JPH04322736A - Raw material feeder - Google Patents

Raw material feeder

Info

Publication number
JPH04322736A
JPH04322736A JP11946491A JP11946491A JPH04322736A JP H04322736 A JPH04322736 A JP H04322736A JP 11946491 A JP11946491 A JP 11946491A JP 11946491 A JP11946491 A JP 11946491A JP H04322736 A JPH04322736 A JP H04322736A
Authority
JP
Japan
Prior art keywords
raw material
gas
raw
liq
bubbles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11946491A
Other languages
Japanese (ja)
Inventor
Shinichi Nakayama
真一 中山
Emi Ishimaru
恵美 石丸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP11946491A priority Critical patent/JPH04322736A/en
Publication of JPH04322736A publication Critical patent/JPH04322736A/en
Pending legal-status Critical Current

Links

Landscapes

  • Feeding, Discharge, Calcimining, Fusing, And Gas-Generation Devices (AREA)

Abstract

PURPOSE:To stabilize the supply of a raw material by obtaining a raw gas saturated with the vapor of a raw liq. even when the raw liq. is decreased. CONSTITUTION:A bubbling gas is introduced into a raw liq. 2 in a closed vessel 1 from a bubbling gas inlet pipe 3 to form bubbles, and an ultrasonic wave is radiated into the raw liq. Consequently, the bubbles in the raw liq. are micronized by the irradiation with the ultrasonic wave, and the contact area between the gaseous phase and liq. phase is increased. Even when the raw liq. is decreased and the contact time between the gaseous phase and liq. phase is reduced, the extraction efficiency sufficient to compensate for the decrease is attained. Accordingly, the raw gas saturated with the raw liq. vapor is obtained even when the raw liq. is decreased, and the supply of the raw material is stabilized for a long time.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】この発明は、気体を気泡として原
料ガスが溶解した液中に通すことによりに気相気体中に
一定割合で原料ガスなどを混合(バブリング)させるバ
ブリング方式の原料供給装置に関する。このバブリング
方式の原料供給装置はVAD法による光ファイバの製造
や、CVD法による薄膜の製造などの分野で用いられる
[Industrial Application Field] This invention is a bubbling-type raw material supply device that mixes (bubble) raw material gas etc. in a gas phase gas at a fixed ratio by passing gas as bubbles through a liquid in which raw material gas is dissolved. Regarding. This bubbling-type raw material supply device is used in fields such as the production of optical fibers by the VAD method and the production of thin films by the CVD method.

【0002】0002

【従来の技術】VAD法によって光ファイバを製造する
場合や、CVD法によって薄膜を製造する場合などでは
、原料の成分が安定していることに加えて原料の供給量
が安定していることが求められる。そのためには、気相
における飽和蒸気の成分が安定していること、ガス流量
に変動のないことなどが求められる。
[Prior Art] When manufacturing optical fibers by the VAD method or thin films by the CVD method, it is important that not only the ingredients of the raw materials are stable, but also that the supply amount of the raw materials is stable. Desired. For this purpose, it is required that the components of saturated steam in the gas phase be stable and that the gas flow rate be stable.

【0003】このような場合、従来では、飽和器(バブ
ラー)を用いて、密閉容器中に入っている原料ガスが溶
解した溶液中にバブリングガスを導入して気泡を発生さ
せ、飽和器内の気相を原料液の蒸気で飽和させた後、そ
の飽和蒸気を原料供給ラインを経て、原料として供給す
るようにしている。
In such cases, conventionally, a saturator (bubbler) is used to introduce bubbling gas into a solution in which the raw material gas is dissolved in a closed container to generate air bubbles, thereby reducing the amount of gas in the saturator. After the gas phase is saturated with the vapor of the raw material liquid, the saturated vapor is supplied as a raw material through a raw material supply line.

【0004】このような原料供給装置では、バブリング
を行って原料を蒸気として抽出することに伴って溶液が
減少してきて、気相と液相との接触時間が短くなったり
、あるいは溶液の温度またはバブリングガスの温度の変
化により飽和蒸気圧が変わる等の、外乱要因によって抽
出原料ガス濃度、つまり原料の供給量が不安定になると
いう不都合があった。
[0004] In such a raw material supply device, as the raw material is extracted as vapor by bubbling, the solution decreases, and the contact time between the gas phase and the liquid phase becomes shorter, or the temperature of the solution or the temperature of the solution decreases. There is a problem in that the concentration of the raw material gas to be extracted, that is, the amount of raw material supplied, becomes unstable due to disturbance factors such as changes in the saturated vapor pressure due to changes in the temperature of the bubbling gas.

【0005】すなわち、溶液が少なくなると、ガスの気
泡の溶液内での滞留時間が少なくなって、ガスの気泡が
液相成分で飽和されるための接触時間が短くなり、蒸気
の気泡内への混入度合いが低くなり飽和しなくなる。ま
た、溶液の温度やバブリングガスの温度が変化すると、
飽和蒸気圧が変化し、その結果、飽和していても原料ガ
ス濃度が変化する。これらのため、結局、原料の供給量
が不安定になる。
In other words, when the solution decreases, the residence time of gas bubbles in the solution decreases, the contact time for the gas bubbles to become saturated with liquid phase components becomes shorter, and the vapor flow into the bubbles becomes shorter. The degree of contamination becomes low and saturation is no longer achieved. Also, when the temperature of the solution or the temperature of the bubbling gas changes,
The saturated vapor pressure changes, and as a result, the raw material gas concentration changes even if it is saturated. As a result, the amount of raw materials supplied becomes unstable.

【0006】そのため、従来では、密閉容器を恒温槽内
に設置することにより周囲温度の変動による影響を極力
抑えることもなされている。つまり原料の供給量は飽和
蒸気圧とバブリングガス流量とによって決定されるため
、飽和蒸気圧を密閉容器の温度管理で制御するとともに
、バブリングガス流量をガス流量コントローラによって
制御することにより、原料の供給量をコントロールしよ
うとするのである。
[0006] Conventionally, therefore, the influence of fluctuations in ambient temperature has been suppressed as much as possible by placing the closed container in a thermostatic chamber. In other words, the amount of raw material supplied is determined by the saturated vapor pressure and the bubbling gas flow rate, so by controlling the saturated steam pressure by controlling the temperature of the closed container and controlling the bubbling gas flow rate by a gas flow controller, the raw material supply amount is determined by the saturated vapor pressure and the bubbling gas flow rate. Trying to control the amount.

【0007】[0007]

【発明が解決しようとする課題】しかしながら、従来の
ように密閉容器の温度を制御するとともにバブリングガ
ス流量を制御しても、原料の供給量は安定化しないとい
う問題がある。すなわち、溶液の減少によって気相と液
相との接触時間が少なくなることにより気泡内が蒸気で
飽和しなくなれば、原料ガスの濃度が変化し、計算通り
の原料供給量は得られない。
However, even if the temperature of the closed container is controlled and the bubbling gas flow rate is controlled as in the conventional method, there is a problem in that the amount of raw material supplied is not stabilized. That is, if the contact time between the gas phase and the liquid phase decreases due to a decrease in the solution, and the inside of the bubble becomes no longer saturated with steam, the concentration of the raw material gas changes, and the calculated raw material supply amount cannot be obtained.

【0008】この発明は、上記に鑑み、原料液の減少な
どに関わらず、原料液の蒸気で飽和した気相成分を得る
ことができ、原料の供給量を安定化できるように改善し
た、原料供給装置を提供することを目的とする。
[0008] In view of the above, the present invention provides an improved raw material that can obtain a gas phase component saturated with the vapor of the raw material liquid, regardless of the decrease in the raw material liquid, and stabilize the supply amount of the raw material. The purpose is to provide a feeding device.

【0009】[0009]

【課題を解決するための手段】この発明による原料供給
装置においては、バブリングガスは導入パイプにより密
閉容器中の原料液の液相内に導入されて、気泡となるよ
うにされており、一方、この密閉容器の液相中には超音
波発生器により超音波が加えられている。そこで、気泡
は超音波によって細かく砕かれることになる。抽出ガス
濃度を決定するのは、気泡と溶液との接触効率であり、
つまり気相と液相との接触時間と接触面積である。この
場合、気泡が小さくなることにより単位体積中の表面積
が大きくなり、その結果として気相と液相との接触面積
が増大する。そのため、気相と液相との接触効率が向上
し、原料液中に溶解していた原料の抽出効率が高められ
、原料液が減少してきても原料液の蒸気で飽和した気相
成分を得ることができ、原料の供給量を安定化できる。
[Means for Solving the Problems] In the raw material supply device according to the present invention, bubbling gas is introduced into the liquid phase of the raw material liquid in the closed container through the introduction pipe, and is made to form bubbles. Ultrasonic waves are applied to the liquid phase of this sealed container by an ultrasonic generator. There, the bubbles are broken up into small pieces by ultrasonic waves. It is the contact efficiency between the bubbles and the solution that determines the extracted gas concentration.
In other words, it is the contact time and contact area between the gas phase and the liquid phase. In this case, as the bubbles become smaller, the surface area per unit volume increases, and as a result, the contact area between the gas phase and the liquid phase increases. Therefore, the contact efficiency between the gas phase and the liquid phase is improved, the extraction efficiency of the raw material dissolved in the raw material liquid is increased, and even when the raw material liquid decreases, gas phase components saturated with the vapor of the raw material liquid can be obtained. This makes it possible to stabilize the supply of raw materials.

【0010】0010

【実施例】以下、この発明の一実施例について図面を参
照しながら詳細に説明する。図1はこの発明の一実施例
にかかる原料供給装置である飽和器を示すもので、密閉
容器1に原料ガスが溶解した溶液2が入れられている。 この密閉容器1の上端左側にはバブリングガス導入パイ
プ3が、上端右側には原料ガス導出パイプ4がそれぞれ
取り付けられている。そして、密閉容器1には超音波発
生器5が取り付けられ、その振動板6が溶液2中に配置
されている。
DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described in detail below with reference to the drawings. FIG. 1 shows a saturator which is a raw material supply device according to an embodiment of the present invention, in which a closed container 1 contains a solution 2 in which a raw material gas is dissolved. A bubbling gas introduction pipe 3 is attached to the upper left side of the closed container 1, and a raw material gas outlet pipe 4 is attached to the upper right side. An ultrasonic generator 5 is attached to the closed container 1, and its diaphragm 6 is placed in the solution 2.

【0011】バブリングガス導入パイプ3の一端は密閉
容器1の底面近くに開口しており、このパイプ3を通じ
てバブリングガスが溶液2中に導入されるようになって
いる。溶液2中に導入されたバブリングガスは気泡とな
って溶液2中を上昇する。この気泡が溶液2の液相中を
上昇していく際に溶液2と接触し、この気泡中に溶液2
の蒸気が入る。
One end of the bubbling gas introduction pipe 3 opens near the bottom of the closed container 1, and the bubbling gas is introduced into the solution 2 through this pipe 3. The bubbling gas introduced into the solution 2 becomes bubbles and rises in the solution 2. As these bubbles rise in the liquid phase of solution 2, they come into contact with solution 2, and the solution 2
steam enters.

【0012】このとき、超音波発生器5の振動板6が振
動して溶液2中に超音波が放射される。この超音波放射
のため、気泡はゆすられて細かく砕かれる。気泡が細分
化されることにより単位体積当たりの気泡の表面積が増
大し、結局、気相と液相との接触面積が大きくなり、原
料ガスの抽出効率が向上し、溶液2が減少しても原料で
完全に飽和したガスをガス導出パイプ4から導き出すこ
とができる。すなわち、気泡内の気相が溶液2の蒸気で
飽和するか否かは気相と液相との接触時間及び接触面積
によって決まるのであるが、前記のように超音波によっ
て気泡を細かく砕くことによって接触面積を増大させる
ことにより、接触時間の減少を補うことができる。
At this time, the diaphragm 6 of the ultrasonic generator 5 vibrates and ultrasonic waves are emitted into the solution 2. Due to this ultrasonic radiation, the bubbles are shaken and broken into small pieces. By dividing the bubbles, the surface area of the bubbles per unit volume increases, and as a result, the contact area between the gas phase and the liquid phase increases, and the extraction efficiency of the raw material gas improves, even if the solution 2 decreases. Gas completely saturated with raw material can be led off from the gas outlet pipe 4. In other words, whether or not the gas phase inside the bubbles is saturated with the vapor of solution 2 is determined by the contact time and contact area between the gas phase and the liquid phase. Increasing the contact area can compensate for the decrease in contact time.

【0013】これにより、従来よりも低い液面でも気泡
中の蒸気が飽和することになり、溶液2の液面変動に対
する導出ガス濃度の変動を小さくでき、長時間の安定し
たバブリングが可能となる。実際、抽出ガス濃度の時間
的変化を測定してみると、図2のようなグラフが得られ
た。この図2において、○印がこの発明による上記の超
音波発生器5を備えるバブラーで得たデータであり、×
印が超音波発生器のない従来の通常のバブラーで得たデ
ータである。この図2から、従来では時間の経過ととも
に溶液2が減少し、そのため液面が下がって気泡の気相
と液相との接触時間が短くなることにともない抽出ガス
濃度が徐々に減少するのに対して、超音波を放射して気
泡を細かくしたことにより、溶液2が減少して液面が下
がって気相と液相との接触時間が短くなっても抽出ガス
濃度の低下が少なくなり、安定した濃度の原料ガスを得
ることができることがわかる。
[0013] As a result, the vapor in the bubbles becomes saturated even at a lower liquid level than before, and fluctuations in the derived gas concentration due to fluctuations in the liquid level of the solution 2 can be reduced, making stable bubbling possible for a long time. . In fact, when we measured the temporal change in extracted gas concentration, we obtained a graph like the one shown in Figure 2. In FIG. 2, ○ marks are data obtained with a bubbler equipped with the above-mentioned ultrasonic generator 5 according to the present invention, and ×
The mark is data obtained with a conventional bubbler without an ultrasonic generator. From Figure 2, it can be seen that in the conventional method, the solution 2 decreases over time, and as a result, the liquid level lowers and the contact time between the gas phase of the bubbles and the liquid phase becomes shorter, and the extracted gas concentration gradually decreases. On the other hand, by emitting ultrasonic waves to make the bubbles smaller, even if the solution 2 decreases, the liquid level drops, and the contact time between the gas phase and the liquid phase becomes shorter, the concentration of the extracted gas decreases less. It can be seen that it is possible to obtain a raw material gas with a stable concentration.

【0014】そのため、ガス導入パイプ3に送り込むバ
ブリングガスの流量を図示しないガス流量コントローラ
で制御するのみで、溶液2の減少などにかかわらず、長
時間にわたって原料の供給量を安定化することができる
[0014] Therefore, by simply controlling the flow rate of the bubbling gas fed into the gas introduction pipe 3 using a gas flow rate controller (not shown), the supply amount of the raw material can be stabilized over a long period of time regardless of the decrease in the solution 2. .

【0015】なお、前記の実施例では超音波発生器5の
振動板6を溶液2中に配置したが、溶液2内に超音波を
放射すればよいので、密閉容器1の壁面を振動させるよ
うにしてもよい。また、前記の実施例の記載では触れて
いないが、密閉容器1を恒温槽などに収納してその温度
をコントロールするなどの構成を併用することももちろ
ん可能である。
In the above embodiment, the diaphragm 6 of the ultrasonic generator 5 was placed in the solution 2, but since it is sufficient to emit ultrasonic waves into the solution 2, it is necessary to vibrate the wall surface of the closed container 1. You can also do this. Furthermore, although not mentioned in the description of the above embodiments, it is of course also possible to use a configuration in which the closed container 1 is housed in a constant temperature bath or the like and its temperature is controlled.

【0016】[0016]

【発明の効果】以上、実施例について説明したように、
この発明の原料供給装置によれば、原料液中のバブリン
グガスの気泡を超音波照射によって細かく砕いて気相と
液相との接触面積を増大させることにより原料ガスの抽
出効率を向上させ、原料液の減少などによって抽出ガス
濃度が変動しないようにし、長時間にわたって原料の供
給量を安定化することができる。
[Effects of the Invention] As described above with respect to the embodiments,
According to the raw material supply device of the present invention, the bubbles of bubbling gas in the raw material liquid are pulverized by ultrasonic irradiation to increase the contact area between the gas phase and the liquid phase, thereby improving the extraction efficiency of the raw material gas. It is possible to prevent the extracted gas concentration from fluctuating due to a decrease in liquid, etc., and to stabilize the amount of raw material supplied over a long period of time.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】この発明の一実施例にかかる原料供給装置の模
式的な断面図。
FIG. 1 is a schematic cross-sectional view of a raw material supply device according to an embodiment of the present invention.

【図2】抽出ガス濃度の時間的変化を表すグラフ。FIG. 2 is a graph showing temporal changes in extracted gas concentration.

【符号の説明】[Explanation of symbols]

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  原料液が入れられた密閉容器と、該原
料液中に気体を導入して気泡を発生させるパイプと、前
記密閉容器内の原料液中に超音波を放射する超音波発生
器と、前記の密閉容器の気体を導出するパイプとを備え
ることを特徴とする原料供給装置。
1. A closed container containing a raw material liquid, a pipe that introduces gas into the raw material liquid to generate bubbles, and an ultrasonic generator that emits ultrasonic waves into the raw material liquid in the sealed container. and a pipe for leading out the gas from the sealed container.
JP11946491A 1991-04-22 1991-04-22 Raw material feeder Pending JPH04322736A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11946491A JPH04322736A (en) 1991-04-22 1991-04-22 Raw material feeder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11946491A JPH04322736A (en) 1991-04-22 1991-04-22 Raw material feeder

Publications (1)

Publication Number Publication Date
JPH04322736A true JPH04322736A (en) 1992-11-12

Family

ID=14761991

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11946491A Pending JPH04322736A (en) 1991-04-22 1991-04-22 Raw material feeder

Country Status (1)

Country Link
JP (1) JPH04322736A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0661090A1 (en) * 1993-12-28 1995-07-05 Hamamatsu Photonics K.K. Liquid treating method and liquid treating apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0661090A1 (en) * 1993-12-28 1995-07-05 Hamamatsu Photonics K.K. Liquid treating method and liquid treating apparatus
US5585044A (en) * 1993-12-28 1996-12-17 Hamamatsu Photonics K.K. Liquid treating method and liquid treating apparatus

Similar Documents

Publication Publication Date Title
US5815637A (en) Humidifier for control of semi-conductor manufacturing environments
CN109690743B (en) Substrate processing apparatus and substrate processing method
EP1085106B1 (en) A method and an apparatus for gasifying a liquid material
US4750483A (en) Device for gasification and dosage
KR20030093926A (en) Liquid material vaporizing and feeding apparatus
JP5467088B2 (en) Chemical spraying device
JPH04322736A (en) Raw material feeder
US11786690B2 (en) Neonatal incubator humidifier system
JPS61242631A (en) Method and device for producing ultrafine particles of compound
KR850000637A (en) Water level control system for steam generator
US5582647A (en) Material supplying apparatus
JPS6233769A (en) Bubbling device for liquid raw material
JPH04363131A (en) Raw material supply system
JPH085690B2 (en) Raw material supply method and device
CN114100387A (en) Raw material gasification system and concentration control module for same
JP2004039669A (en) Chemical vessel for semiconductor manufacturing apparatus
JPS58123111A (en) Pure water bubbler
JPS6484717A (en) Semiconductor thin film vapor growth apparatus
JP2020120032A (en) Film forming device and semiconductor device manufacturing method
KR101003304B1 (en) Canister for a semiconductor manufacturing process
JPS6441738A (en) On-vehicle humidifier
JP6721937B2 (en) Atomizer
JPH04341340A (en) Raw material supply apparatus
JP5501894B2 (en) Saturated air generator
JPH11248607A (en) Humidity generation control device