y1、Y2、〜Ynが出力
され、それによりアクセス用の電界効果トランジスタ1
2が順次導通して、それに接続した静電界検出素子11
の信号電流Isが信号出力ラインに現われる。
The operation of the electrostatic field measuring device of this embodiment will be explained with reference to FIGS. 2 and 3. When the clock pulse CK and start signal ST are applied, the scanning circuit 15 operates and outputs scanning signals Y1, Y2, to Yn from its output terminal, thereby causing the access field effect transistor 1
2 are sequentially conductive, and the electrostatic field detection element 11 connected thereto.
A signal current Is appears on the signal output line.

【0020】なお、図2においては第1の共通ライン1
3を電源ラインに接続し、第2の共通ライン14から出
力信号を取り出しているが、第2の共通ライン14をグ
ランドに接続し、第1の共通ライン14から出力信号を
取り出すことも可能である。
Note that in FIG. 2, the first common line 1
3 is connected to the power supply line and the output signal is taken out from the second common line 14, but it is also possible to connect the second common line 14 to the ground and take out the output signal from the first common line 14. be.

【0021】本装置を構成するデバイスはSiデバイス
で構成できるために極めて高速に動作させることが可能
である。
[0021] Since the devices constituting this apparatus can be composed of Si devices, they can be operated at extremely high speeds.

【0022】[0022]

【発明の効果】本発明によれば静電界および静電界の分
布を極めて簡便に且つ高速、高解像で検出することが可
能になり、その産業上の効果は極めて大である。
According to the present invention, it is possible to detect an electrostatic field and the distribution of an electrostatic field very simply, at high speed, and with high resolution, and its industrial effects are extremely large.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】(a)は本発明の静電界検出素子の断面図(b
)は本発明の静電界検出素子の平面図
FIG. 1 (a) is a cross-sectional view of an electrostatic field detection element of the present invention (b
) is a plan view of the electrostatic field detection element of the present invention.

【図2】本発明の
静電界測定装置のブロック図
[Figure 2] Block diagram of the electrostatic field measuring device of the present invention

【図3】本発明の静電界測
定装置の動作タイミングチャート
[Figure 3] Operation timing chart of the electrostatic field measuring device of the present invention

【符号の説明】[Explanation of symbols]

1  半導体基板 2  ソース拡散層 3  ドレイン拡散層 4  多結晶Si膜 5  Al膜 6  誘電体膜 7  薄い酸化膜 11a  靜電界検出素子 11b  靜電界検出素子 11c  靜電界検出素子 11d  靜電界検出素子 11e  靜電界検出素子 12a  電界効果トランジスタ 12b  電界効果トランジスタ 12c  電界効果トランジスタ 12d  電界効果トランジスタ 12e  電界効果トランジスタ 13  第1の共通ライン 14  第2の共通ライン 15  走査回路 1 Semiconductor substrate 2 Source diffusion layer 3 Drain diffusion layer 4 Polycrystalline Si film 5 Al film 6 Dielectric film 7 Thin oxide film 11a Silent electric field detection element 11b Silent electric field detection element 11c Silent electric field detection element 11d Silent electric field detection element 11e Silent electric field detection element 12a Field effect transistor 12b Field effect transistor 12c Field effect transistor 12d Field effect transistor 12e Field effect transistor 13 First common line 14 Second common line 15 Scanning circuit

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】  半導体基板上に形成した基板とは異な
る導電型のソース、ドレイン拡散層と、この両拡散層の
間に介在する薄い酸化膜と、この薄い酸化膜上に形成し
た電気的にフローティングのゲート電極と、このゲート
電極上に形成された誘電体膜とを備えた静電界検出素子
1. Source and drain diffusion layers formed on a semiconductor substrate and having a conductivity type different from that of the substrate, a thin oxide film interposed between these two diffusion layers, and an electrically conductive layer formed on the thin oxide film. An electrostatic field detection element including a floating gate electrode and a dielectric film formed on the gate electrode.
【請求項2】  Alまたは多結晶SiとAlの積層膜
からなり、薄い酸化膜に比べて厚さが充分大であるゲー
ト電極を備える請求項1記載の静電界検出素子。
2. The electrostatic field detection element according to claim 1, comprising a gate electrode made of a laminated film of Al or polycrystalline Si and Al, and having a thickness sufficiently larger than that of a thin oxide film.
【請求項3】  外部電界が零の状態でソース、ドレイ
ン拡散層間に導電チャンネルが形成されていることを特
徴とする請求項1記載の静電界検出素子。
3. The electrostatic field detection element according to claim 1, wherein a conductive channel is formed between the source and drain diffusion layers in a state where an external electric field is zero.
【請求項4】  請求項1記載の誘電体膜がBiTiO
3、PZT等の強誘電体である静電界検出素子。
4. The dielectric film according to claim 1 is made of BiTiO.
3. Electrostatic field detection element made of ferroelectric material such as PZT.
【請求項5】  少なくとも1つの請求項1記載の静電
界検出素子と、この静電界検出素子のドレインを接続し
た第1の共通ラインと、前記静電界検出素子のソースを
ドレインに接続された電界効果トランジスタと、この電
界効果トランジスタのソースを接続した第2の共通ライ
ンと、前記電界効果トランジスタのゲート電極に対する
電圧の印加を制御する制御手段とを備える静電界検出装
置。
5. At least one electrostatic field detection element according to claim 1, a first common line connecting the drain of the electrostatic field detection element, and an electric field connecting the source of the electrostatic field detection element to the drain. An electrostatic field detection device comprising an effect transistor, a second common line connecting the source of the field effect transistor, and control means for controlling application of a voltage to a gate electrode of the field effect transistor.
【請求項6】  電源電圧に接続された第1の共通ライ
ンと、静電界検出素子のソースの信号電流を出力する第
2の共通ラインとを備える請求項5記載の静電界検出装
置。
6. The electrostatic field detection device according to claim 5, comprising a first common line connected to a power supply voltage and a second common line outputting a signal current of the source of the electrostatic field detection element.
【請求項7】  グランド電位に接続された第2の共通
ラインと、静電界検出素子のソースの信号電流を出力す
る第1の共通ラインとを備える請求項5記載の静電界検
出装置。
7. The electrostatic field detection device according to claim 5, comprising a second common line connected to a ground potential and a first common line that outputs a signal current of the source of the electrostatic field detection element.
JP3095811A 1991-04-25 1991-04-25 Electrostatic field detecting element and electrostatic field measuring device Expired - Fee Related JP2982360B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3095811A JP2982360B2 (en) 1991-04-25 1991-04-25 Electrostatic field detecting element and electrostatic field measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3095811A JP2982360B2 (en) 1991-04-25 1991-04-25 Electrostatic field detecting element and electrostatic field measuring device

Publications (2)

Publication Number Publication Date
JPH04324980A true JPH04324980A (en) 1992-11-13
JP2982360B2 JP2982360B2 (en) 1999-11-22

Family

ID=14147813

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3095811A Expired - Fee Related JP2982360B2 (en) 1991-04-25 1991-04-25 Electrostatic field detecting element and electrostatic field measuring device

Country Status (1)

Country Link
JP (1) JP2982360B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2401951A (en) * 2003-05-22 2004-11-24 Nec Corp Electric field sensor
JP2005351627A (en) * 2004-06-08 2005-12-22 Canon Inc Electric potential measuring device and image forming device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2401951A (en) * 2003-05-22 2004-11-24 Nec Corp Electric field sensor
GB2401951B (en) * 2003-05-22 2005-09-28 Nec Corp Electric-field sensor,and electrode unit for the sensor
JP2005351627A (en) * 2004-06-08 2005-12-22 Canon Inc Electric potential measuring device and image forming device

Also Published As

Publication number Publication date
JP2982360B2 (en) 1999-11-22

Similar Documents

Publication Publication Date Title
US6294133B1 (en) Multiple detecting apparatus for physical phenomenon and/or chemical phenomenon
US3585415A (en) Stress-strain transducer charge coupled to a piezoelectric material
US6154580A (en) Tactile sensor and fingerprint sensor using same
US3896309A (en) Radiation detecting device
US5591996A (en) Recirculating charge transfer magnetic field sensor
GB2475055A (en) Touch sensor circuits with pre-charging input
US20180356291A1 (en) Thermal pattern sensor
KR20080003838A (en) Direct detect sensor for flat panel displays
GB2475054A (en) Touch sensing circuits with a voltage dependent capacitor
US4103227A (en) Ion-controlled diode
US4875011A (en) Magnetic sensor using integrated silicon Hall effect elements formed on the (100) plane of a silicon substrate
JPH0259633A (en) Detector for pressure distribution
US3453887A (en) Temperature change measuring device
US7112987B2 (en) Semiconductor sensor with a field-effect transistor
TWI773731B (en) Ion concentration distribution measuring device
JP2982360B2 (en) Electrostatic field detecting element and electrostatic field measuring device
JPH0241184B2 (en)
KR101729685B1 (en) Method and appartus for detecting ion concentration
US6338280B1 (en) Sensor arrangement
US20190033357A1 (en) Capacitive Structure and Method for Determining an Amount of Charge Using the Capacitive Structure
JP2004239808A (en) Surface potential sensor
CN110243277A (en) A kind of array substrate, its driving method and display device
JPH05312778A (en) Ion concentration sensor
JP3200641B2 (en) Temperature sensor system
JPH06249825A (en) Fet sensor

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees