JPH04322007A - Glass composition and board for circuit - Google Patents

Glass composition and board for circuit

Info

Publication number
JPH04322007A
JPH04322007A JP14216391A JP14216391A JPH04322007A JP H04322007 A JPH04322007 A JP H04322007A JP 14216391 A JP14216391 A JP 14216391A JP 14216391 A JP14216391 A JP 14216391A JP H04322007 A JPH04322007 A JP H04322007A
Authority
JP
Japan
Prior art keywords
mol
glass
dielectric constant
glass composition
fibers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP14216391A
Other languages
Japanese (ja)
Other versions
JP2617632B2 (en
Inventor
Kiyotaka Komori
清孝 古森
Seishiro Yamakawa
山河 清志郎
Atsushi Naka
淳 中
Shigeru Yamamoto
茂 山本
Tadashi Kokubo
正 小久保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Nippon Electric Glass Co Ltd
Original Assignee
Nippon Electric Glass Co Ltd
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Glass Co Ltd, Matsushita Electric Works Ltd filed Critical Nippon Electric Glass Co Ltd
Priority to JP14216391A priority Critical patent/JP2617632B2/en
Priority to CA002060709A priority patent/CA2060709C/en
Priority to EP92101994A priority patent/EP0498425B1/en
Priority to DE69210270T priority patent/DE69210270T2/en
Priority to US07/832,267 priority patent/US5284807A/en
Publication of JPH04322007A publication Critical patent/JPH04322007A/en
Priority to US08/148,330 priority patent/US5334645A/en
Priority to US08/148,539 priority patent/US5407872A/en
Application granted granted Critical
Publication of JP2617632B2 publication Critical patent/JP2617632B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Glass Compositions (AREA)
  • Inorganic Insulating Materials (AREA)

Abstract

PURPOSE:To provide a glass composition having adaptability to be formed into fibers, excellent dielectric characteristic in a high frequency zone, and enough chemical durability. CONSTITUTION:A glass composition containing respectively 40-65 percentage by mol of SiO2, 20-45 percentage by mol of at least one of MgO, CaO, SrO and BaO, 5-25 percentage by mol of at least one of TiO2 and ZrO2, and 0.5-15 percentage by mol of NbO5/2, the total amount of these oxides being 85 percentage by mol or more, having 9 or more of dielectric constant (1MHz, 25 deg.C), and having adaptability to be formed into fibers.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】この発明は、ガラス組成物および
回路用基板に関する。
FIELD OF THE INVENTION This invention relates to a glass composition and a circuit board.

【0002】0002

【従来の技術】高度情報化時代を迎え、情報伝送はより
高速化・高周波化の傾向にある。自動車電話やパーソナ
ル無線等の移動無線、衛星放送、衛星通信やCATV等
のニューメディアでは、機器のコンパクト化が推し進め
られており、これに伴い誘電体共振器等のマイクロ波用
回路素子に対しても小型化が強く望まれている。
BACKGROUND OF THE INVENTION In the age of advanced information technology, information transmission tends to become faster and more frequent. In new media such as mobile radios such as car telephones and personal radios, satellite broadcasting, satellite communications, and CATV, devices are becoming more compact, and as a result, microwave circuit elements such as dielectric resonators are becoming more compact. There is also a strong desire for miniaturization.

【0003】マイクロ波用回路素子の大きさは、使用電
磁波の波長が基準となる。比誘電率εr の誘電体中を
伝播する電磁波の波長λは、真空中の伝播波長をλ0 
とするとλ=λ0 /(εr )0.5 となる。した
がって、素子は、使用されるプリント回路用基板の誘電
率が大きい程、小型になる。また、基板の誘電率が大き
いと、電磁エネルギーが基板内に集中するため、電磁波
の漏れが少なく好都合でもある。
The size of a microwave circuit element is based on the wavelength of the electromagnetic waves used. The wavelength λ of an electromagnetic wave propagating in a dielectric material with relative permittivity εr is the propagation wavelength in vacuum λ0
Then, λ=λ0/(εr)0.5. Therefore, the larger the dielectric constant of the printed circuit board used, the smaller the device will be. Further, when the dielectric constant of the substrate is high, electromagnetic energy is concentrated within the substrate, which is advantageous because there is less leakage of electromagnetic waves.

【0004】上記のプリント回路用基板として、樹脂を
ガラス組成物の繊維からなる補強材(以下、適宜「ガラ
ス製補強材」と言う)で補強してなる基板がある。この
プリント回路用基板は、アルミナ等のセラミック系基板
に比べ、価格や後加工(切断、孔開等)の点で優れる。 このプリント回路用基板の誘電率を高める方法として、
ポリフッ化ビニリデン(εr =13)やシアノ樹脂(
εr =16〜20)など比誘電率の高い樹脂を用いる
方法があるが、この場合、誘電損失が大きく、高周波域
では誘電特性の安定性にも問題があり、特に高周波(特
に100MHz以上)用としての適性に欠けるため、余
り適切な対策とは言えない。
[0004] As the above-mentioned printed circuit board, there is a board made by reinforcing a resin with a reinforcing material made of fibers of a glass composition (hereinafter referred to as "glass reinforcing material"). This printed circuit board is superior to ceramic substrates such as alumina in terms of cost and post-processing (cutting, hole punching, etc.). As a way to increase the dielectric constant of this printed circuit board,
Polyvinylidene fluoride (εr = 13) and cyano resin (
There is a method of using a resin with a high dielectric constant such as εr = 16 to 20), but in this case, the dielectric loss is large and there is also a problem with the stability of the dielectric properties in the high frequency range. It cannot be said to be an appropriate countermeasure because it lacks suitability as a countermeasure.

【0005】また、高比誘電率無機粒子(例えば、Ti
O2 粒子、BaTiO3 粒子)を分散させた樹脂を
用いるという誘電率向上策もあるが、高比誘電率無機粒
子の不均一分散により基板面に比誘電率の不均一が生じ
るという問題があったり、粒子・樹脂界面の現出は長期
信頼性の面で好ましくないため、やはり適切な対策とは
いえない。
[0005] Also, high dielectric constant inorganic particles (for example, Ti
There is a method to improve the dielectric constant by using a resin in which O2 particles, BaTiO3 particles) are dispersed, but there is a problem that non-uniformity of the dielectric constant occurs on the substrate surface due to non-uniform dispersion of high dielectric constant inorganic particles. Since the appearance of the particle/resin interface is unfavorable in terms of long-term reliability, it cannot be said to be an appropriate countermeasure.

【0006】上記以外に、ガラス製補強材(例えば、ガ
ラスクロス)に高比誘電率のものを用いる誘電率向上策
がある。通常の補強材用のガラスクロスは、Eガラスと
呼ばれるSiO2 −Al2 O3 −CaO系ガラス
組成物の繊維からなる。このEガラスは、より具体的に
は、SiO2 :50〜60重量%、Al2 O3 :
13〜16重量%、B2 O3 :5〜9重量%、Mg
O:0〜6重量%、CaO:15〜25重量%、Na2
 O+K2 O:0〜1重量%、F:0〜1重量%とい
う組成を有しており、比誘電率は6〜7程度であって、
比誘電率はそれほど高くない。
[0006] In addition to the above, there is a measure to improve the dielectric constant by using a glass reinforcing material (eg, glass cloth) with a high dielectric constant. Glass cloth for ordinary reinforcing materials is made of fibers of a SiO2-Al2O3-CaO-based glass composition called E-glass. More specifically, this E glass contains SiO2: 50 to 60% by weight, Al2O3:
13-16% by weight, B2O3: 5-9% by weight, Mg
O: 0-6% by weight, CaO: 15-25% by weight, Na2
O+K2 has a composition of O: 0 to 1% by weight, F: 0 to 1% by weight, and has a relative dielectric constant of about 6 to 7,
The dielectric constant is not so high.

【0007】高比誘電率のガラス組成物としては、Pb
Oを多量に含有する鉛系ガラス組成物がある。例えば、
PbO:72重量%、SiO2 :26重量%、B2 
O3 :1.5重量%、K2 O:0.5重量%の組成
の鉛系ガラス組成物は、12.2の比誘電率を有する。 しかし、鉛系ガラス組成物の場合、繊維化(直径7〜9
μm)が難しいという問題がある。ガラス溶融時にPb
Oの蒸発が激しくて不均質になって紡糸工程で糸切れが
多発するのである。また、鉛系ガラス組成物の場合、補
強材として非常に適切なガラスクロス化が困難であると
いう問題がある。ガラスクロスの製造の場合には、一次
バインダーを除去するための熱処理工程があるが、鉛系
ガラス組成物は歪み点が低く劣化し易いため十分な処理
を施すことが難しい。一次バインダーの除去処理が十分
でないガラスクロスは基板の長期信頼性低下の原因とな
る。それに、鉛系ガラス組成物の場合、鉛が有毒である
ため取扱が容易でないという問題もあるし、100MH
z以上の高周波域での誘電損失(tanδ)が大きいと
いう問題もある。
[0007] As a glass composition having a high dielectric constant, Pb
There are lead-based glass compositions containing a large amount of O. for example,
PbO: 72% by weight, SiO2: 26% by weight, B2
A lead-based glass composition having a composition of 1.5% by weight of O3 and 0.5% by weight of K2O has a dielectric constant of 12.2. However, in the case of lead-based glass compositions, fiberization (diameter 7-9
There is a problem in that it is difficult to measure (μm). Pb during glass melting
The evaporation of O is intense and the fiber becomes non-uniform, resulting in frequent yarn breakage during the spinning process. Further, in the case of a lead-based glass composition, there is a problem in that it is difficult to form a glass cloth that is very suitable as a reinforcing material. In the case of manufacturing glass cloth, there is a heat treatment process to remove the primary binder, but lead-based glass compositions have a low strain point and easily deteriorate, so it is difficult to perform sufficient treatment. Glass cloth that is not sufficiently treated to remove the primary binder will cause a decline in the long-term reliability of the substrate. In addition, in the case of lead-based glass compositions, there is the problem that lead is toxic and it is not easy to handle.
There is also a problem that the dielectric loss (tan δ) is large in a high frequency range of z or higher.

【0008】また、プリント回路用基板の補強材として
用いるガラスは、化学的耐久性も必要である。というの
は、プリント回路用基板に回路を形成する際に様々な化
学処理を経るが、この処理で補強材が損傷を受けないこ
とが必要だからである。
Glass used as a reinforcing material for printed circuit boards also needs to have chemical durability. This is because the reinforcing material must not be damaged by the various chemical treatments that are used to form circuits on printed circuit boards.

【0009】[0009]

【発明が解決しようとする課題】この発明は、上記事情
に鑑み、繊維化適性があって高周波域にも優れた誘電特
性を有し、化学的耐久性に富むガラス組成物を提供する
ことを第1の課題とし、高周波域にも優れた誘電特性を
有し長期信頼性の高い回路用基板を提供することを第2
の課題とする。
[Problems to be Solved by the Invention] In view of the above circumstances, the present invention aims to provide a glass composition that is suitable for fiberization, has excellent dielectric properties even in a high frequency range, and is highly chemically durable. The first challenge is to provide a circuit board with excellent dielectric properties even in the high frequency range and high long-term reliability.
This will be the subject of this study.

【0010】0010

【課題を解決するための手段】前記課題を解決するため
、発明者らは、SiO2 −BaO−TiO2 −Zr
O2 系ガラス組成物に着目した。このガラス組成物は
非鉛系であって誘電特性が良好であるし、化学的耐久性
(耐酸性、耐アルカリ性、耐水性)に富むからである。 しかしながら、失透温度が高くて繊維化が難しいという
問題がある。ガラス繊維を得る場合、200〜800個
の小穴を底にあけたブッシングと呼ばれる白金製ポット
の前記小穴から融液を引き出し繊維を得るのであるが、
失透温度が高いとブッシングの底に失透による結晶が生
じて融液流出が妨げられ糸切れが起こる。普通、ブッシ
ング底部の温度と繊維の巻き取り速度の制御により、失
透を抑えながらガラス繊維を得るのであるが、失透温度
が融液粘度が102.5 ポアズ(316ポアズ)とな
る温度を越えると制御し切れないのである。融液の粘度
が余り低いと制御は無理になる。つまり、従来の高比誘
電率(εr が9以上)のSiO2 −BaO−TiO
2 −ZrO2 系ガラス組成物の失透温度は融液粘度
が102.5 ポアズ(316ポアズ)となる温度を越
えており、繊維化適性に欠けていたのである。
[Means for Solving the Problems] In order to solve the above problems, the inventors have developed SiO2-BaO-TiO2-Zr
We focused on O2-based glass compositions. This is because this glass composition is lead-free, has good dielectric properties, and is rich in chemical durability (acid resistance, alkali resistance, and water resistance). However, there is a problem in that the devitrification temperature is high and fiberization is difficult. When obtaining glass fibers, the melt is drawn out from the small holes of a platinum pot called a bushing, which has 200 to 800 small holes in the bottom.
If the devitrification temperature is high, crystals due to devitrification will form at the bottom of the bushing, preventing the melt from flowing out and causing thread breakage. Normally, glass fiber is obtained while suppressing devitrification by controlling the temperature at the bottom of the bushing and the winding speed of the fiber, but the devitrification temperature exceeds the temperature at which the melt viscosity becomes 102.5 poise (316 poise). It cannot be completely controlled. If the viscosity of the melt is too low, control becomes impossible. In other words, the conventional high dielectric constant (εr is 9 or more) SiO2-BaO-TiO
The devitrification temperature of the 2-ZrO2-based glass composition exceeded the temperature at which the melt viscosity was 102.5 poise (316 poise), and it lacked suitability for fiberization.

【0011】そこで、発明者らは、必要な誘電特性や化
学的耐久性を確保しつつ繊維化適性をもたせる方途を求
めて鋭意検討を続け、適当量のNbO5/2の添加によ
り問題の解決が図れることを見いだし、この発明を完成
させることができた。したがって、第1の課題を解決す
るため、請求項1記載の発明のガラス組成物は、SiO
2 を40〜65モル%、MgO,CaO,SrOおよ
びBaOの少なくともひとつを20〜45モル%、Ti
O2 およびZrO2 の少なくともひとつを5〜25
モル%、NbO5/2 を0.5〜15モル%それぞれ
含み、これらの酸化物の合計量を85モル%以上であり
、比誘電率(1MHz,25℃)9以上の繊維化適性を
有する構成をとり、請求項2記載の発明のガラス組成物
は、加えて、SiO2 の含有量が46〜60モル%、
MgO,CaO,SrOおよびBaOの少なくともひと
つの含有量が25〜40モル%、TiO2 およびZr
O2 の少なくともひとつの含有量が7〜24モル%、
NbO5/2 の含有量が1〜10モル%とする構成を
とり、さらに、請求項3記載の発明のガラス組成物は、
加えて、MgO,CaO,SrOおよびBaOの少なく
ともひとつの含有量が28〜35モル%、NbO5/2
 の含有量が2〜9モル%とする構成をとっている。
[0011] Therefore, the inventors continued to conduct intensive studies in search of a way to provide fiberization suitability while ensuring the necessary dielectric properties and chemical durability, and found that the problem could be solved by adding an appropriate amount of NbO5/2. I was able to complete this invention by discovering what I could do. Therefore, in order to solve the first problem, the glass composition of the invention according to claim 1 is made of SiO
20 to 65 mol%, at least one of MgO, CaO, SrO and BaO, 20 to 45 mol%, Ti
At least one of O2 and ZrO2 at 5 to 25
mol%, NbO5/2, respectively, from 0.5 to 15 mol%, the total amount of these oxides is 85 mol% or more, and has a specific dielectric constant (1 MHz, 25°C) of 9 or more, which is suitable for fiber formation. In addition, the glass composition of the invention according to claim 2 has an SiO2 content of 46 to 60 mol%,
The content of at least one of MgO, CaO, SrO and BaO is 25 to 40 mol%, TiO2 and Zr
The content of at least one of O2 is 7 to 24 mol%,
The glass composition of the invention according to claim 3 has a structure in which the content of NbO5/2 is 1 to 10 mol%,
In addition, the content of at least one of MgO, CaO, SrO and BaO is 28 to 35 mol%, NbO5/2
The content is 2 to 9 mol%.

【0012】そして、前記第2の課題を解決するため、
請求項4記載の発明にかかる回路用基板は、請求項1か
ら3のいずれかに記載のガラス組成物の繊維からなる補
強材で樹脂を強化してなる構成をとっている。以下、こ
の発明を詳しく説明する。この発明のガラス組成物は、
上記の組成構成をとるため、以下のように、9以上の比
誘電率(1MHz,25℃)や繊維化適性を始めとして
優れた特性が確保できるようになる。
[0012] In order to solve the second problem,
A circuit board according to a fourth aspect of the invention has a structure in which a resin is reinforced with a reinforcing material made of fibers of the glass composition according to any one of claims 1 to 3. This invention will be explained in detail below. The glass composition of this invention is
Since the composition has the above composition, excellent properties such as a dielectric constant of 9 or more (1 MHz, 25° C.) and suitability for fiberization can be ensured as described below.

【0013】■  比誘電率(1MHz、25℃)9以
上の高誘電率である。 ■  誘電損失(1MHz、25℃)即ちtanδ0.
6%以下の低損失である。 ■  100MHzの高周波域でも、上記比誘電率およ
び誘電損失の変化が僅かで、優れた高周波誘電特性であ
る。 ■  化学的耐久性(耐酸性、耐アルカリ性、耐水性)
に富む。
[0013] Specific dielectric constant (1 MHz, 25°C): High dielectric constant of 9 or more. ■ Dielectric loss (1MHz, 25°C), that is, tanδ0.
The loss is low, less than 6%. (2) Even in the high frequency range of 100 MHz, the above-mentioned dielectric constant and dielectric loss change only slightly, providing excellent high frequency dielectric properties. ■ Chemical durability (acid resistance, alkali resistance, water resistance)
rich in

【0014】■  失透温度が融液粘度が102.5 
ポアズとなる温度以下であり、繊維化適性を有する。失
透温度と融液粘度が102.5 ポアズとなる温度の間
の温度差と繊維化容易性は比例関係にある。 ■  歪み点が約600℃と高い。この発明のガラス組
成物の組成範囲を上記のように限定した理由は、以下の
通りである。
■ The devitrification temperature and the melt viscosity are 102.5.
It is below the temperature at which it becomes poise, and has suitability for fiberization. There is a proportional relationship between the temperature difference between the devitrification temperature and the temperature at which the melt viscosity becomes 102.5 poise and the ease of fiberization. ■ The strain point is high at approximately 600℃. The reason why the composition range of the glass composition of the present invention is limited as described above is as follows.

