JPH04323321A - Production of nonoriented silicon steel sheet excellent in blankability - Google Patents

Production of nonoriented silicon steel sheet excellent in blankability

Info

Publication number
JPH04323321A
JPH04323321A JP11378291A JP11378291A JPH04323321A JP H04323321 A JPH04323321 A JP H04323321A JP 11378291 A JP11378291 A JP 11378291A JP 11378291 A JP11378291 A JP 11378291A JP H04323321 A JPH04323321 A JP H04323321A
Authority
JP
Japan
Prior art keywords
steel sheet
hardness
steel
cooling
seconds
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11378291A
Other languages
Japanese (ja)
Other versions
JP2954735B2 (en
Inventor
Tomoyuki Ichi
智之 市
Kazumi Morita
森田 和巳
Takashi Obara
隆史 小原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP11378291A priority Critical patent/JP2954735B2/en
Publication of JPH04323321A publication Critical patent/JPH04323321A/en
Application granted granted Critical
Publication of JP2954735B2 publication Critical patent/JP2954735B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To stably obtain a ferrite hardness of Hv1 135-160, accordingly to obtain superior blankability, and also to improve magnetic properties to a greater extent by means of subsequent stress relief annealing. CONSTITUTION:At the time of producing a nonoriented silicon steel sheet, 0.015-0.050% C, <=0.3% Si, 0.1-1.0% Mn, and 0.1-0.6% Al are incorporated into raw material. Further, at the time of cooling in recrystallization annealing, the steel is cooled down to 700 deg.C at <=10 deg.C/s cooling rate, successively cooled down to ordinary temp. at 10-50 deg.C/s cooling rate, aged at 200-450 deg.C for 5-30sec, and further aged at 10-55 deg.C.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】この発明は、打抜加工性に優れ、
また磁気特性にも優れた無方向性電磁鋼板の製造方法に
関するものである。
[Industrial Application Field] This invention has excellent punching workability,
The present invention also relates to a method for producing a non-oriented electrical steel sheet that has excellent magnetic properties.

【0002】0002

【従来の技術】無方向性電磁鋼板において、Si含有量
が少ないものは、鉄損値は劣っているものの高い透磁率
を示し、しかも安価なことから、家庭用電機製品の小型
モーターやEIコアなどの小型トランスに多用されてい
る。
[Prior Art] Among non-oriented electrical steel sheets, those with a low Si content exhibit high magnetic permeability although their iron loss value is inferior, and are inexpensive, so they are used in small motors and EI cores of household electrical appliances. It is widely used in small transformers such as.

【0003】ところでこの種の電磁鋼板は、需要家にお
いて所定の形状に打ち抜いたのち、そのまま使用するフ
ルプロセス材と、打ち抜き後に歪取焼鈍を施して必要レ
ベルの磁性を得るセミプロセス材とに大別される。いず
れの場合においても優れた磁性が要求されることは当然
であるが、その殆んどすべてが打ち抜き機によって連続
的に打ち抜かれることから、連続打抜性に優れているこ
とも極めて重要な要件とされている。さらにまた、需要
家での鉄心製作工程の合理化、省力化から連続打ち抜き
中の順送りプレス内で一定枚数を積層し、鉄心の状態で
取り出される自動かしめ方式による複合順送り金型が使
用されるようになってきたことから、強いかしめ強度が
得られることやローターのスキューが滑らかにできるこ
とも重要な要件となっている。
By the way, there are two types of electrical steel sheets of this type: fully processed materials, which are punched into a predetermined shape by customers and then used as is, and semi-processed materials, which are subjected to strain relief annealing after punching to obtain the required level of magnetism. Separated. It goes without saying that excellent magnetism is required in any case, but since almost all of them are continuously punched out using a punching machine, excellent continuous punching performance is also an extremely important requirement. It is said that Furthermore, in order to rationalize and save labor in the core production process at customers, composite progressive molds using an automatic locking method, in which a certain number of sheets are stacked in a progressive press during continuous punching and taken out in the core state, are being used. As a result, the ability to obtain strong caulking strength and smooth rotor skew has become an important requirement.

【0004】電磁鋼板に良好な打抜性を付与するために
は、その硬度を適正範囲に調整することが有効であると
されている。この硬度調整については、セミプロセス材
では種々検討されているがフルプロセス材についてはほ
とんどない。この理由は、電磁鋼板中に加工歪が残った
り、鋼中介在物が増大して、所望の磁性が得られないこ
とによる。
[0004] In order to impart good punchability to an electromagnetic steel sheet, it is said to be effective to adjust its hardness within an appropriate range. Regarding this hardness adjustment, various studies have been conducted on semi-processed materials, but there is almost no research on fully processed materials. The reason for this is that machining strain remains in the electromagnetic steel sheet and inclusions in the steel increase, making it impossible to obtain desired magnetism.

【0005】しかしながら今日のように、合理化、省力
化が進んでくると、磁気特性をある程度犠牲にしても、
打抜加工性に優れていることが求められることがある。 一方犠牲となった磁気特性に関しては、打ち抜き加工後
に歪取り焼鈍を図ったり、または小型モーターや小型ト
ランスの設計を若干の変更で補うなどの方策が講じられ
ている。フルプロセス材について、打抜加工性のため硬
度を重視するものとして、特公昭49−6456号公報
や特開昭60−190521号公報に開示の技術がある
[0005] However, as rationalization and labor saving have progressed as seen today, even if the magnetic properties are sacrificed to some extent,
Excellent punching workability is sometimes required. On the other hand, measures have been taken to compensate for the sacrificed magnetic properties, such as applying strain relief annealing after punching, or making slight changes to the design of small motors and small transformers. Regarding full-process materials, there are techniques disclosed in Japanese Patent Publication No. 49-6456 and Japanese Patent Application Laid-open No. 190521/1983, which emphasize hardness for punching workability.

【0006】上記の提案のうち、特公昭49−6456
号公報には、HV5で 100〜120 の硬度範囲を
得る方法が示されている。また特開昭60−19052
1号には、鋼中の固溶Cの減少を意図した過時効処理を
施こし、磁性の時効劣化を最小限に抑制する方法が開示
され、その実施例に示された地鉄硬度は Hv で95
〜129 である。しかしながら、打抜性及び自動かし
め性が良好で、かつローターのスキュー性が良好な電磁
鋼板を得るためには、 HV (1kg) で135 
〜160 の地鉄硬度が必要であり、上記の従来技術で
はこの特性を満足させることはできない。
[0006] Among the above proposals,
The publication discloses a method for obtaining a hardness range of 100 to 120 at HV5. Also, JP-A-60-19052
No. 1 discloses a method of minimizing aging deterioration of magnetism by performing over-aging treatment intended to reduce solid solution C in steel, and the hardness of the base steel shown in the example is Hv. So 95
~129. However, in order to obtain a magnetic steel sheet with good punchability and automatic locking property, and good rotor skew property, HV (1kg) is 135
A base metal hardness of ~160 is required, and the above-mentioned prior art cannot satisfy this property.

【0007】すなわち地鉄硬度が低い場合、連続打ち抜
き時、打ち抜き切断面にはダレが発生し易いため、打ち
抜き後の製品寸法に誤差が生じる。この問題の解決策と
しては、打ち抜き金型のクリアランスを小さくすること
が考えられるが、この方法では金型寿命が減少する。こ
こに、適当な金型クリアランスで製品寸法にダレによる
誤差を生成しない地鉄硬度としては HV1≧135 
が望ましい。なお、ダレの発生が少ないことは自動かし
め金型にも適合し、かしめ強度の強い鉄心が得られる。 しかしながら地鉄硬度が HV1で160 を超えると
金型へのダメージが大きくなることから、地鉄硬度は 
HV1≦160 とするのが好ましい。
That is, when the hardness of the base material is low, sagging is likely to occur on the punched cut surface during continuous punching, resulting in errors in the dimensions of the product after punching. One possible solution to this problem is to reduce the clearance of the punching die, but this method reduces the life of the die. Here, the hardness of the base metal that does not cause errors due to sagging in product dimensions with appropriate mold clearance is HV1 ≧ 135.
is desirable. Furthermore, the fact that there is little sagging makes it suitable for automatic crimping molds, resulting in an iron core with strong crimping strength. However, if the hardness of the base metal exceeds 160 at HV1, the damage to the mold will increase, so the hardness of the base metal should be
It is preferable that HV1≦160.

【0008】一方、ローターコアはモーターのスムーズ
な回転を得るため、スキューがなされる。自動かしめコ
アのスキューについては、V型突起形状のものを、半が
しめの状態として金型外に取り出し、加工プレスにより
本がしめを行なうときにスキューを付ける。この時、地
鉄硬度が HV1:135 より小さいとV型突起に変
形をきたし、充分なスキュー角が得られない。
On the other hand, the rotor core is skewed to ensure smooth rotation of the motor. Regarding the skew of the self-locking core, the V-shaped protrusion is taken out of the mold in a half-closed state, and the skew is applied when the book is tightened using a processing press. At this time, if the base steel hardness is less than HV1:135, the V-shaped protrusion will be deformed and a sufficient skew angle will not be obtained.

【0009】[0009]

【発明が解決しようとする課題】このように、打抜加工
性、自動かしめ性に優れ、またスキューを滑らかに行う
ためには、地鉄硬度を HV1で135 〜160 と
することが重要である。この発明は、上記の要請に有利
に応えるもので、再結晶焼鈍後の冷却処理に工夫を加え
ることによって地鉄硬度の適正化を図り、もって打抜加
工性、自動かしめ性及びスキュー性を向上させ、さらに
はその後の歪取り焼鈍によって磁気特性の一層の向上が
望み得る無方向性電磁鋼板の有利な製造方法を提案する
ことを目的とする。
[Problems to be Solved by the Invention] As described above, in order to have excellent punching workability, automatic locking performance, and smooth skewing, it is important to set the base steel hardness to HV1 of 135 to 160. . This invention advantageously satisfies the above-mentioned demands, and optimizes the hardness of the base metal by adding innovations to the cooling treatment after recrystallization annealing, thereby improving punching workability, automatic locking performance, and skew performance. The purpose of the present invention is to propose an advantageous manufacturing method for a non-oriented electrical steel sheet, which can be further improved in magnetic properties by subsequent strain relief annealing.

【0010】0010

【課題を解決するための手段】すなわちこの発明は、C
:0.015 〜0.050 wt%(以下、単に%で
示す)、Si:0.3 %以下、Mn:0.1 〜1.
0 %及びAl:0.1 〜0.6 %を含有する熱延
鋼板に、冷間圧延を施した後、750 〜950 ℃に
おいて5秒〜5分間の再結晶焼鈍を施すことによって無
方向性電磁鋼板を製造するに当たり、上記再結晶焼鈍の
冷却過程につき、 700℃までを10℃/s以下の冷
却速度で冷却し、引き続き常温まで10〜50℃/sの
冷却速度で冷却した後、 200〜450 ℃で5〜3
0秒間の時効処理を施し、さらに10〜55℃において
時効処理を施すことからなる打抜加工性の優れた無方向
性電磁鋼板の製造方法である。
[Means for solving the problem] That is, this invention
: 0.015 to 0.050 wt% (hereinafter simply indicated as %), Si: 0.3% or less, Mn: 0.1 to 1.
0% and Al: 0.1 to 0.6%, after cold rolling, recrystallization annealing is performed at 750 to 950°C for 5 seconds to 5 minutes to obtain non-directional properties. In manufacturing electrical steel sheets, in the cooling process of the recrystallization annealing described above, the steel is cooled to 700°C at a cooling rate of 10°C/s or less, and then cooled to room temperature at a cooling rate of 10 to 50°C/s, and then cooled to 200°C. 5-3 at ~450℃
This is a method for manufacturing a non-oriented electrical steel sheet with excellent punching workability, which comprises performing an aging treatment for 0 seconds and further aging treatment at 10 to 55°C.

【0011】またこの発明において、 200〜450
 ℃, 5〜30秒間の時効処理は、冷却過程中で連続
して行っても、又絶縁被膜の焼付け処理を兼ねるもので
あっても良い。
[0011] Further, in this invention, 200 to 450
The aging treatment at 5 to 30 seconds at 5°C may be performed continuously during the cooling process, or may also serve as a baking treatment for the insulating coating.

【0012】この発明に従う、一連の冷却処理及び時効
処理は、微細炭化物を析出させ、地鉄硬度の向上を図る
もので、かかる処理によって、地鉄硬さ HV1:13
5 〜160 が得られ、ひいては打抜加工性の優れた
無方向性電磁鋼板が得られるのである。なお微細炭化物
析出により、磁気特性への影響が懸念されるが、約1%
程度の劣化であり、問題視する程度のものではなかった
[0012] A series of cooling treatments and aging treatments according to the present invention are intended to precipitate fine carbides and improve the hardness of the base steel, and by such treatment, the hardness of the base steel is HV1:13.
5 to 160 can be obtained, and as a result, a non-oriented electrical steel sheet with excellent punching workability can be obtained. There is a concern that fine carbide precipitation may affect magnetic properties, but it is approximately 1%.
It was only a moderate degree of deterioration, and not something that should be considered a problem.

【0013】さらにこの発明に従い得られた材料に歪取
り焼鈍を施すことにより、磁気特性が大幅に向上するこ
とが判明した。すなわち歪取り焼鈍を施すことにより、
打抜加工性は勿論のこと、磁気特性のより一層の向上が
達成されるのである。
Furthermore, it has been found that by subjecting the material obtained according to the present invention to strain relief annealing, the magnetic properties are significantly improved. In other words, by applying strain relief annealing,
Not only punching workability but also magnetic properties are further improved.

【0014】[0014]

【作用】次に、この発明において、素材の成分組成及び
製造条件を上記のように限定した理由について説明する
。 C:0.015 〜0.050 % C量が 0.015%未満では、鋼中における固溶Cが
少なく、微細炭化物量も少なくなるため、地鉄硬度 H
V1:135 を確保できない。一方、C量が0.05
0 %を超えると、時効処理後の炭化物が粗大化し、地
鉄硬度 HV1:135 以下となることから、C含有
量は0.015 〜0.050 %の範囲に限定した。
[Operation] Next, in this invention, the reason why the component composition of the material and the manufacturing conditions are limited as described above will be explained. C: 0.015 to 0.050% When the amount of C is less than 0.015%, the solid solution C in the steel is small and the amount of fine carbides is also small, so the hardness of the base steel H
V1:135 cannot be secured. On the other hand, the amount of C is 0.05
If it exceeds 0%, the carbide after aging becomes coarse and the hardness of the base metal becomes HV1:135 or less, so the C content was limited to a range of 0.015 to 0.050%.

【0015】Si:0.3 %以下 Siは、磁気特性の向上に有用な元素ではあるが、この
発明は低級無方向性電磁鋼板を対象としているので、積
極的なSi添加は行わない。しかしながら製造過程とく
に脱酸段階での不可避混入を妨げるものではなく、この
点を考慮して0.3 %以下の範囲に限定した。
Si: 0.3% or less Si is an element useful for improving magnetic properties, but since the present invention is directed to low-grade non-oriented electrical steel sheets, Si is not actively added. However, this does not prevent unavoidable contamination during the manufacturing process, especially at the deoxidizing stage, and with this in mind, the content was limited to 0.3% or less.

【0016】Mn:0.1 〜1.0 %Mnは、 0
.1%より少ないと熱間脆性が大きくなり、一方 1.
0%を超えると鋼板の価格が高くなるので、Mn量は 
0.1〜1.0 %の範囲に限定した。
[0016] Mn: 0.1 to 1.0% Mn is 0
.. If it is less than 1%, hot embrittlement will increase; on the other hand, 1.
If the Mn content exceeds 0%, the price of the steel sheet will increase, so the amount of Mn should be
It was limited to a range of 0.1 to 1.0%.

【0017】Al:0.1 〜0.6 %Alは、 0
.1%より少ないとAlNの微細析出が生じ、磁気特性
の劣化が著しい。この理由は、微細AlNにより粒成長
が抑止されるためと考えられる。一方 0.6%より多
くなると、Al添加による磁気特性の向上効果が少なく
なるだけでなく、価格の面でも不利となる。それ故、A
l含有量は 0.1〜0.6 %の範囲に限定した。な
おAl添加による磁気特性の向上は、介在物の低減、A
lNの無害化(析出物の粗大化)及び比抵抗の増大によ
るものと考えられる。またAlは、炭化物の析出挙動に
も大きな影響を与えており、時効処理による硬度の向上
にも寄与している。
[0017] Al: 0.1 to 0.6% Al is 0
.. When it is less than 1%, fine precipitation of AlN occurs, resulting in significant deterioration of magnetic properties. The reason for this is thought to be that grain growth is suppressed by fine AlN. On the other hand, if the content exceeds 0.6%, not only will the effect of improving magnetic properties by adding Al decrease, but it will also be disadvantageous in terms of cost. Therefore, A
The l content was limited to a range of 0.1-0.6%. The improvement in magnetic properties due to the addition of Al is due to the reduction of inclusions, A
This is thought to be due to the detoxification of IN (coarsening of precipitates) and the increase in specific resistance. Furthermore, Al has a great influence on the precipitation behavior of carbides, and also contributes to improving hardness through aging treatment.

