JPH04321935A - Optical memory device and reading out method thereof - Google Patents

Optical memory device and reading out method thereof

Info

Publication number
JPH04321935A
JPH04321935A JP3090785A JP9078591A JPH04321935A JP H04321935 A JPH04321935 A JP H04321935A JP 3090785 A JP3090785 A JP 3090785A JP 9078591 A JP9078591 A JP 9078591A JP H04321935 A JPH04321935 A JP H04321935A
Authority
JP
Japan
Prior art keywords
light
rare earth
reading out
irradiation
recording
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3090785A
Other languages
Japanese (ja)
Inventor
Ikutake Yagi
生剛 八木
Hironori Yamazaki
裕基 山崎
Iwao Hatakeyama
畠山 巌
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP3090785A priority Critical patent/JPH04321935A/en
Publication of JPH04321935A publication Critical patent/JPH04321935A/en
Pending legal-status Critical Current

Links

Landscapes

  • Optical Record Carriers And Manufacture Thereof (AREA)
  • Optical Recording Or Reproduction (AREA)

Abstract

PURPOSE:To allow the higher-density recording of an optical disk by incorporating at least one kind of rear earth elements into a recording layer and irradiating the layer with UV rays prior to irradiation with a laser beam for reading out. CONSTITUTION:At least one kind among the rare earth elements (La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu) are incorporated as impurities into the recording layer of the phase change type optical disk. The recording layer is irradiated with the UV rays from a UV lamp 23 prior to the irradiation with the laser beam for reading out from a head 22 at the time of reading out the stored information. The 4f electrons of the rare earth ions are previously excited by the irradiation with the UV rays, then the light emission spectra at the time of restoring the base state from the excitation state are measured. A measuring section discriminates whether crystal or amorphous. The spot size is effectively reduced as compared with the case of detection of a difference in reflectivity in this way.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、レーザ光強度の変調の
みで記録・消去・読み出しが行える相変化型光ディスク
装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a phase change type optical disk device that can perform recording, erasing, and reading only by modulating the intensity of laser light.

【0002】0002

【従来の技術】書換可能な光ディスクとして、磁気光学
効果を利用する光磁気ディスクと、結晶・非晶質構造相
転移を利用する相変化型光ディスクの2者が最も実用的
なものである。なかでも相変化型ディスクは、磁石を用
いないのでヘッドが小型化でき、かつ、1ビームでオー
バーライトが容易に達成できると言う利点を持っている
2. Description of the Related Art The two most practical types of rewritable optical disks are magneto-optical disks that utilize the magneto-optical effect and phase-change optical disks that utilize phase transition between crystalline and amorphous structures. Among these, phase-change disks have the advantage that their heads can be made smaller because they do not use magnets, and that overwriting can be easily accomplished with a single beam.

【0003】図1に、一般的な相変化型光ディスクの媒
体構成を示す。11はポリカーボネイトあるいはガラス
などからなる透明基板、12および14はZnS,Si
O2,SiN等からなる誘電体保護膜、13はGeSb
Te等のカルコゲナイド系合金からなる記録膜、15は
Au,Al等の反射膜を示す。この媒体に、約1μmに
集光した半導体レーザを照射する。レーザ光の強度が強
く記録膜の融点を越えれば、急冷過程でその場所が非晶
質になり、逆に融点を越さない程度の光強度であれば、
その部分は結晶になる。結晶と非晶質とで屈折率が異な
るために反射率が異なるので、これを情報の0と1に対
応させている。
FIG. 1 shows the media structure of a typical phase change optical disk. 11 is a transparent substrate made of polycarbonate or glass, 12 and 14 are ZnS, Si, etc.
Dielectric protective film made of O2, SiN, etc., 13 is GeSb
A recording film made of a chalcogenide alloy such as Te, and 15 a reflective film made of Au, Al, etc. are shown. This medium is irradiated with a semiconductor laser focused to approximately 1 μm. If the intensity of the laser beam is strong and exceeds the melting point of the recording film, the area will become amorphous during the rapid cooling process;
That part becomes a crystal. Since the refractive index is different between crystal and amorphous, the reflectance is different, so this corresponds to the information 0 and 1.

【0004】0004

【発明が解決しようとする課題】光照射によって形成さ
れる非晶質部の大きさは、融点を越すか越さないかの臨
界温度領域によって決定されるので、光スポットの大き
さよりも小さな非晶質マークを書くことは可能である。 しかし、読み出し時の分解能は、光スポットの大きさに
よって制限されてしまう。従って、情報の記録密度を決
定するのは集光された光スポットの大きさによって制限
されてきた。
[Problem to be Solved by the Invention] The size of the amorphous region formed by light irradiation is determined by the critical temperature range that exceeds or does not exceed the melting point. It is possible to write crystalline marks. However, the resolution during readout is limited by the size of the optical spot. Therefore, determining the information recording density has been limited by the size of the focused light spot.

【0005】本発明は、前述の相変化型光ディスク装置
の記録密度を大きくすることを目的としてなされたもの
である。
The present invention has been made for the purpose of increasing the recording density of the above-mentioned phase change type optical disk device.

【0006】[0006]

【課題を解決するための手段】本発明による光記憶装置
は、記憶媒体に光を照射して前記媒体の記録層に結晶・
非晶質間の可逆的相転移を生ぜしめ情報の記録および消
去を行う相変化型光記憶装置において、前記記録層に不
純物として希土類元素のうちの少なくとも一種を含むこ
とを特徴とする。
[Means for Solving the Problems] An optical storage device according to the present invention irradiates a storage medium with light to form crystals in a recording layer of the medium.
A phase change optical storage device that records and erases information by causing a reversible phase transition between amorphous materials, characterized in that the recording layer contains at least one kind of rare earth element as an impurity.

【0007】本発明による読み出し方法は、希土類元素
のうちの少なくとも一種を不純物として含む記録層を有
する記憶媒体に記憶された情報を読み出すに際し、読み
出し光の照射に先立って紫外線を前記記憶媒体に照射す
ることを特徴とする。
[0007] In the reading method according to the present invention, when reading information stored in a storage medium having a recording layer containing at least one kind of rare earth element as an impurity, the storage medium is irradiated with ultraviolet rays prior to irradiation with readout light. It is characterized by

【0008】[0008]

【作用】本発明においては、希土類元素を含む記録膜を
用い、読み出し光の照射に先立って、紫外線ランプの照
射によって希土類イオンの4f電子を励起しておき、次
に励起状態から基底状態に戻るときの発光スペクトルを
測定して測定部が結晶か非晶質かの判別を行う。
[Operation] In the present invention, a recording film containing a rare earth element is used, and the 4f electrons of the rare earth ion are excited by irradiation with an ultraviolet lamp prior to irradiation with readout light, and then return from the excited state to the ground state. The emission spectrum is measured to determine whether the measuring section is crystalline or amorphous.

【0009】本発明によれば、従来の構成によって反射
率差を検出する場合に比べて、有効的にスポットサイズ
を小さくでき、従って光ディスクの高記録密度化を図る
ことができる。
[0009] According to the present invention, the spot size can be effectively reduced compared to the case where reflectance differences are detected using the conventional configuration, and therefore the recording density of the optical disc can be increased.

【0010】0010

【実施例】図2に本発明による光記憶装置の構成を示す
。21は相変化型光ディスクであって、図1中に示した
記録膜13中に希土類元素(La,Ce,Pr,Nd,
Sm,Eu,Gd,Tb,Dy,Ho,Er,Tm,Y
b,Lu)を含む。22は記録・消去・読み出し用の光
学ヘッド、23は紫外線ランプ、24はディスク上での
紫外線が照射されている部位を示す。記録・消去には紫
外線ランプは用いず、従来の記録・消去と全く同じであ
る。従って、従来の装置と異なっている読み出しについ
てのみ記述する。
Embodiment FIG. 2 shows the configuration of an optical storage device according to the present invention. Reference numeral 21 denotes a phase-change optical disk, in which rare earth elements (La, Ce, Pr, Nd,
Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Y
b, Lu). 22 is an optical head for recording, erasing, and reading, 23 is an ultraviolet lamp, and 24 is a portion of the disk that is irradiated with ultraviolet light. No ultraviolet lamp is used for recording and erasing, which is exactly the same as conventional recording and erasing. Therefore, only the reading that is different from conventional devices will be described.

【0011】図3に本発明における光学ヘッドの構成を
示す。半導体レーザ31で発振された光は、コリメート
レンズ32で平行光にされた後、整形プリズム33でガ
ウスビームに整形される。ここで、入射時のレーザは偏
光ビームスプリッター34を素通りする方向に直線偏波
した光である。その後、λ/4板38によって円偏光に
なった後全反射プリズム35,対物レンズ36を経て、
光ディスク37上に集光される。ここまでは、従来の相
変化光ディスク用の光ヘッドと同じである。さて、本発
明においては、読み出しに先立って紫外線を照射してあ
るので、いま集光した読み出しのためのレーザ光の反射
光と同時に、紫外線もしくは可視光線の発光が起こる。 そのメカニズムは後述する。この発光された光と反射光
は、共に対物レンズ36,全反射プリズム35,λ/4
板38を経て偏光ビームスプリッター34で反射され、
ダイクロイックキューブ310に至る。ここで半導体レ
ーザ31と同じ波長の光は素通りし、トラッキング・フ
ォーカシングエラー検出光学系39に向かう。一方、発
光された光はダイクロイックキューブ310で反射され
、ファブリペロー干渉器312によって結晶からの発光
ピーク波長のみ、あるいは発光ピークから少しずれた波
長の光のみを反射させ、その強度を受光器311で検出
し、読み出し信号とする。
FIG. 3 shows the structure of the optical head according to the present invention. The light oscillated by the semiconductor laser 31 is made into parallel light by the collimating lens 32, and then shaped into a Gaussian beam by the shaping prism 33. Here, the laser beam at the time of incidence is linearly polarized light in a direction that passes through the polarizing beam splitter 34. After that, it becomes circularly polarized light by the λ/4 plate 38, and then passes through the total reflection prism 35 and the objective lens 36.
The light is focused onto the optical disk 37. Up to this point, it is the same as the optical head for a conventional phase change optical disk. Now, in the present invention, since ultraviolet rays are irradiated prior to readout, emission of ultraviolet rays or visible light occurs simultaneously with the reflected light of the laser beam for readout that has just been focused. The mechanism will be described later. Both the emitted light and the reflected light are transmitted through the objective lens 36, the total reflection prism 35, and the λ/4
It passes through the plate 38 and is reflected by the polarizing beam splitter 34,
A dichroic cube 310 is reached. Here, light having the same wavelength as that of the semiconductor laser 31 passes through and heads toward the tracking/focusing error detection optical system 39 . On the other hand, the emitted light is reflected by a dichroic cube 310, and a Fabry-Perot interferometer 312 reflects only the peak emission wavelength from the crystal, or only the light at a wavelength slightly shifted from the emission peak, and its intensity is transmitted to a light receiver 311. Detected and used as a read signal.

【0012】図4〜図6を参照して本発明における再生
過程の原理を説明する。本発明における最も特徴的なこ
とは、情報読み出し時に反射率差を検知するのではなく
、レーザ光によって熱せられた部分からの発光を検知す
ることにある。記録膜中に含まれる希土類イオンの4f
電子は、そのイオン周辺の結晶場の影響を受け、図4に
示すように基底準位、および励起準位がエネルギーシフ
トおよび分裂している。ここで、結晶中でのエネルギー
シフトは個々の希土類イオンに対して同じであるが、非
晶質中では個々の希土類イオンの受ける結晶場が異なる
ために、エネルギーシフト量に幅ができている。
The principle of the regeneration process in the present invention will be explained with reference to FIGS. 4 to 6. The most characteristic feature of the present invention is that the light emitted from the portion heated by the laser beam is detected instead of detecting the difference in reflectance when reading information. 4f of rare earth ions contained in the recording film
Electrons are affected by the crystal field around the ions, and as shown in FIG. 4, the energy of the ground level and the excited level is shifted and split. Here, the energy shift in a crystal is the same for each rare earth ion, but in an amorphous state, each rare earth ion receives a different crystal field, so there is a range in the amount of energy shift.

【0013】そこで本発明の如く、希土類イオンの4f
電子を紫外線ランプの照射によって励起しておき、次に
励起状態から基底状態に戻るときの発光スペクトルを測
定すれば、測定部が結晶か非晶質かの区別ができること
になる。ここで重要なことは、励起後少なくとも数10
ミリ秒以上、励起状態が保たれていなければならないこ
とにある。ここでは、燐光現象を用いており、図4に示
すように基底状態EGから励起状態Eelに紫外線で励
起された後、より安定な励起状態Ee2に移る。ここで
、Ee2からEGへの直接遷移は禁止されている。次に
、光学ヘッドのレーザ加熱で、図5に示すようにEe2
からEelに熱励起され、EelからEG へ発光を伴
って遷移する。 図6に結晶および非晶質の発光スペクトルを示す。非晶
質ではエネルギーシフト量に幅があるのでスペクトルは
ブロードになる。
Therefore, according to the present invention, 4f of rare earth ions
By exciting electrons by irradiating them with an ultraviolet lamp and then measuring the emission spectrum as they return from the excited state to the ground state, it is possible to distinguish whether the measurement part is crystalline or amorphous. What is important here is that after excitation, at least several tens of
The reason is that the excited state must be maintained for more than milliseconds. Here, a phosphorescence phenomenon is used, and as shown in FIG. 4, the ground state EG is excited by ultraviolet light to the excited state Eel, and then shifts to the more stable excited state Ee2. Here, direct transition from Ee2 to EG is prohibited. Next, by laser heating the optical head, Ee2
is thermally excited from Eel to Eel, and transitions from Eel to EG accompanied by light emission. FIG. 6 shows the emission spectra of crystalline and amorphous materials. In amorphous materials, the amount of energy shift varies, so the spectrum becomes broad.

【0014】本発明の構成では、発光された光をグレー
ティングによって分光し、結晶と非晶質の発光強度差あ
るいは結晶では出てきえない光を検知する。この方法に
よる利点は、発光強度が温度の指数関数
In the configuration of the present invention, the emitted light is separated into spectra using a grating, and the difference in the emitted light intensity between crystal and amorphous materials or the light that cannot be emitted by the crystal is detected. The advantage of this method is that the emission intensity is an exponential function of temperature.

【0015】[0015]

【数1】[Math 1]

【0016】で与えられ、従来のように反射率差を検出
する場合に比べて、有効的にスポットサイズを小さくで
きる点にある。
The advantage of this method is that the spot size can be effectively reduced compared to the conventional method of detecting reflectance differences.

【0017】図7に本発明および従来例によるスポット
の有効断面をそれぞれ曲線AおよびBで示す。図7に示
すように、本発明によれば、1.3μm(1/e2 )
直径のスポットを照射した場合、ビームスポット形状と
温度分布がほぼ等しいので、(1)式の温度に
FIG. 7 shows effective cross-sections of spots according to the present invention and the conventional example as curves A and B, respectively. As shown in FIG. 7, according to the present invention, 1.3 μm (1/e2)
When irradiating a spot with a diameter of

【001
8】
001
8]

【数2】[Math 2]

【0019】を代入して規格化すれば、約1μm直径の
スポットと等価になることがわかる。以上のように、本
発明の方法を用いれば、光学的限界値よりも有効的に絞
られたスポットが得られたことになる。
By substituting and normalizing, it can be seen that it becomes equivalent to a spot with a diameter of approximately 1 μm. As described above, by using the method of the present invention, a spot that is more effectively narrowed down than the optical limit value can be obtained.

【0020】一例として、相変化型光ディスクとして/
溝付きガラス基板/ZnS+SiO2 (厚さ300n
m)/Ge19Sb28Te53+Sm(0.01%)
+Ce(0.02%)(厚さ40nm)/ZnS+Si
O2 (厚さ200nm)/Au(厚さ40nm)/フ
ォトポリマー/という構成の直径5インチのディスクを
用いた場合の結果を示す。SmおよびCeの添加量は重
量%で示してある。光ヘッドの半導体レーザの波長は8
30nmである。紫外線の光源としては、250Wの水
銀ランプを用い、ディスク上で半径2cmの円内に集光
した。 記録・消去・読み出し時の線速を10m/sとし、レー
ザパワーは読み出し時に1mW、消去時は7mW、書き
込み時はベースパワー,ピークパワー,パルス幅をそれ
ぞれ7mW,14mW,40nsに固定したオーバーラ
イト方式を用いた。記録密度を増していった時のコント
ラストの変化を図8に示す。通常の読み出し(曲線D)
と、本発明に従ってファブリペロー干渉器で分光した光
を検出した場合(曲線C)のコントラストの変化をオシ
ロスコープで測定した場合の比較を行っている。図のよ
うに、本発明の方法に拠れば、密度を増していってもコ
ントラストの低下が小さいことが分かる。
As an example, as a phase change optical disc/
Grooved glass substrate/ZnS+SiO2 (thickness 300n
m)/Ge19Sb28Te53+Sm (0.01%)
+Ce (0.02%) (thickness 40nm)/ZnS+Si
The results are shown using a 5-inch diameter disk composed of O2 (thickness: 200 nm)/Au (thickness: 40 nm)/photopolymer/. The amounts of Sm and Ce added are shown in weight %. The wavelength of the semiconductor laser in the optical head is 8
It is 30 nm. A 250 W mercury lamp was used as the ultraviolet light source, and the light was focused in a circle with a radius of 2 cm on the disk. Linear speed during recording, erasing, and reading is 10 m/s, laser power is 1 mW during reading, 7 mW during erasing, and overwriting with base power, peak power, and pulse width fixed at 7 mW, 14 mW, and 40 ns, respectively, during writing. method was used. FIG. 8 shows the change in contrast when the recording density is increased. Normal readout (curve D)
A comparison is made between the change in contrast when the light separated by the Fabry-Perot interferometer according to the present invention is detected (curve C), and when the change in contrast is measured using an oscilloscope. As shown in the figure, it can be seen that according to the method of the present invention, the decrease in contrast is small even when the density is increased.

【0021】記録膜としては、上述したGe19Sb2
8Te53に限らず、相変化型として通常使用されてい
る記録膜、特にカルコゲナイド合金であればいかなるも
のでも使用でき、希土類元素としては、Sm,Ce以外
の任意のものも使用できる。希土類元素の添加量は約0
.001%で効果がある、ただし5%をこえることは発
光現象の上からも好ましくない。
As the recording film, the above-mentioned Ge19Sb2
Not limited to 8Te53, any recording film commonly used as a phase change type, especially a chalcogenide alloy, can be used, and as the rare earth element, any one other than Sm and Ce can be used. The amount of rare earth elements added is approximately 0.
.. It is effective at 0.001%, but exceeding 5% is not preferable from the perspective of light emission.

【0022】[0022]

【発明の効果】以上説明したように、本発明によれば、
光ディスクの高記録密度化を図ることができる。
[Effects of the Invention] As explained above, according to the present invention,
It is possible to increase the recording density of an optical disc.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】従来の一般的な相変化型光ディスクの媒体構成
を示す図である。
FIG. 1 is a diagram showing the medium configuration of a conventional general phase change optical disk.

【図2】本発明の構成を示す図である。FIG. 2 is a diagram showing the configuration of the present invention.

【図3】本発明による光ヘッドの構成を示す図である。FIG. 3 is a diagram showing the configuration of an optical head according to the present invention.

【図4】本発明による再生過程の原理を示し、紫外線に
よる励起過程の結晶と非晶質との差を示す図である。
FIG. 4 is a diagram showing the principle of the regeneration process according to the present invention and showing the difference between crystal and amorphous in the excitation process by ultraviolet rays.

【図5】本発明による再生過程の原理を示し、熱励起に
よる発光過程の結晶と非晶質との差を示す図である。
FIG. 5 is a diagram showing the principle of the regeneration process according to the present invention and showing the difference between crystalline and amorphous light emission processes due to thermal excitation.

【図6】本発明による再生過程の原理を示し、発光スペ
クトルの結晶と非晶質との差を示す図である。
FIG. 6 is a diagram showing the principle of the regeneration process according to the present invention and showing the difference in emission spectra between crystal and amorphous.

【図7】レーザ光スポットの有効断面を示したもので、
1.3μm直径(1/e2 )のレーザスポットとその
スポットを照射された時の発光強度を示す図である。
FIG. 7 shows an effective cross section of a laser beam spot.
It is a figure showing a laser spot with a diameter of 1.3 μm (1/e2) and the emission intensity when the spot is irradiated.

【図8】高密度記録時における、通常の再生と本発明に
よる再生の差を示したグラフである。
FIG. 8 is a graph showing the difference between normal reproduction and reproduction according to the present invention during high-density recording.

【符号の説明】[Explanation of symbols]

11  基板 12  誘電体保護膜 13  記録膜 14  誘電体保護膜 15  反射膜 21  相変化型光ディスク 22  光学ヘッド 23  紫外線ランプ 24  紫外線照射部位 31  半導体レーザ 32  コリメートレンズ 33  整形プリズム 34  偏光ビームスプリッタ 35  全反射プリズム 36  対物レンズ 37  光ディスク 38  λ/4板 39  トラッキング・フォーカシングエラー検出光学
系310  ダイクロイックキューブ 311  受光器 312  ファブリペロー干渉器
11 Substrate 12 Dielectric protective film 13 Recording film 14 Dielectric protective film 15 Reflective film 21 Phase change optical disk 22 Optical head 23 Ultraviolet lamp 24 Ultraviolet irradiation site 31 Semiconductor laser 32 Collimating lens 33 Shaping prism 34 Polarizing beam splitter 35 Total reflection prism 36 Objective lens 37 Optical disk 38 λ/4 plate 39 Tracking/focusing error detection optical system 310 Dichroic cube 311 Light receiver 312 Fabry-Perot interferometer

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】  記憶媒体に光を照射して前記媒体の記
録層に結晶・非晶質間の可逆的相転移を生ぜしめ情報の
記録および消去を行う相変化型光記憶装置において、前
記記録層に不純物として希土類元素のうちの少なくとも
一種を含むことを特徴とする光記憶装置。
1. A phase change optical storage device that records and erases information by irradiating a storage medium with light to cause a reversible phase transition between crystal and amorphous in a recording layer of the medium, wherein the recording An optical storage device characterized in that a layer contains at least one kind of rare earth element as an impurity.
【請求項2】  希土類元素のうちの少なくとも一種を
不純物として含む記録層を有する記憶媒体に記憶された
情報を読み出すに際し、読み出し光の照射に先立って紫
外線を前記記憶媒体に照射することを特徴とする読み出
し方法。
2. When reading information stored in a storage medium having a recording layer containing at least one kind of rare earth element as an impurity, the storage medium is irradiated with ultraviolet rays prior to irradiation with readout light. reading method.
【請求項3】  前記読み出し時に、波長選択性を有す
る受光素子を用いて読み出し用レーザ光と異なる波長の
光の強度を読み取ることを特徴とする請求項2に記載の
読み出し方法。
3. The readout method according to claim 2, wherein during the readout, the intensity of light having a wavelength different from that of the readout laser beam is read using a light receiving element having wavelength selectivity.
JP3090785A 1991-04-22 1991-04-22 Optical memory device and reading out method thereof Pending JPH04321935A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3090785A JPH04321935A (en) 1991-04-22 1991-04-22 Optical memory device and reading out method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3090785A JPH04321935A (en) 1991-04-22 1991-04-22 Optical memory device and reading out method thereof

Publications (1)

Publication Number Publication Date
JPH04321935A true JPH04321935A (en) 1992-11-11

Family

ID=14008254

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3090785A Pending JPH04321935A (en) 1991-04-22 1991-04-22 Optical memory device and reading out method thereof

Country Status (1)

Country Link
JP (1) JPH04321935A (en)

Similar Documents

Publication Publication Date Title
US7292521B2 (en) Optical data storage and systems utilizing plasmon lenses
US5163039A (en) Three-dimensional optical memory system
EP0251286B1 (en) Optical information recording medium
US5142493A (en) Optical disk employing electron trapping material as a storage medium
CA1116898A (en) Optical storage medium
US5521901A (en) Re-writable phase change type optical disk with suppressed recording mark distortion
US4710452A (en) Thin film amorphous optical recording films
JP3836722B2 (en) Nonlinear optical thin film, optical information recording medium and optical switch using the same
KR20010105205A (en) Optical recording medium, reproducing apparatus, and recording and reproducing apparatus therefor
US5007037A (en) Optical disk drive system utilizing electron trapping media for data storage
JPH04321935A (en) Optical memory device and reading out method thereof
JP4199731B2 (en) Optical recording medium, optical information processing apparatus, and optical recording / reproducing method
EP0495185B1 (en) Recording/reproducing method for optical recording medium
JP2004152392A (en) Optical information recording apparatus and optical information recording medium
JPWO2003052756A1 (en) Optical information reproducing method, optical head device, and optical information processing device
JP2001101707A (en) Optical recording medium, optical recording and reproducing device, and optical recording and reproducing method
JPH06111330A (en) High-density optical recording and reproducing method, and high-density optical recording medium and high-density optical recording and reproducing device used for the same
Bussjager et al. Using tungsten oxide based thin films for optical memory and the effects of using IR combined with blue/blue-green wavelengths
US5862122A (en) Phase change optical disk and a method for recording and playbacking optical information on or from an optical disk
JP3006645B2 (en) Optical disk drive
JP3334146B2 (en) Optical head device
JP3626211B2 (en) Signal reproduction method for optical recording medium
JP2690601B2 (en) Optical information reproducing method and device
EP0371580A2 (en) Three-dimensional optical memory system
JP3952524B2 (en) Optical disc recording method