JPH04323559A - Measuring method for immunity - Google Patents

Measuring method for immunity

Info

Publication number
JPH04323559A
JPH04323559A JP11941891A JP11941891A JPH04323559A JP H04323559 A JPH04323559 A JP H04323559A JP 11941891 A JP11941891 A JP 11941891A JP 11941891 A JP11941891 A JP 11941891A JP H04323559 A JPH04323559 A JP H04323559A
Authority
JP
Japan
Prior art keywords
reaction
magnet
liquid
antibody
antigen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11941891A
Other languages
Japanese (ja)
Inventor
Kyuji Mutsukawa
六川 玖治
Koji Matsumoto
浩二 松本
Morihito Inoue
井上 守人
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP11941891A priority Critical patent/JPH04323559A/en
Publication of JPH04323559A publication Critical patent/JPH04323559A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To make effective use of magnetic particulates so as to enhance the efficiency of reflection by disposing a magnet in such a way as being movable along the direction of the depth of a reaction container proportionately to the amount of a reacted liquid in the container. CONSTITUTION:A sample and at least a liquid of antibody-solidifying magnetic particulates are separately infused into a reaction container 10 and the particulates reacted with an antibody in the sample are attracted by a magnet 11 and any unnecessary liquid containing an antigen which is not reacted with the particulates is removed. In that case, the depth of the liquid is different during the reaction from during B/F separation. The magnet 11 is disposed in such a way as being movable along the pipe wall of the container 10 proportionately to the amount of the reacted liquid in the container 10 and thereby the magnet 11 can be disposed in its optimum position and the magnetic particulates can be effectively used and the efficiency of reflection can be enhanced.

Description

【発明の詳細な説明】[Detailed description of the invention]

[発明の目的] [Purpose of the invention]

【0001】0001

【産業上の利用分野】本発明は、磁性微粒子を利用して
サンプル内の抗原量を測定する免疫測定方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an immunoassay method for measuring the amount of antigen in a sample using magnetic fine particles.

【0002】0002

【従来の技術】サンプル(検体)中の特定の抗原量の定
量分析には従来の放射性元素を用いるRIA(ラジオイ
ムノアッセイ)法が行われている。しかしこのRIA法
は放射性元素を用いるために、専用の機器を設置し、資
格を有するオペレータが操作を行わなければならず、し
かも廃棄物の処理に注意を要する等の煩わしさがある。
2. Description of the Related Art A conventional RIA (radioimmunoassay) method using a radioactive element is used for quantitative analysis of the amount of a specific antigen in a sample (specimen). However, since this RIA method uses radioactive elements, it requires the installation of special equipment and the operation by a qualified operator, and is troublesome, such as requiring careful disposal of waste.

【0003】このためこのRIA法に代わり酵素反応を
利用して分析を行うようにしたEIA(エンザイムイム
ノアッセイ)法が行われてきている。そして最近になっ
てこのEIA法の中でも迅速を図る目的で磁性材料のよ
うな抗体固定化微粒子を利用した分析法が普及してきて
いる。
[0003] For this reason, instead of the RIA method, an EIA (enzyme immunoassay) method, which performs analysis using an enzymatic reaction, has been used. Recently, an analysis method using antibody-immobilized fine particles such as a magnetic material has become popular for the purpose of speeding up the EIA method.

【0004】図13はこのようなEIA法の原理を説明
するもので、先ず第一抗体(第一試薬)2が固定された
磁性微粒子(Magnetic Particle;以
下MPと称する)1の溶液が用意され、これに測定すべ
き抗原3を含んだ検体(サンプル)4を分注することに
より第一の抗原・抗体反応が生じて抗原3の一部は第一
抗体2に結合される。結合しない抗原3′はフリー状態
で存在している。 従って磁石を用いMP1を吸着することにより集合させ
た状態でフリーの抗原3′を除去し、いわゆるB/F分
離を行う。次に酵素5で標識された第二抗体(第二試薬
)6を分注することにより第二の抗原・抗体反応が生じ
て、測定したい抗原3はMP1と酵素標識抗体6の一部
と結合してサンドイッチ状にされる。結合しない酵素標
識抗体6′はフリー状態で存在している。従って前記同
様に磁石を用いることによりB/F分離を行って、フリ
ーの酵素標識抗体6′を除去する。
FIG. 13 explains the principle of such an EIA method. First, a solution of magnetic particles (hereinafter referred to as MP) 1 on which a first antibody (first reagent) 2 is immobilized is prepared. By dispensing a specimen (sample) 4 containing the antigen 3 to be measured into this, a first antigen-antibody reaction occurs, and a portion of the antigen 3 is bound to the first antibody 2. The unbound antigen 3' exists in a free state. Therefore, by adsorbing MP1 using a magnet, free antigen 3' is removed in an aggregated state, and so-called B/F separation is performed. Next, a second antigen-antibody reaction occurs by dispensing the second antibody (second reagent) 6 labeled with the enzyme 5, and the antigen 3 to be measured binds to MP1 and a part of the enzyme-labeled antibody 6. It is then made into a sandwich. The unbound enzyme-labeled antibody 6' exists in a free state. Therefore, similar to the above, B/F separation is performed using a magnet to remove free enzyme-labeled antibody 6'.

【0005】次にこれに基質液(第三試薬)7を分注す
ることにより第三の反応いわゆる酵素反応が生じて反応
生成物8が生成される。この抗原3には酵素5が結合さ
れているので、第三の反応状態を吸光法によって測光す
ることにより、酵素5の量に比例した抗原3の量が測定
できることになる。
Next, by dispensing the substrate solution (third reagent) 7 into this, a third reaction, so-called enzyme reaction, occurs and a reaction product 8 is produced. Since the enzyme 5 is bound to the antigen 3, the amount of the antigen 3 proportional to the amount of the enzyme 5 can be measured by photometrically measuring the third reaction state by spectrophotometry.

【0006】図12はこのような原理に基いた免疫測定
方法を説明するもので、先ず反応容器10例えば角形状
のガラス容器を用意しこれにサンプル4を分注する。次
にMP1溶液をこれに分注することにより第一の反応が
生ずる。なおサンプル4とMP1溶液の分注順序はいず
れでもよい。第一の反応によってサンプル4内の抗原3
の一部は第一抗体2に結合するので、続いて結合しない
でフリー状態で残っている抗原3′が次反応に影響を与
えるのを防止するため、磁石11を用いて反応容器10
に接近させることによりMP1を吸着して集合させた状
態で、フリーの抗原3′を含む不要液をノズルで吸引し
て除去してB/F分離を行う。
FIG. 12 illustrates an immunoassay method based on such a principle. First, a reaction vessel 10, for example a rectangular glass vessel, is prepared and a sample 4 is dispensed into it. The first reaction then occurs by dispensing the MP1 solution therein. Note that sample 4 and MP1 solution may be dispensed in any order. Antigen 3 in sample 4 by the first reaction
Since a part of the antigen 3' binds to the first antibody 2, a magnet 11 is used to prevent the antigen 3' remaining in a free state from influencing the next reaction.
In a state in which MP1 is adsorbed and aggregated by bringing it close to the antigen 3', unnecessary liquid containing free antigen 3' is removed by suction with a nozzle to perform B/F separation.

【0007】次に反応容器10内に過剰の洗浄液(一般
に緩衝液)を吐出し、撹拌して液を分散した後磁石11
を再び用いてB/F分離を行って残っている未反応(過
剰)の抗原3′を吸引して除去する。続いて第二抗体(
第二試薬)6を分注した後、洗浄液を吐出して撹拌を行
う。以下図13の原理に従ってこのような反応が繰返さ
れる。
Next, an excess cleaning solution (generally a buffer solution) is discharged into the reaction container 10, and after stirring and dispersing the solution, the magnet 11
is used again to perform B/F separation, and the remaining unreacted (excess) antigen 3' is removed by suction. Next, the second antibody (
After dispensing the second reagent) 6, the washing liquid is discharged and stirred. Hereinafter, such a reaction is repeated according to the principle shown in FIG.

【0008】このようなEIA法による免疫測定方法で
は、反応途中において反応液に含まれていた過剰の抗原
又は酵素標識抗体を次反応に影響を与えないようにB/
F分離によって除去することが重要である。一般にEI
Aの場合反応容器10内に用意される反応液量は50乃
至200μlであるのに対し、B/F分離のために用い
られる洗浄液量は反応液量の2倍乃至数倍が用意される
のが普通である。
[0008] In such an immunoassay method using the EIA method, during the reaction, excess antigen or enzyme-labeled antibody contained in the reaction solution is removed by B/B so as not to affect the next reaction.
It is important to remove it by F separation. Generally E.I.
In case A, the amount of reaction liquid prepared in the reaction vessel 10 is 50 to 200 μl, whereas the amount of washing liquid used for B/F separation is prepared to be twice to several times the amount of reaction liquid. is normal.

【0009】[0009]

【発明が解決しようとする課題】ところで従来の免疫測
定方法では磁性微粒子を効果的に利用するのが困難なの
で、反応効率が悪いという問題がある。これは反応時と
B/F分離時では液の深さが異なるので、磁石を最適位
置に配置するのが困難であるという事に起因している。 例えば磁石を反応液量の少ない方に合わせて配置すると
洗浄時における磁性微粒子の集合が不良となり、逆に磁
石を反応液量の多い方に合わせるとB/F分離後の次反
応時の磁性微粒子の分散が不充分となる。これは前記の
ように洗浄液量に比べ反応液量(特に試薬液量)が少な
いので、反応容器の壁面に磁性微粒子が残ってしまうた
めである。いずれの場合も磁性微粒子を効果的に利用す
るのが困難となる。この結果反応効率が悪くなるので測
定データ不良が生じ易い。
[Problems to be Solved by the Invention] However, in conventional immunoassay methods, it is difficult to effectively utilize magnetic fine particles, so there is a problem of poor reaction efficiency. This is because the depth of the liquid is different during the reaction and during the B/F separation, so it is difficult to arrange the magnet at the optimum position. For example, if the magnet is placed on the side with a smaller amount of reaction liquid, the magnetic particles will not aggregate properly during washing, whereas if the magnet is placed on the side with a larger amount of reaction liquid, the magnetic particles will be collected during the next reaction after B/F separation. will be insufficiently dispersed. This is because, as described above, since the amount of reaction liquid (particularly the amount of reagent liquid) is smaller than the amount of washing liquid, magnetic fine particles remain on the wall surface of the reaction container. In either case, it becomes difficult to utilize magnetic fine particles effectively. As a result, reaction efficiency deteriorates, which tends to result in defective measurement data.

【0010】本発明は以上のような問題に対処してなさ
れたもので、磁性微粒子を効果的に利用して反応効率を
向上するようにした免疫測定方法を提供することを目的
とするものである。
The present invention was made in response to the above-mentioned problems, and it is an object of the present invention to provide an immunoassay method that effectively utilizes magnetic fine particles to improve reaction efficiency. be.

【0011】[発明の構成][Configuration of the invention]

【0012】0012

【課題を解決するための手段】上記目的を達成するため
に本発明は、反応容器内にサンプル及び少なくとも抗体
固定化磁性微粒子液を分注し、前記サンプル内の抗原と
反応した抗体固定化磁性微粒子を磁石によって吸着した
状態で反応しない抗原を含む不要液を除去する免疫測定
方法において、前記反応容器内の反応液量に応じて磁石
を反応容器の管壁の深さ方向に沿って移動可能に配置す
ることを特徴とするものである。
[Means for Solving the Problems] In order to achieve the above object, the present invention dispenses a sample and at least an antibody-immobilized magnetic particle liquid into a reaction container, and the antibody-immobilized magnetic particles reacted with the antigen in the sample. In an immunoassay method in which an unnecessary liquid containing an unreacted antigen is removed while fine particles are adsorbed by a magnet, the magnet can be moved along the depth direction of the tube wall of the reaction vessel according to the amount of reaction liquid in the reaction vessel. It is characterized by being placed in.

【0013】[0013]

【作用】反応容器内の反応液量に応じて磁石を反応容器
の管壁の深さ方向に沿って移動可能に配置するので、反
応液量が少ないときは磁石の位置を深くまた反応液量が
多いときは磁石の位置を浅くなるように自在に移動して
B/F分離を行うことができる。これによって磁性微粒
子を効果的に利用することができるので、反応効率を向
上することができる。
[Function] The magnet is arranged so that it can be moved along the depth direction of the tube wall of the reaction vessel according to the amount of reaction liquid in the reaction vessel, so when the amount of reaction liquid is small, the magnet position is moved deeper and the amount of reaction liquid is lowered. When there is a large amount of water, B/F separation can be performed by freely moving the position of the magnet so that it becomes shallower. This makes it possible to effectively utilize the magnetic particles, thereby improving reaction efficiency.

【0014】[0014]

【実施例】以下図面を参照して本発明の免疫測定方法の
実施例を説明する。
EXAMPLES Examples of the immunoassay method of the present invention will be described below with reference to the drawings.

【0015】実施例1 反応容器10として図1のように内径5mm×6mm,
長さ40mmの角形状のガラス管を用意し以下の反応を
行った。
Example 1 As shown in FIG. 1, the reaction vessel 10 has an inner diameter of 5 mm x 6 mm,
A rectangular glass tube with a length of 40 mm was prepared and the following reaction was carried out.

【0016】先ず磁性微粒子(以下MPと称する)のけ
んだく液(アドバンスト・マグネッチク社製)を10μ
l反応容器10に分注し、次に100乃至400μlの
0.1Mりん酸緩衝液(PH6.5)を加え撹拌して均
一化した後、図2のように反応容器10に磁石11を近
接させてMPを吸着することにより集合させた。反応容
器10内の液量を変化させ、各々の場合につきMPが最
も速く吸着される磁石11の深さ方向の中心位置hを測
定したところ次の表1のような結果が得られた。
First, 10μ of magnetic fine particle (hereinafter referred to as MP) suspension solution (manufactured by Advanced Magnetic Co., Ltd.) was added.
1 into the reaction container 10, then add 100 to 400 μl of 0.1M phosphate buffer (PH 6.5) and stir to homogenize. Then, as shown in FIG. 2, place the magnet 11 close to the reaction container 10. Then, MP was aggregated by adsorption. When the amount of liquid in the reaction vessel 10 was varied and the center position h in the depth direction of the magnet 11 at which MP was absorbed most quickly was measured in each case, the results shown in Table 1 below were obtained.

【0017】[0017]

【表1】[Table 1]

【0018】なおいずれの場合もMPは約30秒以内に
反応容器10の壁面に吸着された。表1から明らかなよ
うに液量に応じて磁石11の深さ方向の位置を変化させ
ると、液のMPを効率良く吸着できることが確かめられ
た。
In each case, MP was adsorbed onto the wall of the reaction vessel 10 within about 30 seconds. As is clear from Table 1, it was confirmed that by changing the position of the magnet 11 in the depth direction according to the amount of liquid, the MP of the liquid could be efficiently adsorbed.

【0019】実施例2 実施例1と同様な条件で10μlのMP液と400μl
の0.1Mりん酸緩衝液を反応容器10に分注して混合
した。次に磁石11を反応容器10に近接させ深さ方向
の位置を変えて、各々の場合にて約30秒間MPの吸着
を行った。この状態で混合液の上澄の吸光度を660n
mの波長で測定し、この結果に基きMPの集合率を測定
した。すなわち図3,図4のように、反応容器10内の
混合液の660nmの吸光度A1 (100%)を測定
した後、図5,図6のようにMPを集合させた状態で6
60nmの吸光度A2 を測定し、(A1 −A2 )
%を集合率とした。この場合の磁石位置と集合率との関
係は表2のような結果が得られた。
Example 2 Under the same conditions as Example 1, 10 μl of MP solution and 400 μl
0.1M phosphate buffer was dispensed into the reaction container 10 and mixed. Next, the magnet 11 was brought close to the reaction vessel 10 and its position in the depth direction was changed, and MP was adsorbed for about 30 seconds in each case. In this state, the absorbance of the supernatant of the mixture was set to 660n.
The measurement was performed at a wavelength of m, and the aggregation rate of MP was determined based on this result. That is, after measuring the absorbance A1 (100%) at 660 nm of the mixed liquid in the reaction container 10 as shown in FIGS.
Measure the absorbance A2 at 60 nm, (A1 - A2)
% was taken as the aggregation rate. In this case, the relationship between the magnet position and the aggregation rate was as shown in Table 2.

【0020】[0020]

【表2】[Table 2]

【0021】表2から明らかなように、この場合の磁石
11の最適位置は集合率が最大となる7mmであること
を示している。この表2から磁石11が最適位置から外
れるとMPの集合率が低下して、MPの効果的な利用が
妨げられることが確かめられた。
As is clear from Table 2, the optimum position of the magnet 11 in this case is 7 mm, where the aggregation rate is maximum. From Table 2, it was confirmed that when the magnet 11 deviates from the optimum position, the MP aggregation rate decreases and effective use of MP is hindered.

【0022】実施例3 実施例2と同様な条件でMPとりん酸緩衝液との混合液
400μlを用意し、磁石10を反応容器10の底面か
ら7mmの高さ位置に配置してMPの集合を行った。次
に反応をA,Bの2系統に分けて続けた。
Example 3 Under the same conditions as in Example 2, 400 μl of a mixed solution of MP and phosphate buffer was prepared, and the magnet 10 was placed at a height of 7 mm from the bottom of the reaction vessel 10 to collect MP. I did it. Next, the reaction was divided into two systems, A and B, and continued.

【0023】A系統は図7のようにそのままで1分間放
置した。B系統は15秒毎に図8乃至図11に示すよう
に段階的に高さ位置を各々7mm,5mm,3mm,1
mmに変化させた。各系統共に1分後上澄を除去し、新
たに各反応容器10(図7及び図11のもの)に対して
100μlの緩衝液を加えた。続いて回転形撹拌子を用
いて各混合液を撹拌した後、けんだく液50μlを用い
て各々20倍に希釈して660nmの吸光度を測定した
。以上のような反応を10回繰返すことにより表3に示
すような結果が得られた。
[0023] As shown in FIG. 7, the A line was left as it was for 1 minute. For the B system, the height position is changed stepwise to 7 mm, 5 mm, 3 mm, and 1 as shown in Figures 8 to 11 every 15 seconds.
Changed to mm. After 1 minute for each system, the supernatant was removed, and 100 μl of buffer was newly added to each reaction container 10 (those in FIGS. 7 and 11). Subsequently, each mixed solution was stirred using a rotary stirrer, and then diluted 20 times with 50 μl of suspension solution, and the absorbance at 660 nm was measured. By repeating the above reaction 10 times, the results shown in Table 3 were obtained.

【0024】[0024]

【表3】[Table 3]

【0025】なお660nmの標準吸光度を550とし
た。
Note that the standard absorbance at 660 nm was 550.

【0026】表3から明らかなように、B系統のように
経時的に磁石11の位置を変化させてMPを移動させれ
ば、平均吸光度は標準値に近くなりこの結果分散値及び
ばらつき率が小さく押えられることを意味している。こ
れによってB/F分離の洗浄から次工程の反応に移る際
、磁石11の位置を低い方に移動させてMPを反応容器
10の底面に移動させることにより、液中におけるMP
の再分散値を向上できることが確かめられた。なおA系
統においては、前述したように洗浄液に比べて試薬量が
少ない場合には、MPが反応容器10の壁面に残ってし
まうので、分散されないため望ましい結果が得られない
As is clear from Table 3, if the position of the magnet 11 is changed over time to move the MP as in the B system, the average absorbance becomes close to the standard value, and as a result, the dispersion value and the variation rate decrease. It means being held small. As a result, when moving from cleaning for B/F separation to the next reaction step, by moving the position of the magnet 11 lower and moving the MP to the bottom of the reaction vessel 10, the MP in the liquid can be removed.
It was confirmed that the redispersion value of can be improved. Note that in system A, as described above, when the amount of reagent is small compared to the washing liquid, MP remains on the wall of the reaction vessel 10 and is not dispersed, making it impossible to obtain desired results.

【0027】このように本発明実施例によれば、反応容
器内の反応液量に応じて磁石を深さ方向に沿って移動さ
せるようにしたので、B/F分散時の磁性微粒子の集合
率が向上するので損失を防止できる。またB/F分散後
の磁性微粒子の分散性を向上することができる。これに
よって磁性微粒子を効果的に利用することができるので
反応効率を向上でき、測定データの信頼性を改善するこ
とができる。
As described above, according to the embodiment of the present invention, the magnet is moved along the depth direction according to the amount of reaction liquid in the reaction vessel, so that the aggregation rate of magnetic fine particles during B/F dispersion is reduced. loss can be prevented. Further, the dispersibility of the magnetic fine particles after B/F dispersion can be improved. This makes it possible to effectively utilize the magnetic particles, thereby improving reaction efficiency and improving the reliability of measurement data.

【0028】なお磁石の配置態様は任意に設定すること
ができ、例えば複数の磁石を反応容器に対向して配置し
ておき各磁石の位置を反応過程に応じて高い位置に又は
低い位置に配置することができる。また反応容器に沿っ
て磁石を上下方向に移動しても良い。あるいは反応容器
に沿って複数の磁石をその上下方向の位置を少しずつ変
化させながら配置し、反応容器をその並べられた磁石に
沿って移動させることにより、内部の磁性微粒子を目的
の位置まで誘導することが可能である。
[0028] The arrangement of the magnets can be arbitrarily set; for example, a plurality of magnets may be arranged facing the reaction vessel, and each magnet may be placed at a higher or lower position depending on the reaction process. can do. Alternatively, the magnet may be moved vertically along the reaction vessel. Alternatively, by arranging multiple magnets along the reaction vessel while changing their vertical positions little by little, and moving the reaction vessel along the arranged magnets, the magnetic particles inside are guided to the desired position. It is possible to do so.

【0029】[0029]

【発明の効果】以上述べたように本発明によれば、反応
容器内の反応液量に応じて磁石を反応容器の深さ方向に
沿って移動可能に配置するようにしたので、磁性微粒子
を効果的に利用でき反応効率を向上することができる。
As described above, according to the present invention, the magnets are arranged so as to be movable along the depth direction of the reaction vessel according to the amount of reaction liquid in the reaction vessel. It can be used effectively and reaction efficiency can be improved.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明の免疫測定方法の第1の実施例を示す斜
視図である。
FIG. 1 is a perspective view showing a first embodiment of the immunoassay method of the present invention.

【図2】本発明の免疫測定方法の第1の実施例を示す側
面図である。
FIG. 2 is a side view showing a first embodiment of the immunoassay method of the present invention.

【図3】本発明の第2の実施例を示す上面図である。FIG. 3 is a top view showing a second embodiment of the invention.

【図4】本発明の第2の実施例を示す側面図である。FIG. 4 is a side view showing a second embodiment of the invention.

【図5】本発明の第2の実施例を示す上面図である。FIG. 5 is a top view showing a second embodiment of the invention.

【図6】本発明の第2の実施例を示す側面図である。FIG. 6 is a side view showing a second embodiment of the invention.

【図7】本発明の第3の実施例を示す側面図である。FIG. 7 is a side view showing a third embodiment of the present invention.

【図8】本発明の第3の実施例を示す側面図である。FIG. 8 is a side view showing a third embodiment of the present invention.

【図9】本発明の第3の実施例を示す側面図である。FIG. 9 is a side view showing a third embodiment of the present invention.

【図10】本発明の第3の実施例を示す側面図である。FIG. 10 is a side view showing a third embodiment of the present invention.

【図11】本発明の第3の実施例を示す側面図である。FIG. 11 is a side view showing a third embodiment of the present invention.

【図12】免疫測定方法を説明する工程図である。FIG. 12 is a process diagram illustrating an immunoassay method.

【図13】EIA法の原理の説明図である。FIG. 13 is an explanatory diagram of the principle of EIA method.

【符号の説明】[Explanation of symbols]

10  反応容器 11  磁石 10 Reaction container 11 Magnet

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】  反応容器内にサンプル及び少なくとも
抗体固定化磁性微粒子液を分注し、前記サンプル内の抗
原と反応した抗体固定化磁性微粒子を磁石によって吸着
した状態で反応しない抗原を含む不要液を除去する免疫
測定方法において、前記反応容器内の反応液量に応じて
磁石を反応容器の管壁の深さ方向に沿って移動可能に配
置することを特徴とする免疫測定方法。
1. A sample and at least an antibody-immobilized magnetic particle liquid are dispensed into a reaction container, and the antibody-immobilized magnetic particles that have reacted with the antigen in the sample are adsorbed by a magnet, and an unnecessary liquid containing the unreacted antigen is removed. 1. An immunoassay method in which a magnet is disposed so as to be movable along the depth direction of a tube wall of the reaction vessel according to the amount of reaction liquid in the reaction vessel.
【請求項2】  反応容器にさらに酵素標識抗体液を分
注し、抗原に酵素標識抗体を反応させて抗原を抗体固定
化磁性微粒子とでサンドイッチ状にした後、磁石によっ
て抗体固定化磁性微粒子を吸着した状態で反応しない酵
素標識抗体を含む不要液を除去する請求項1記載の免疫
測定方法。
2. Further dispense an enzyme-labeled antibody solution into the reaction container, react the enzyme-labeled antibody with the antigen, and sandwich the antigen with the antibody-immobilized magnetic particles. Then, use a magnet to bind the antibody-immobilized magnetic particles. 2. The immunoassay method according to claim 1, wherein an unnecessary liquid containing the enzyme-labeled antibody that does not react in an adsorbed state is removed.
【請求項3】  磁性微粒子を吸着した状態の磁石を管
壁を移動させて前記磁性微粒子を目的位置まで移動させ
る請求項1又は2記載の免疫測定方法。
3. The immunoassay method according to claim 1, wherein the magnetic particles are moved to a target position by moving a tube wall using a magnet with the magnetic particles adsorbed thereon.
JP11941891A 1991-04-23 1991-04-23 Measuring method for immunity Pending JPH04323559A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11941891A JPH04323559A (en) 1991-04-23 1991-04-23 Measuring method for immunity