【0018】以上、必須成分について説明したが、この
発明では、地鉄硬度を高める元素としてPを添加するこ
ともできる。しかしながら含有量が 0.1%を超える
と冷間加工性が劣化するので、添加する場合には 0.
1%以下とする必要がある。
The essential components have been explained above, but in the present invention, P can also be added as an element to increase the hardness of the base steel. However, if the content exceeds 0.1%, cold workability deteriorates, so when adding 0.1%.
It needs to be 1% or less.

【0019】次に、この発明の製造条件について説明す
る。さて上記の好適成分組成になる熱延鋼板に、冷間圧
延を施した後、 750〜950℃において5秒〜5分
間の再結晶焼鈍を行ない、その冷却過程において冷却処
理を制御することにより、鋼中の固溶Cを増加させ、そ
の後の時効処理によって、鋼中に微細炭化物を析出させ
ることにより、地鉄硬度 HV1:135 〜160 
を確保するのである。上記の処理において、再結晶焼鈍
温度からの冷却速度は 700℃までを10℃/s以下
とする必要がある。というのは冷却速度10℃/sを超
えると鋼中固溶Cが少ない状態で固定されるため、10
℃/s以下として鋼中固溶Cの増大を図るためである。 なお固溶Cが最大限となる温度は723 ℃付近である
が、工業的に安定した生産量を確保するため、この発明
では上記の制御冷却を施すべき温度の下限を700 ℃
とした。
Next, the manufacturing conditions of this invention will be explained. Now, after cold rolling the hot-rolled steel sheet having the above-mentioned preferred composition, recrystallization annealing is performed at 750 to 950°C for 5 seconds to 5 minutes, and the cooling process is controlled during the cooling process. By increasing the solid solution C in the steel and precipitating fine carbides in the steel through subsequent aging treatment, the hardness of the base steel is increased to HV1:135 to 160.
This is to ensure that In the above treatment, the cooling rate from the recrystallization annealing temperature to 700°C needs to be 10°C/s or less. This is because when the cooling rate exceeds 10°C/s, the amount of solid solute C in the steel is fixed in a small state.
This is to increase the amount of solid solute C in the steel by setting the temperature to ℃/s or less. The temperature at which solid solution C reaches its maximum is around 723 °C, but in order to ensure industrially stable production, in this invention the lower limit of the temperature at which the above-mentioned controlled cooling should be performed is set at 700 °C.
And so.

【0020】また、 700℃まで10℃/s以下の速
度に冷却し、鋼中固溶Cが増大した後は、冷却速度を早
めて鋼中固溶Cを固定する必要がある。従って、その後
は比較的早めの10〜50℃/sという速度で常温まで
冷却する。 ここに冷却速度が10℃/sより遅いと鋼中固溶Cは結
晶粒界で析出しセメンタイトとなって鋼中固溶Cが減少
し、時効処理による地鉄硬度向上には寄与しなくなるの
で、少なくとも10℃/sの冷却速度が必要である。一
方、50℃/sを超える冷却速度を確保するためには多
大の設備投資が必要となり、コスト増となるため、 7
00℃から常温までの冷却速度は10〜50℃/sの範
囲に限定した。
[0020] Furthermore, after cooling to 700°C at a rate of 10°C/s or less and solid solute C in the steel increasing, it is necessary to increase the cooling rate to fix the solid solute C in the steel. Therefore, after that, it is cooled to room temperature at a relatively fast rate of 10 to 50° C./s. If the cooling rate is slower than 10°C/s, the solid solute C in the steel will precipitate at the grain boundaries and become cementite, reducing the solid solute C in the steel and not contributing to improving the hardness of the base steel through aging treatment. , a cooling rate of at least 10° C./s is required. On the other hand, in order to ensure a cooling rate exceeding 50°C/s, a large amount of capital investment is required, which increases costs.
The cooling rate from 00°C to room temperature was limited to a range of 10 to 50°C/s.

【0021】ついで上記のようにして固定した固溶Cを
微細析出させることにより、地鉄硬度の向上を図る。か
かる微細析出のためには時効処理が極めて重要であり、
次に示す2段階処理が必要である。すなわち 200〜
450 ℃で5〜30秒の第1段階の処理により炭化物
微細析出の核を生成し、ついで10〜55℃の第2段階
の処理によって炭化物の微細析出を図り、地鉄硬度 H
V1:135 〜160 を確保する。
[0021] Next, the solid solution C fixed as described above is finely precipitated to improve the hardness of the base steel. Aging treatment is extremely important for such fine precipitation;
The following two-step process is required. i.e. 200~
A first stage treatment at 450°C for 5 to 30 seconds generates nuclei for fine carbide precipitation, and a second stage treatment at 10 to 55°C aims at fine carbide precipitation, increasing the hardness of the base steel to H.
V1: Secure 135 to 160.

【0022】第1段階の時効処理において、処理温度が
 200℃より低いと核生成ができず、一方 450℃
より高いと粗大化した炭化物が生成し、地鉄硬度の向上
には寄与しない。また処理時間が5秒より短いと核の生
成がなく、一方30秒を超えると粗大炭化物が生成する
。そこでこの発明では、時効処理の第1段階は 200
〜450 ℃の温度範囲において5〜30秒間の処理と
したのである。
[0022] In the first stage aging treatment, if the treatment temperature is lower than 200°C, nucleation cannot occur, while at 450°C
If it is higher, coarse carbides will be generated and will not contribute to improving the hardness of the base steel. Further, if the treatment time is shorter than 5 seconds, no nuclei are generated, whereas if the treatment time exceeds 30 seconds, coarse carbides are generated. Therefore, in this invention, the first stage of aging treatment is 200
The treatment was carried out for 5 to 30 seconds at a temperature range of -450°C.

【0023】次に、第2段階の時効処理温度が10℃よ
り低いと地鉄硬度HV1:135 〜160 を確保す
るのに長時間を要し、実際的でなく、一方55℃を超え
ると粗大炭化物が生成し、地鉄硬度 HV1:135 
以上を確保できない。従ってそこでこの発明では、第2
段階の時効処理温度は10〜55℃の範囲に限定した。
Next, if the aging treatment temperature in the second stage is lower than 10°C, it will take a long time to ensure the hardness of the base steel of HV1:135 to 160, which is impractical, whereas if it exceeds 55°C, the Carbide is generated, and the hardness of the base steel is HV1:135.
It is not possible to secure more than that. Therefore, in this invention, the second
The stage aging treatment temperature was limited to a range of 10 to 55°C.

【0024】上記の2段階時効処理を施こすことにより
、地鉄硬度 HV1:135 〜160 が確保できる
。なお第1段階の時効処理は、再結晶焼鈍後の冷却過程
中で行っても良く、さらに絶縁被膜の焼付け処理を兼ね
させても良い。
[0024] By carrying out the above two-stage aging treatment, a base steel hardness of HV1:135 to 160 can be ensured. Note that the first stage aging treatment may be performed during the cooling process after recrystallization annealing, and may also serve as a baking treatment for the insulating coating.

【0025】絶縁被膜としては、従来から公知のりん酸
塩系、(重)クロム酸塩系及び(重)クロム酸塩と有機
樹脂系の混合系などいずれもが使用できる。これらを主
成分とした場合、たとえばりん酸塩系の場合における添
加物は、硝酸塩、亜硝酸塩、硼酸、界面活性剤、無水ク
ロム酸、(重)クロム酸塩などである。また(重)クロ
ム酸塩の場合は、有機還元剤、硼酸などである。さらに
(重)クロム酸−有機樹脂系の場合は、有機還元剤、硼
酸、有機樹脂としてアクリル系、スチレン系、酢酸ビニ
ル系、ベオバ系の1種又は2種以上の共重合物などであ
る。なお絶縁被膜の耐熱性向上のため、コロイダルシリ
カ、コロイダルアルミナ、さらにはチタニア、シリカ、
アルミナ等の金属酸化物の微粉末を配合しても良い。
As the insulating coating, any of the conventionally known phosphate-based, (heavy)chromate-based, and mixed systems of (heavy)chromate and organic resin can be used. When these are the main ingredients, for example, in the case of a phosphate type, additives include nitrates, nitrites, boric acid, surfactants, chromic anhydride, (bi)chromates, and the like. In the case of (bi)chromate, organic reducing agents, boric acid, etc. are used. Furthermore, in the case of a (heavy) chromic acid-organic resin system, an organic reducing agent, boric acid, and a copolymer of one or more of acrylic, styrene, vinyl acetate, and beoba-based organic resins are used. In order to improve the heat resistance of the insulation coating, colloidal silica, colloidal alumina, titania, silica,
Fine powder of metal oxide such as alumina may also be blended.

【0026】[0026]

【実施例】【Example】

実施例1 表1に示す成分組成になる熱延鋼板(A〜D)に、冷間
圧延を施した後、 800℃, 1分間の再結晶焼鈍を
行ない、その冷却過程において 700℃までを5℃/
s、引き続き常温までを25℃/sの冷却速度で冷却し
、ついで 350℃で10秒間の第1段階時効処理を施
したのち、25℃において第2段階の時効処理を施した
。かくして得られた製品の打抜加工性について調べた結
果を表1に併記する。また、地鉄硬度の経時変化につい
て調べた結果を図1に示す。
Example 1 Hot rolled steel sheets (A to D) having the compositions shown in Table 1 were cold rolled and then recrystallized at 800°C for 1 minute, and during the cooling process up to 700°C for 5 °C/
s, followed by cooling to room temperature at a cooling rate of 25°C/s, followed by a first stage aging treatment at 350°C for 10 seconds, followed by a second stage aging treatment at 25°C. Table 1 also shows the results of examining the punching workability of the product thus obtained. In addition, the results of investigating the change in the hardness of the steel base over time are shown in Figure 1.

【0027】[0027]

【表1】[Table 1]

【0028】図1から明らかなように、この発明に従い
得られた鋼板は、比較材に比べ地鉄硬度の向上が認めら
れ、適正な地鉄硬度が得られた。また自動かしめによる
打抜加工性の調査によれば、まずかえり高さ50μm 
までの打ち抜き数は、比較材が約8万回であったのに対
し、この発明に従い得られたものは約14万回であり、
打抜性は格段に向上した。またかしめ強度も良好であっ
た。さらにまたスキュー性については、この発明に従い
得られたものは充分なスキュー角が得られたけれども、
比較材にはスキューずれが生じた。
As is clear from FIG. 1, the steel plate obtained according to the present invention showed an improvement in base metal hardness compared to the comparative material, and an appropriate base metal hardness was obtained. In addition, according to a survey of punching workability using automatic clamping, it was found that the burr height was 50 μm.
The number of punches obtained according to the present invention was approximately 140,000 times, while the comparative material was approximately 80,000 times.
Punching performance has been significantly improved. The caulking strength was also good. Furthermore, regarding the skew property, although the product obtained according to the present invention had a sufficient skew angle,
Skew deviation occurred in the comparison material.

【0029】磁気特性については、たとえば実施例1の
供試材A,Bは、時効後のW17/50が8.2〜8.
3 (W/kg)、また歪取り焼鈍後のW17/50が
 6.1(W/kg)であり、比較例1の供試材Cより
も良好である一方、供試材Dよりは劣る。この理由は、
C添加による磁性の劣化とAl添加による磁性の向上の
両者の影響を起因するものである。すなわちこの発明は
、C添加によって地鉄硬度を確保すると共に、Cによる
磁性劣化をAl添加によって補償しているのである。
Regarding magnetic properties, for example, sample materials A and B of Example 1 have a W17/50 of 8.2 to 8.2 after aging.
3 (W/kg), and the W17/50 after strain relief annealing is 6.1 (W/kg), which is better than sample material C of comparative example 1, but inferior to sample material D. . The reason for this is
This is due to the effects of both the deterioration of magnetism due to C addition and the improvement of magnetism due to Al addition. That is, in this invention, the hardness of the base metal is ensured by adding C, and the magnetic deterioration caused by C is compensated for by adding Al.

【0030】実施例2 表1に示す成分組成になる熱延鋼板(E)に、冷間圧延
を施した後、 800℃,1分間の再結晶焼鈍を行ない
、その冷却過程において 700℃までを7℃/s、引
き続き20℃/sの冷却速度で冷却し、その冷却途中、
 400℃にて7秒間の第1段階時効処理を施したのち
、25℃で第2段階の時効を施した。また鋼板(F)に
ついては第1段階の時効処理を460℃にて40秒とし
、(G)については再結晶焼鈍後の冷却を全て7℃/s
の冷却速度で時効処理までを除冷し、(H)については
再結晶焼鈍後の冷却を全て25℃/sec の冷却速度
で時効処理までを急冷した。 かくして得られた製品の打抜加工性について調べた結果
を表1に併記する。また、地鉄硬度の経時変化について
調べた結果を図2に示す。
Example 2 A hot rolled steel sheet (E) having the composition shown in Table 1 was cold rolled and then recrystallized annealed at 800°C for 1 minute. Cooled at a cooling rate of 7°C/s, then 20°C/s, and during cooling,
After performing a first stage aging treatment at 400°C for 7 seconds, a second stage aging treatment was performed at 25°C. In addition, for steel plate (F), the first stage aging treatment was performed at 460°C for 40 seconds, and for (G), cooling after recrystallization annealing was all performed at 7°C/s.
For (H), all cooling after recrystallization annealing was performed at a cooling rate of 25° C./sec up to the aging treatment. Table 1 also shows the results of examining the punching workability of the product thus obtained. Furthermore, the results of investigating the change in the hardness of the steel base over time are shown in Figure 2.

【0031】図2から明らかなように、この発明では2
日後に HV1:135 を確保でき、10日後には 
HV1:150 となった。また打ち抜き数は15万回
で、さらにかしめ性及びスキュー性とも良好であった。 これに対し、比較例の(F),(G),(H)はいずれ
も地鉄硬度の向上は認められず、打ち抜き数は約8万回
であり、またかしめ性、スキュー性とも良い結果は得ら
れなかった。
As is clear from FIG. 2, in this invention, 2
After 1 day, we were able to secure HV1:135, and after 10 days,
HV1:150. The number of punches was 150,000 times, and both caulking and skewing properties were good. On the other hand, in the comparative examples (F), (G), and (H), no improvement in the hardness of the base metal was observed, the number of punches was approximately 80,000 times, and good results were obtained in terms of caulking property and skew property. was not obtained.

【0032】実施例3 表1に示す成分組成になる熱延鋼板(I)に、冷間圧延
を施した後、 800℃,1分間の再結晶焼鈍を行ない
、その冷却過程において 700℃までを5℃/s、引
き続き常温までを25℃/sの冷却速度で冷却し、つい
で(重)クロム酸塩−有機樹脂系処理液を塗布してから
、 280℃で15秒間の焼付けを兼ねる第1段階の時
効処理を施し、その後35℃にて第2段階の時効処理を
施した。なお比較のため、(J)鋼については第2段階
の時効温度を8℃で、また(K)鋼については第2段階
の時効温度を70℃とした。かくして得られた製品の打
抜加工性について調べた結果を表1に併記する。また、
地鉄硬度の経時変化について調べた結果を図3に示す。
Example 3 A hot rolled steel sheet (I) having the composition shown in Table 1 was cold rolled and then recrystallized annealed at 800°C for 1 minute, and in the cooling process up to 700°C. 5°C/s, then cooled down to room temperature at a cooling rate of 25°C/s, then applied a (bi)chromate-organic resin treatment solution, and then baked at 280°C for 15 seconds. A step aging treatment was performed, and then a second step aging treatment was performed at 35°C. For comparison, the second stage aging temperature for (J) steel was 8°C, and the second stage aging temperature for (K) steel was 70°C. Table 1 also shows the results of examining the punching workability of the product thus obtained. Also,
Figure 3 shows the results of investigating changes in the hardness of the steel base over time.

【0033】図3から明らかなように、この発明では2
日後に HV1:140 を確保でき、5日後以降 H
V1:155 となった。これに対し、比較例の(J)
の場合、 100日後でもHV1:130 であり、ま
た比較例(K)の場合には、 100日後ではHV1:
110 であった。また打抜性については、(重)クロ
ム酸塩−有機樹脂系被膜を施こしたことにより、いずれ
も打ち抜き数 150万回と良好であった。 かしめ性に関しては、発明例(I)は良好であったが、
比較例(J),(K)は若干劣った。さらにスキュー性
については、発明例〔I〕は良好であったが、比較例(
J),(K)は極めて劣っていた。これは地鉄硬度に起
因するものであり、V突起の変形による。
As is clear from FIG. 3, in this invention, 2
HV1:140 can be secured after 5 days, and after 5 days H
V1:155. On the other hand, in the comparative example (J)
In the case of Comparative Example (K), the HV is 1:130 even after 100 days, and in the case of the comparative example (K), the HV is 1:1 after 100 days.
It was 110. In addition, as for punching properties, due to the application of the (heavy) chromate-organic resin coating, the number of punchings was 1.5 million times, which was good. Regarding the caulking property, the invention example (I) was good, but
Comparative Examples (J) and (K) were slightly inferior. Furthermore, regarding the skew property, the invention example [I] was good, but the comparative example (
J) and (K) were extremely inferior. This is due to the hardness of the base metal, and is due to the deformation of the V projection.

【0034】さらに磁気特性については、実施例3の供
試材Iと比較例3の供試材Jは良好であったが、比較例
3の供試材Kは劣っていた。これはAl添加効果の有無
によるものである。
Furthermore, regarding the magnetic properties, Sample Material I of Example 3 and Sample Material J of Comparative Example 3 were good, but Sample Material K of Comparative Example 3 was poor. This is due to the presence or absence of the effect of Al addition.

【0035】実施例4 表1に示す成分組成になる熱延鋼板(L,M)に、冷間
圧延を施した後、 800℃, 1分間の再結晶焼鈍を
行ない、その冷却過程において 700℃までを10℃
/s、引き続き常温までを10℃/s(L)及び50℃
/s(M)の冷却速度で冷却した後、りん酸塩系処理液
を塗布してから、 350℃で15秒間の焼付けを兼ね
る第1段階時効処理を施したのち、25℃にて第2段階
の時効処理を施した。 なお比較のため、上記処理中、 700℃までの冷却速
度を12℃/sとする以外は同様にして、比較例(N,
O)とした。かくして得られた製品の打抜加工性につい
て調べた結果を表1に併記する。また、地鉄硬度の経時
変化について調べた結果を図4に示す。
Example 4 Hot-rolled steel sheets (L, M) having the chemical compositions shown in Table 1 were cold-rolled and then recrystallized at 800°C for 1 minute, and during the cooling process, the temperature was increased to 700°C. up to 10℃
/s, then 10℃/s (L) up to room temperature and 50℃
After cooling at a cooling rate of /s (M), a phosphate-based treatment solution was applied, a first aging treatment was performed at 350°C for 15 seconds, and a second aging treatment was performed at 25°C. It underwent a stage aging process. For comparison, comparative examples (N,
O). Table 1 also shows the results of examining the punching workability of the product thus obtained. In addition, the results of investigating the change in the hardness of the steel base over time are shown in FIG. 4.

【0036】発明例(L)の場合、10日後で HV1
:135が確保できた。また発明例(M)では2日後に
 HV1:135 が確保できた。また打抜性は10〜
15万回で、かしめ性、スキュー性共良好であった。こ
れに対し、比較例の(N),(O)は HV1:135
 を確保できず、しかもかしめ性及びスキュー性とも劣
っていた。
In the case of invention example (L), HV1 after 10 days
:135 was secured. Moreover, in the invention example (M), HV1:135 was secured after 2 days. Also, the punchability is 10~
After 150,000 cycles, both caulking and skewing properties were good. On the other hand, the comparative examples (N) and (O) have an HV of 1:135.
could not be ensured, and both caulking and skewing properties were poor.

【0037】[0037]

【発明の効果】かくしてこの発明によれば、地鉄硬度 
HV1:135 〜160 を安定して得ることができ
、従って打抜加工性の優れた無方向性電磁鋼板を安定し
て得ることができる。しかもその後に歪取り焼鈍を施す
ことにより、磁気特性のより一層の向上を図ることがで
きる。
[Effect of the invention] Thus, according to this invention, the hardness of the base metal
HV1:135 to 160 can be stably obtained, and therefore a non-oriented electrical steel sheet with excellent punching workability can be stably obtained. Furthermore, by subsequently performing strain relief annealing, the magnetic properties can be further improved.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】地鉄硬度の経時変化を示したグラフである。FIG. 1 is a graph showing changes in the hardness of the base steel over time.

【図2】地鉄硬度の経時変化を示したグラフである。FIG. 2 is a graph showing changes in the hardness of the base steel over time.

【図3】地鉄硬度の経時変化を示したグラフである。FIG. 3 is a graph showing changes in the hardness of the base steel over time.