【0015】SiO2 :40〜65モル%(より好ま
しくは46〜60モル%) SiO2 は、ガラスの骨格を形成する成分であり、4
0モル%未満だと失透温度の上昇と融液粘度の低下を招
来し必要な繊維化適性の確保が難しくなるとともに、化
学的耐久性も十分でなくなる。65モル%を上回ると9
以上の比誘電率の確保が難しいとともに、ガラス粘度が
高く融液化困難で繊維化し難くなる。
SiO2: 40 to 65 mol% (more preferably 46 to 60 mol%) SiO2 is a component that forms the skeleton of glass, and
If it is less than 0 mol %, the devitrification temperature will increase and the melt viscosity will decrease, making it difficult to ensure the necessary fiberization suitability, and the chemical durability will also be insufficient. 9 if it exceeds 65 mol%
It is difficult to ensure the above dielectric constant, and the glass viscosity is high, making it difficult to melt and form into fibers.

【0016】MgO,CaO,SrOおよびBaOの少
なくともひとつ:20〜45モル%(より好ましくは2
5〜40モル%) MgO,CaO,SrOおよびBaOは、ガラス構造の
修飾イオンとして作用し、融液化を容易とする。また、
併用使用は失透温度の低下をもたらす。CaO,SrO
およびBaOは比誘電率を上昇させる働きをする。20
モル%未満だと、融液が得にくく繊維化適性が低下する
とともに9以上の比誘電率の確保が難しい。45モル%
を越えると失透温度の上昇と融液粘度の低下を招来し必
要な繊維化適性の確保が難しくなる。
At least one of MgO, CaO, SrO and BaO: 20 to 45 mol% (more preferably 2
(5 to 40 mol%) MgO, CaO, SrO, and BaO act as modifying ions of the glass structure and facilitate melting. Also,
Combined use results in a lower devitrification temperature. CaO, SrO
and BaO function to increase the dielectric constant. 20
If it is less than mol%, it is difficult to obtain a melt and the suitability for forming fibers decreases, and it is also difficult to ensure a dielectric constant of 9 or more. 45 mol%
If it exceeds this, the devitrification temperature increases and the melt viscosity decreases, making it difficult to ensure the necessary fiberization suitability.

【0017】TiO2 およびZrO2 の少なくとも
ひとつ:5〜25モル%(より好ましくは7〜24モル
%)TiO2 、ZrO2 は比誘電率を上昇させる働
きと化学的耐久性を高める働きがある。TiO2 とZ
rO2 の併用が望ましく、TiO2 をZrO2 よ
りも多くすることが多い。5モル%未満だと9以上の比
誘電率や必要な化学的耐久性の確保が難しい。25モル
%を越えると失透温度が上昇し繊維化適性が失われる。
At least one of TiO2 and ZrO2: 5 to 25 mol % (more preferably 7 to 24 mol %) TiO 2 and ZrO 2 have the function of increasing the dielectric constant and the chemical durability. TiO2 and Z
It is desirable to use rO2 in combination, and TiO2 is often used in a larger amount than ZrO2. If it is less than 5 mol%, it is difficult to ensure a dielectric constant of 9 or more and the necessary chemical durability. If it exceeds 25 mol%, the devitrification temperature increases and the suitability for forming fibers is lost.

【0018】NbO5/2 :0.5〜15モル%(よ
り好ましくは1〜10モル%) NbO5/2 は比誘電率の低下を伴わずに失透温度を
大きく低下させる働きがある。0.5モル%未満では必
要な添加効果があらわれず、15モル%を越えると逆に
失透温度の上昇をもたらす。そして、請求項3のように
、MgO,CaO,SrOおよびBaOの少なくともひ
とつの含有量が28〜35モル%、NbO5/2 の含
有量が2〜9モル%である場合には、失透温度と融液粘
度が102.5 ポアズとなる温度の差が顕著になる傾
向が強く、繊維化適性の確保が容易であるために好まし
い。
NbO5/2: 0.5 to 15 mol% (more preferably 1 to 10 mol%) NbO5/2 has the function of greatly lowering the devitrification temperature without lowering the relative dielectric constant. If it is less than 0.5 mol %, the necessary addition effect will not be obtained, and if it exceeds 15 mol %, the devitrification temperature will increase. As claimed in claim 3, when the content of at least one of MgO, CaO, SrO and BaO is 28 to 35 mol% and the content of NbO5/2 is 2 to 9 mol%, the devitrification temperature This is preferred because there is a strong tendency for the difference between the temperatures at which the melt viscosity becomes 102.5 poise and the temperature at which the melt viscosity becomes 102.5 poise to become significant, and it is easy to ensure fiberization suitability.

【0019】また、上記酸化物の合計量が85モル%未
満だと、9以上の比誘電率の確保が難しかったり、必要
な繊維化適性の確保が難しくなる。なお、この発明のガ
ラス組成物は、15モル%以下の範囲で、TaO5/2
 , AlO3/2 , LaO3/2 ,CeO2 
,ZnO,Li2 O,Na2 O,K2 O,MnO
2 ,BO3/2 等の酸化物を少なくともひとつ含ん
でいてもよい。
Further, if the total amount of the above oxides is less than 85 mol %, it will be difficult to secure a dielectric constant of 9 or more, or it will be difficult to secure the necessary suitability for forming fibers. Note that the glass composition of the present invention contains TaO5/2 in a range of 15 mol% or less.
, AlO3/2 , LaO3/2 , CeO2
, ZnO, Li2O, Na2O, K2O, MnO
It may contain at least one oxide such as 2, BO3/2, etc.

【0020】上記ガラス組成物を作るための原料として
は、酸化物(複合酸化物を含む)、炭酸塩、硫酸塩、塩
化物、フッ化物など様々な化合物が使用でき、要は上記
組成が得られさえすればよい。この発明の回路用基板の
場合、上記のガラス組成物の繊維からなる補強材で樹脂
が補強されており、プリント回路が作り込まれるもので
ある。ガラス繊維製補強材はプリント回路用基板の機械
的強度や寸法安定性を向上させる。
[0020] Various compounds such as oxides (including composite oxides), carbonates, sulfates, chlorides, and fluorides can be used as raw materials for producing the above glass composition. All you have to do is let it happen. In the case of the circuit board of the present invention, the resin is reinforced with a reinforcing material made of fibers of the above-mentioned glass composition, and a printed circuit is built into the resin. Glass fiber reinforcement improves the mechanical strength and dimensional stability of printed circuit boards.

【0021】ガラス繊維製補強材の形態としては、クロ
ス状の他に、マット状や単なるフィラメント状のものも
挙げられる。クロスやマットの場合、通常、繊維径0.
5〜20μm、厚み15μm〜1.5mm程度のものが
用いられる。フィラメントの場合、通常、繊維径2〜5
0μm、長さ20〜300μm程度のものが用いられる
[0021] The shape of the glass fiber reinforcing material includes not only a cross shape but also a mat shape and a simple filament shape. In the case of cloth or mat, the fiber diameter is usually 0.
A material having a thickness of about 5 to 20 μm and a thickness of about 15 μm to 1.5 mm is used. In the case of filaments, the fiber diameter is usually 2 to 5.
0 μm and a length of about 20 to 300 μm are used.

【0022】補強材と複合化される樹脂は、特に限定さ
れないが、高周波域の用途では、高周波損失の少ない(
低tanδ)樹脂が好ましく、例えば、PPO(ポリフ
ェニレンオキサイド)樹脂、フッ素樹脂(例えば、テフ
ロン:デュポン社の商品名のようなポリフッ化エチレン
系樹脂)、ポリカーボネート、ポリエチレン、ポリエチ
レンテレフタレート、ポリプロピレン、ポリスチレン等
が挙げられる。これらの樹脂の比誘電率εr は、普通
、2.0〜3.2程度である。より比誘電率の大きな樹
脂(例えば、エポキシ樹脂、ポリエステル樹脂、ポリフ
ッ化ビニリデン、フェノール樹脂等)の場合、比誘電率
の点では好ましいが、誘電損失が大きく、特に高周波用
には適さない。
The resin to be composited with the reinforcing material is not particularly limited, but in applications in the high frequency range, resins with low high frequency loss (
Low tan δ) resins are preferred, such as PPO (polyphenylene oxide) resins, fluororesins (e.g., Teflon: polyfluoroethylene resins such as DuPont's trade name), polycarbonate, polyethylene, polyethylene terephthalate, polypropylene, polystyrene, etc. Can be mentioned. The dielectric constant εr of these resins is usually about 2.0 to 3.2. Resins with higher dielectric constants (for example, epoxy resins, polyester resins, polyvinylidene fluoride, phenol resins, etc.) are preferable in terms of dielectric constant, but have large dielectric losses and are not particularly suitable for high frequencies.

【0023】プリント回路用基板は、通常、厚みが0.
1〜2mm程度であり、樹脂と補強材の割合(体積割合
)は、通常、樹脂:30〜95体積%、補強材:5〜7
0体積%である。プリント回路用基板を製造する場合、
例えば、予め作製しておいた樹脂ワニスをガラスクロス
に含浸させて乾燥し、ついで、得られた樹脂含浸クロス
複数枚を積層して(必要に応じて)金属箔を表面に配し
ておいて、金型で加熱加圧成形するようにする。そうす
ると、図1にみるように、ガラスクロス1に樹脂2が複
合化され表面に金属箔3を有するプリント回路用基板4
が完成する。
[0023] Printed circuit boards usually have a thickness of 0.
It is about 1-2 mm, and the ratio (volume ratio) of resin and reinforcing material is usually resin: 30-95% by volume, reinforcing material: 5-7
It is 0% by volume. When manufacturing printed circuit boards,
For example, a glass cloth is impregnated with a resin varnish prepared in advance and dried, and then multiple pieces of the resulting resin-impregnated cloth are laminated and metal foil is placed on the surface (if necessary). , to be molded under heat and pressure using a mold. Then, as shown in FIG. 1, a printed circuit board 4 is formed by combining resin 2 with glass cloth 1 and having metal foil 3 on the surface.
is completed.

【0024】[0024]

【作用】この発明のガラス組成物は、SiO2 を40
〜65モル%、MgO,CaO,SrOおよびBaOの
少なくともひとつを20〜45モル%、TiO2 およ
びZrO2 の少なくともひとつを5〜25モル%、N
bO5/2 を0.5〜15モル%それぞれ含み、これ
らの酸化物の合計量を85モル%以上とする組成である
[Operation] The glass composition of the present invention contains 40% of SiO2.
~65 mol%, 20-45 mol% of at least one of MgO, CaO, SrO and BaO, 5-25 mol% of at least one of TiO2 and ZrO2, N
The composition includes 0.5 to 15 mol% of bO5/2, and the total amount of these oxides is 85 mol% or more.

【0025】そのため、このガラス組成物、および、ガ
ラス組成物の繊維からなる補強材を用いた回路用基板は
、以下のような特徴を有する。まず、ガラス組成物と補
強材は、比誘電率(1MHz、25℃)9以上と高比誘
電率であり、誘電損失(1MHz、25℃)即ちtan
δ0.6%以下の低損失であって、しかも、100MH
zの高周波域でも、上記比誘電率および誘電損失の変化
が僅かで、優れた高周波誘電特性を有する。さらに、化
学的耐久性(耐酸性、耐アルカリ性、耐水性)に富む(
Eガラスより遙に優れる)ため、加工時の化学処理での
損傷の問題がない。また、PbOを多量に含む鉛系ガラ
スの場合の毒性等の問題もない。
Therefore, this glass composition and a circuit board using a reinforcing material made of fibers of the glass composition have the following characteristics. First, the glass composition and reinforcing material have a high dielectric constant (1 MHz, 25°C) of 9 or more, and have a low dielectric loss (1 MHz, 25°C), that is, tan.
Low loss of δ0.6% or less, and 100MH
Even in the high frequency range of z, the above-mentioned dielectric constant and dielectric loss change slightly, and the material has excellent high frequency dielectric properties. Furthermore, it has excellent chemical durability (acid resistance, alkali resistance, water resistance) (
(Much superior to E-glass), there is no problem of damage caused by chemical treatment during processing. Further, there are no problems such as toxicity caused by lead-based glass containing a large amount of PbO.

【0026】ガラス組成物については、失透温度が融液
粘度が102.5ポアズとなる温度以下であるため、繊
維化適性があって補強材用ガラス繊維とすることができ
るし、また、歪み点が約600℃と高く、クロス化の際
の一次バインダー除去処理も適切に行えるため、補強材
として有用な適切なガラスクロスとすることができる。 この発明にかかる回路用基板については、補強材で誘電
特性を高める構成であって、高比誘電率無機粒子で誘電
特性を高める構成でないため長期信頼性もよい。
As for the glass composition, since the devitrification temperature is below the temperature at which the melt viscosity becomes 102.5 poise, it is suitable for fiberization and can be used as a glass fiber for reinforcing materials. Since the glass cloth has a high temperature of about 600° C. and the primary binder removal process can be carried out appropriately during cloth formation, it can be used as an appropriate glass cloth useful as a reinforcing material. The circuit board according to the present invention has a structure in which the dielectric properties are enhanced by a reinforcing material, and not a structure in which the dielectric properties are enhanced by high relative permittivity inorganic particles, and therefore has good long-term reliability.

【0027】[0027]

【実施例】以下、実施例および比較例の説明を行う。 「ガラス組成物の実施例および比較例」−実施例1〜2
5および比較例1、2−表1〜3に示す組成となるよう
に、ガラス組成物原料を調合し、白金ルツボに入れて加
熱(4時間、1500℃)し溶融した。なお、原料とし
ては、SiO2 にはSiO2 を、MgO,CaO,
SrOおよびBaOには炭酸塩を、TiO2 にはアナ
ターゼ型TiO2 を、ZrO2 にはZrO2 を、
NbO5/2 にはNbO5/2 の1級試薬をそれぞ
れ用いた。
[Examples] Examples and comparative examples will be explained below. "Examples and comparative examples of glass compositions" - Examples 1 to 2
5 and Comparative Examples 1 and 2 - Glass composition raw materials were prepared to have the compositions shown in Tables 1 to 3, placed in a platinum crucible, and heated (4 hours, 1500° C.) to melt. In addition, as raw materials, SiO2 is used for SiO2, MgO, CaO,
Carbonate is used for SrO and BaO, anatase type TiO2 is used for TiO2, ZrO2 is used for ZrO2,
For NbO5/2, a primary reagent of NbO5/2 was used.

【0028】ついで、融液をカーボン板上に流し出し板
状に成形しアニール処理し板状ガラスを得た。各実施例
および比較例の板状ガラスについて下記のデータを得た
。 −比誘電率および誘電損失− まず、得られた板状ガラスを一部切断し研磨して誘電特
性評価用試料を作製した。ついで、この試料の両面に金
電極を蒸着形成し、インピーダンスアナライザーで比誘
電率および誘電損失(誘電正接)を測定した。測定周波
数は1MHz、1GHz、温度は25℃である。
Next, the melt was poured onto a carbon plate, formed into a plate shape, and annealed to obtain a plate glass. The following data were obtained for the sheet glass of each Example and Comparative Example. -Relative permittivity and dielectric loss- First, a portion of the obtained sheet glass was cut and polished to prepare a sample for dielectric property evaluation. Next, gold electrodes were deposited on both sides of this sample, and the relative dielectric constant and dielectric loss (dielectric loss tangent) were measured using an impedance analyzer. The measurement frequencies were 1 MHz and 1 GHz, and the temperature was 25°C.

【0029】−102.5 ポアズ温度−板状ガラスの
一部を溶かし融液の粘度を白金球引き上げ法により測定
し102.5 ポアズ温度を測定した。 −失透温度− 板状ガラスの一部を297〜500μmの粉末としてか
ら白金ボートに入れ温度勾配を有する電気炉に16時間
保持したのち空気中で放冷し顕微鏡下で失透出現位置を
求めることで測定した。
-102.5 Poise Temperature - A part of the plate glass was melted and the viscosity of the melt was measured by the platinum ball pulling method to determine the 102.5 poise temperature. -Devitrification temperature- A part of the plate glass is made into a powder of 297 to 500 μm, then put into a platinum boat and kept in an electric furnace with a temperature gradient for 16 hours, then allowed to cool in the air, and the position where devitrification appears is determined under a microscope. It was measured by

【0030】−繊維化適性− 板状ガラスの残部を粉砕し白金ブッシングに入れ、白金
ブッシングに直接通電してガラスを溶かし、ブッシング
温度を102.5 ポアズ温度に設定しておいて、ブッ
シング底部の小穴(ノズル)から引き出し巻き取ってガ
ラス繊維を得るようにした。
- Suitability for making fibers - The remainder of the plate glass is crushed and placed in a platinum bushing, the platinum bushing is directly energized to melt the glass, the bushing temperature is set at 102.5 poise, and the bottom of the bushing is Glass fiber was obtained by pulling it out through a small hole (nozzle) and winding it up.

【0031】上記データを表1〜6に記す。なお、上記
実施例では、板状ガラスにしてから再溶融してガラス繊
維を得たが、最初の融液から直接ガラス繊維を得るよう
にしてもよい。同様にガラス繊維を得ることができる。 大量生産の場合は、最初の融液から直接ガラス繊維を得
るようにするのが適当である。
The above data are shown in Tables 1-6. In the above embodiments, glass fibers were obtained by forming sheet glass and then remelting it, but glass fibers may be obtained directly from the initial melt. Glass fibers can likewise be obtained. For mass production, it is appropriate to obtain the glass fibers directly from the initial melt.

【0032】[0032]

【表1】[Table 1]

【0033】[0033]

【表2】[Table 2]

【0034】[0034]

【表3】[Table 3]

【0035】[0035]

【表4】[Table 4]

【0036】[0036]

【表5】[Table 5]

【0037】[0037]

【表6】[Table 6]

【0038】実施例の場合はいずれも繊維化できたが、
比較例1はTiO2およびZrO 2の含有量が多すぎ
ると同時にNbO5/2 を含まず、比較例2はNbO
5/2 を含まないため、繊維化できなかった。102
.5 (316)ポアズ温度および失透温度のデータは
繊維化適性の有無をよく裏付けている。なお、実施例の
誘電特性は高周波域も含めて良好である。
[0038] Although all of the examples were able to be made into fibers,
Comparative Example 1 contains too much TiO2 and ZrO2 and does not contain NbO5/2, and Comparative Example 2 contains too much NbO2 and ZrO2.
Since it did not contain 5/2, it could not be made into fibers. 102
.. 5 (316) Poise temperature and devitrification temperature data well support the presence or absence of fiberization suitability. Note that the dielectric properties of the examples are good including in the high frequency range.

【0039】「プリント回路用基板の実施例および比較
例」 −実施例A〜Eおよび、比較例A、B−実施例3のガラ
ス組成物から得た繊維を用いてガラスクロスを常法によ
り得た。このガラスクロスは、平織ガラスクロスであっ
て、厚み:100μm、繊維径:7μm、織密度:25
mm当たり、縦60本,横58本である。
"Examples and Comparative Examples of Printed Circuit Boards" - Examples A to E and Comparative Examples A and B - Glass cloth was obtained by a conventional method using the fibers obtained from the glass composition of Example 3. Ta. This glass cloth is a plain weave glass cloth, thickness: 100 μm, fiber diameter: 7 μm, weaving density: 25
There are 60 vertical lines and 58 horizontal lines per mm.

【0040】比較のため、下記組成の鉛系ガラス、およ
び、Eガラスを用いたガラスクロスも作製した。 「鉛ガラス」 組成  PbO:41.2モル%、SiO2 :55.
3モル%、B2 O3 :2.8モル%、K2 O:0
.7モル%比誘電率  1MHz:13.0、1GHz
:12.9誘電損失  1MHz:0.09%、1GH
z:0.54%「Eガラス」 組成  SiO2 :57.9モル%、Al2 O3 
:8.7モル%、B2 O3 :7.3モル%、CaO
:24.2モル%、MgO:1.6モル%、K2 O:
0.3モル%比誘電率  1MHz:6.5、1GHz
:6.5誘電損失  1MHz:0.15%、1GHz
:0.28%一方、PPO樹脂100容量部に150容
量部のトリクレンを添加して攪拌しPPO樹脂を完全に
溶解させた樹脂ワニスを作製した。
For comparison, glass cloths using lead-based glass and E glass having the following compositions were also produced. "Lead glass" Composition PbO: 41.2 mol%, SiO2: 55.
3 mol%, B2 O3: 2.8 mol%, K2 O: 0
.. 7 mol% dielectric constant 1MHz: 13.0, 1GHz
:12.9 dielectric loss 1MHz: 0.09%, 1GH
z: 0.54% "E glass" Composition SiO2: 57.9 mol%, Al2 O3
:8.7 mol%, B2O3: 7.3 mol%, CaO
:24.2 mol%, MgO: 1.6 mol%, K2O:
0.3 mol% dielectric constant 1MHz: 6.5, 1GHz
:6.5 dielectric loss 1MHz: 0.15%, 1GHz
: 0.28% On the other hand, a resin varnish was prepared by adding 150 parts by volume of trichlene to 100 parts by volume of the PPO resin and stirring to completely dissolve the PPO resin.

【0041】ついで、樹脂ワニスをガラスクロス含浸さ
せたあと乾燥した。含浸量はPPO樹脂とガラスクロス
の体積割合が表4、5に示すようになるように調整した
。このようにして得られたワニス含浸ガラスクロスを5
枚重ね上下に銅箔(厚み17μm)を配して、温度25
0℃、圧力33kg/cm2 、10分間の条件で成形
し、両面銅箔張りプリント回路用基板を得た。
[0041] Next, a glass cloth was impregnated with the resin varnish and then dried. The amount of impregnation was adjusted so that the volume ratio of PPO resin and glass cloth was as shown in Tables 4 and 5. The varnish-impregnated glass cloth thus obtained was
Copper foil (thickness 17 μm) was placed on the top and bottom of the stack, and the temperature was 25
Molding was carried out under the conditions of 0° C., pressure of 33 kg/cm 2 , and 10 minutes to obtain a printed circuit board with copper foil on both sides.

【0042】実施例および比較例の基板の比誘電率およ
び誘電損失を測定した。測定結果を表7、8に示す。
The relative permittivity and dielectric loss of the substrates of Examples and Comparative Examples were measured. The measurement results are shown in Tables 7 and 8.

【0043】[0043]

【表7】[Table 7]

【0044】[0044]

【表8】[Table 8]

【0045】表7、8にみるように、実施例Aのプリン
ト回路用基板は、鉛ガラスを用いた比較例Aのものに比
べて1GHzでの誘電損失が少なく、Eガラスを用いた
比較例Bの基板に比べて比誘電率が高く、高周波域用の
回路基板として適性を有することがよく分かる。
As shown in Tables 7 and 8, the printed circuit board of Example A has a lower dielectric loss at 1 GHz than that of Comparative Example A using lead glass, and has a lower dielectric loss than that of Comparative Example A using E glass. It can be clearly seen that the dielectric constant is higher than that of the substrate B, making it suitable as a circuit board for high frequency range.

【0046】[0046]

【発明の効果】以上に述べたように、この発明のガラス
組成物は、SiO2を40〜65モル%、MgO,Ca
O,SrOおよびBaOの少なくともひとつを20〜4
5モル%、TiO2 およびZrO2 の少なくともひ
とつを5〜25モル%、NbO5/2 を0.5〜15
モル%それぞれ含み、これらの酸化物の合計量が85モ
ル%以上の組成であり、高い比誘電率(9以上)で繊維
化適性があって優れた高周波誘電特性を有し、化学的耐
久性に富み、回路用基板の補強材に適したものとなって
いる。
Effects of the Invention As described above, the glass composition of the present invention contains 40 to 65 mol% of SiO2, MgO, Ca
At least one of O, SrO and BaO is 20 to 4
5 mol%, at least one of TiO2 and ZrO2 from 5 to 25 mol%, and NbO5/2 from 0.5 to 15 mol%.
It has a composition in which the total amount of these oxides is 85 mol% or more, has a high dielectric constant (9 or more), is suitable for fiberization, has excellent high frequency dielectric properties, and has excellent chemical durability. It is suitable as a reinforcing material for circuit boards.

【0047】この発明の回路用基板は、上記組成のガラ
ス組成物の繊維からなる補強材で誘電特性を高めている
ため、優れた高周波誘電特性を有し長期信頼性の高い有
用な基板となっている。
Since the circuit board of the present invention has enhanced dielectric properties with the reinforcing material made of fibers of the glass composition having the above composition, it has excellent high frequency dielectric properties and is a useful board with high long-term reliability. ing.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】  請求項4記載の発明にかかるプリント回路
用基板の構成例をあらわす概略断面図である。
FIG. 1 is a schematic cross-sectional view showing a configuration example of a printed circuit board according to a fourth aspect of the invention.

【符号の説明】[Explanation of symbols]

1  ガラスクロス(補強材) 2  樹脂 3  金属箔 4  プリント回路用基板 1 Glass cloth (reinforcing material) 2 Resin 3 Metal foil 4 Printed circuit board

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】  SiO2 を40〜65モル%、Mg
O,CaO,SrOおよびBaOの少なくともひとつを
20〜45モル%、TiO2 およびZrO2 の少な
くともひとつを5〜25モル%、NbO5/2 を0.
5〜15モル%それぞれ含み、これらの酸化物の合計量
が85モル%以上であり、比誘電率(1MHz,25℃
)9以上の繊維化適性を有するガラス組成物。
Claim 1: 40 to 65 mol% of SiO2, Mg
20 to 45 mol % of at least one of O, CaO, SrO and BaO, 5 to 25 mol % of at least one of TiO2 and ZrO2, and 0.5 mol % of NbO5/2.
5 to 15 mol% each, the total amount of these oxides is 85 mol% or more, and the dielectric constant (1 MHz, 25 ° C.
) A glass composition having a fiberization suitability of 9 or more.
【請求項2】  SiO2 の含有量が46〜60モル
%、MgO,CaO,SrOおよびBaOの少なくとも
ひとつの含有量が25〜40モル%、TiO2 および
ZrO2 の少なくともひとつの含有量が7〜24モル
%、NbO5/2 の含有量が1〜10モル%である請
求項1記載のガラス組成物。
Claim 2: The content of SiO2 is 46 to 60 mol%, the content of at least one of MgO, CaO, SrO, and BaO is 25 to 40 mol%, and the content of at least one of TiO2 and ZrO2 is 7 to 24 mol%. %, the content of NbO5/2 is 1 to 10 mol%.
【請求項3】  MgO,CaO,SrOおよびBaO
の少なくともひとつの含有量が28〜35モル%、Nb
O5/2 の含有量が2〜9モル%である請求項2記載
のガラス組成物。
[Claim 3] MgO, CaO, SrO and BaO
The content of at least one of 28 to 35 mol%, Nb
The glass composition according to claim 2, wherein the content of O5/2 is 2 to 9 mol%.
【請求項4】  請求項1から3のいずれかに記載のガ
ラス組成物の繊維からなる補強材で樹脂を強化してなる
回路用基板。
4. A circuit board comprising a resin reinforced with a reinforcing material made of fibers of the glass composition according to claim 1.
JP14216391A 1991-02-08 1991-06-13 Glass composition and circuit board Expired - Fee Related JP2617632B2 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP14216391A JP2617632B2 (en) 1991-02-08 1991-06-13 Glass composition and circuit board
CA002060709A CA2060709C (en) 1991-02-08 1992-02-05 Glass fiber forming composition, glass fibers obtained from the composition and substrate for circuit board including the glass fibers as reinforcing material
DE69210270T DE69210270T2 (en) 1991-02-08 1992-02-06 Composition for the production of glass fibers, glass fibers produced therewith and substrate for printed circuit board with the glass fibers as reinforcing material
EP92101994A EP0498425B1 (en) 1991-02-08 1992-02-06 Glass fiber forming composition, glass fibers obtained from the composition and substrate for circuit board including the glass fibers as reinforcing material
US07/832,267 US5284807A (en) 1991-02-08 1992-02-07 Glass fiber forming composition, glass fibers obtained from the composition and substrate for circuit board including the glass fibers as reinforcing material
US08/148,330 US5334645A (en) 1991-02-08 1993-11-08 Substrate for circuit board including the glass fibers as reinforcing material
US08/148,539 US5407872A (en) 1991-02-08 1993-11-08 Glass fiber forming composition, glass fibers obtained from the composition and substrate for circuit board including the glass fibers as reinforcing material

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP3-17747 1991-02-08
JP1774791 1991-02-08
JP14216391A JP2617632B2 (en) 1991-02-08 1991-06-13 Glass composition and circuit board

Publications (2)

Publication Number Publication Date
JPH04322007A true JPH04322007A (en) 1992-11-12
JP2617632B2 JP2617632B2 (en) 1997-06-04

Family

ID=26354308

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14216391A Expired - Fee Related JP2617632B2 (en) 1991-02-08 1991-06-13 Glass composition and circuit board

Country Status (1)

Country Link
JP (1) JP2617632B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0563323A (en) * 1991-06-18 1993-03-12 Matsushita Electric Works Ltd Board for circuit use
JP2006520314A (en) * 2003-03-13 2006-09-07 サン−ゴバン ベトロテックス フランス ソシエテ アノニム Glass strand capable of reinforcing organic and / or inorganic materials, method for producing said strand and composition used

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0563323A (en) * 1991-06-18 1993-03-12 Matsushita Electric Works Ltd Board for circuit use
JP2006520314A (en) * 2003-03-13 2006-09-07 サン−ゴバン ベトロテックス フランス ソシエテ アノニム Glass strand capable of reinforcing organic and / or inorganic materials, method for producing said strand and composition used
JP4695066B2 (en) * 2003-03-13 2011-06-08 サン−ゴバン テクニカル ファブリックス ヨーロッパ Glass strand capable of reinforcing organic and / or inorganic materials, method for producing said strand and composition used

Also Published As

Publication number Publication date
JP2617632B2 (en) 1997-06-04

Similar Documents

Publication Publication Date Title
DE69210270T2 (en) Composition for the production of glass fibers, glass fibers produced therewith and substrate for printed circuit board with the glass fibers as reinforcing material
TWI406831B (en) Low dielectric glass and fiber glass for electronic applications
KR102321888B1 (en) Low dielectric glass compositions, fibers and articles
JP3381332B2 (en) High dielectric constant glass ceramic
KR100364890B1 (en) Low-permittivity glass fibers
US5756408A (en) Glass-ceramic sintered body
KR20140074246A (en) Low dielectric glass and fiber glass
WO2010011701A2 (en) Glass fiber composition and printed circuit board made from the glass fiber composition
WO2005035456A9 (en) Glass compositions, glass fibers, and methods of inhibiting boron volatization from glass compositions
KR101043193B1 (en) Glass fibre for the reinforcement of organic and/or inorganic materials, method for production of said glass fibres and corresponding composition
US11339083B2 (en) Low dielectric glass composition, fibers, and article
JP2004525066A (en) Low dielectric constant strengthening glass yarn
US20230024895A1 (en) Glass filler and method for producing the same, and resin-containing composition including glass filler
JPH10167759A (en) Low dielectric constant glass fiber
JPH04367537A (en) Glass composition and substrate for circuit
WO2021138295A1 (en) Low dielectric glass composition, fibers, and article
JPH04322007A (en) Glass composition and board for circuit
JPH06211543A (en) Glass fiber
JP2733160B2 (en) Circuit board
JPH06211564A (en) Ceramic substrate
JP2520970B2 (en) Composite dielectric
TW202136168A (en) Low dielectric glass composition, fibers, and article
JPH06188529A (en) Circuit board
JPH10120438A (en) Glass composition and glass fiber
JPH06132621A (en) Board for circuit

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080311

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090311

Year of fee payment: 12

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090311

Year of fee payment: 12

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100311

Year of fee payment: 13

LAPS Cancellation because of no payment of annual fees