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11941891A JPH04323559A (en) 1991-04-23 1991-04-23 Measuring method for immunity

Publications (1)

Publication Number Publication Date
JPH04323559A true JPH04323559A (en) 1992-11-12

Family

ID=14760974

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11941891A Pending JPH04323559A (en) 1991-04-23 1991-04-23 Measuring method for immunity

Country Status (1)

Country Link
JP (1) JPH04323559A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09500511A (en) * 1993-12-30 1997-01-14 ノーザン・テレコム・リミテッド Data modulator for selectively distributing data
JP2008216237A (en) * 2007-02-09 2008-09-18 Abbott Japan Co Ltd Immunodiagnostic drug with reduced nonspecific reaction
JP2014122826A (en) * 2012-12-21 2014-07-03 Hitachi High-Technologies Corp Magnetic particle separation method and automatic analysis device using the same
WO2016043291A1 (en) * 2014-09-19 2016-03-24 協和メデックス株式会社 Method for cleaning magnetic carrier particles, device for cleaning magnetic carrier particles, and immunoassay method using magnetic carrier particles

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09500511A (en) * 1993-12-30 1997-01-14 ノーザン・テレコム・リミテッド Data modulator for selectively distributing data
JP2008216237A (en) * 2007-02-09 2008-09-18 Abbott Japan Co Ltd Immunodiagnostic drug with reduced nonspecific reaction
JP2014122826A (en) * 2012-12-21 2014-07-03 Hitachi High-Technologies Corp Magnetic particle separation method and automatic analysis device using the same
WO2016043291A1 (en) * 2014-09-19 2016-03-24 協和メデックス株式会社 Method for cleaning magnetic carrier particles, device for cleaning magnetic carrier particles, and immunoassay method using magnetic carrier particles

Similar Documents

Publication Publication Date Title
US4197088A (en) Method for qualitative and quantitative determination of immunological reactions
US7396689B2 (en) Method of adjusting the working range of a multi-analyte assay
US4400353A (en) Electro-optical system for use in evaluating immunological reactions
JPH07121330B2 (en) Apparatus and method for magnetic separation
JPH0782016B2 (en) Container for antibody or antigen measurement
US4411518A (en) Apparatus for use in qualitative determination of immunological reactions
JPH11502625A (en) Apparatus and method for reagent separation in a chemical analyzer
JPH04323559A (en) Measuring method for immunity
JP3661605B2 (en) Immunoassay apparatus and immunoassay method
Okano et al. Using microparticle labeling and counting for attomole-level detection in heterogeneous immunoassay
Quesada et al. A simple kinetic model of antigen-antibody reactions in particle-enhanced light scattering immunoassays
US20070000311A1 (en) Method for measuring substance having affinity
JP2548626B2 (en) Immune automatic analyzer
CN113769806B (en) Micro-fluidic chip, preparation method thereof and application of micro-fluidic chip in C-reactive protein detection by combining two-step microsphere competition method
JP3216452B2 (en) Immunoassay method and device
JPH0447266A (en) Agitating system for reagent vessel
JP3401170B2 (en) Colored latex for immunoassay
WO2005088309A1 (en) Method of measuring affinity substance
JPH0422867A (en) Immune analysis system
JPH0447268A (en) Immunity analyzer
JPH04323561A (en) Measuring method for immunity
JP2003202344A (en) Colored latex
JP3333526B2 (en) Magnetic generator and immunoassay
JPH06109735A (en) Measuring method for in vivo material by antigen-antibody reaction
EP3951391A1 (en) Magnetic responsive particle and immunoassay method using same, reagent for immunoassay