【図4】地鉄硬度の経時変化を示したグラフである。FIG. 4 is a graph showing changes in the hardness of the base steel over time.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】  C:0.015 〜0.050 wt
%、Si:0.3 wt%以下、Mn:0.1 〜1.
0 wt%及びAl:0.1 〜0.6 wt%を含有
する熱延鋼板に、冷間圧延を施した後、750 〜95
0 ℃において5秒〜5分間の再結晶焼鈍を施すことに
よって無方向性電磁鋼板を製造するに当たり、上記再結
晶焼鈍の冷却過程につき、 700℃までを10℃/s
以下の冷却速度で冷却し、引き続き常温まで10〜50
℃/sの冷却速度で冷却した後、 200〜450 ℃
で5〜30秒間の時効処理を施し、さらに10〜55℃
において時効処理を施すことを特徴とする打抜加工性の
優れた無方向性電磁鋼板の製造方法。
[Claim 1] C: 0.015 to 0.050 wt
%, Si: 0.3 wt% or less, Mn: 0.1 to 1.
After cold rolling a hot rolled steel sheet containing 0 wt% and Al: 0.1 to 0.6 wt%, 750 to 95
In manufacturing a non-oriented electrical steel sheet by performing recrystallization annealing at 0°C for 5 seconds to 5 minutes, the cooling process of the recrystallization annealing is performed at 10°C/s up to 700°C.
Cool at the following cooling rate and continue to cool down to room temperature for 10 to 50 minutes.
After cooling at a cooling rate of ℃/s, 200-450℃
Aging treatment is performed for 5 to 30 seconds at 10 to 55℃.
A method for manufacturing a non-oriented electrical steel sheet with excellent punching workability, characterized by subjecting it to aging treatment.
【請求項2】  請求項1において、時効処理中、 2
00〜450 ℃で5〜30秒間の保持は、冷却過程中
で連続して行なうことからなる打抜加工性の優れた無方
向性電磁鋼板の製造方法。
[Claim 2] In Claim 1, during the aging process, 2
A method for producing a non-oriented electrical steel sheet with excellent punching workability, comprising continuously holding the temperature at 00 to 450°C for 5 to 30 seconds during the cooling process.
【請求項3】  請求項1又は2において、 200〜
450 ℃, 5〜30秒間の時効処理が、絶縁被膜の
焼付け処理を兼ねるものである打抜加工性の優れた無方
向性電磁鋼板の製造方法。
[Claim 3] In Claim 1 or 2, 200~
A method for manufacturing a non-oriented electrical steel sheet with excellent punching workability, wherein aging treatment at 450° C. for 5 to 30 seconds also serves as baking treatment for an insulating coating.
JP11378291A 1991-04-19 1991-04-19 Manufacturing method of non-oriented electrical steel sheet with excellent punching workability Expired - Fee Related JP2954735B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11378291A JP2954735B2 (en) 1991-04-19 1991-04-19 Manufacturing method of non-oriented electrical steel sheet with excellent punching workability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11378291A JP2954735B2 (en) 1991-04-19 1991-04-19 Manufacturing method of non-oriented electrical steel sheet with excellent punching workability

Publications (2)

Publication Number Publication Date
JPH04323321A true JPH04323321A (en) 1992-11-12
JP2954735B2 JP2954735B2 (en) 1999-09-27

Family

ID=14620971

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11378291A Expired - Fee Related JP2954735B2 (en) 1991-04-19 1991-04-19 Manufacturing method of non-oriented electrical steel sheet with excellent punching workability

Country Status (1)

Country Link
JP (1) JP2954735B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013513724A (en) * 2010-10-25 2013-04-22 宝山鋼鉄股▲分▼有限公司 Manufacturing process of high magnetic induction non-oriented silicon steel
CN114990436A (en) * 2022-05-25 2022-09-02 鞍钢冷轧钢板(莆田)有限公司 High-hardness cold-rolled sheet for microwave oven and production method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013513724A (en) * 2010-10-25 2013-04-22 宝山鋼鉄股▲分▼有限公司 Manufacturing process of high magnetic induction non-oriented silicon steel
CN114990436A (en) * 2022-05-25 2022-09-02 鞍钢冷轧钢板(莆田)有限公司 High-hardness cold-rolled sheet for microwave oven and production method thereof

Also Published As

Publication number Publication date
JP2954735B2 (en) 1999-09-27

Similar Documents

Publication Publication Date Title
EP2584054B1 (en) Oriented electromagnetic steel plate production method
WO2012029621A1 (en) Method for producing non-oriented magnetic steel sheet
WO2013080891A1 (en) Process for producing non-oriented electrical steel sheet
JP2001316729A (en) Method for manufacturing nonoriented silicon steel sheet having low core loss and high magnetic flux density
WO2004013365A1 (en) Nonoriented magnetic steel sheet, member for rotary machine and rotary machine
TW201319269A (en) Non-oriented electromagnetic steel sheet, method for producing same, laminate for motor iron core, and method for producing said laminate
JP4319889B2 (en) Non-oriented electrical steel sheet with excellent all-round magnetic properties and method for producing the same
JP4589747B2 (en) Non-oriented electrical steel sheet with excellent magnetic properties, its manufacturing method and strain relief annealing method
KR0177801B1 (en) Non-oriented electrical strip and process for its production
KR930005892B1 (en) Cold-rolled steel sheet &amp; the method for its producing
KR20020035827A (en) Method for producing non-grain oriented electric sheet steel
JP6270305B2 (en) Manufacturing method of motor core
KR100373871B1 (en) Non-oriented electrical steel sheet and core for motor or transformer with low iron loss after stress relief annealing
CN113166878A (en) Non-oriented electrical steel sheet and method for manufacturing the same
JP4123629B2 (en) Electrical steel sheet and manufacturing method thereof
JPH04323321A (en) Production of nonoriented silicon steel sheet excellent in blankability
JP2001335897A (en) Nonoriented silicon steel sheet having low core loss and high magnetic flux density and excellent in workability and recyclability
JP3023218B2 (en) Manufacturing method of semi-processed electrical steel sheet with excellent punching workability
JPH04323320A (en) Production of nonoriented silicon steel sheet excellent in blankability
JPH03229820A (en) Production of nonoriented silicon steel sheet
JP2023554123A (en) Non-oriented electrical steel sheet and its manufacturing method
CN112430776B (en) Non-oriented electrical steel plate with small magnetic anisotropy and manufacturing method thereof
JP3399726B2 (en) Manufacturing method of non-oriented electrical steel sheet with high magnetic flux density and low iron loss
JP3012826B2 (en) Semi-process non-oriented electrical steel sheet
KR102513317B1 (en) Non-oriented electrical steel sheet and method for manufacturing the same

Legal Events

Date Code Title Description
S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080716

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090716

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees