JPH04321785A - Variable crank mechanism of scroll compressor - Google Patents

Variable crank mechanism of scroll compressor

Info

Publication number
JPH04321785A
JPH04321785A JP8813591A JP8813591A JPH04321785A JP H04321785 A JPH04321785 A JP H04321785A JP 8813591 A JP8813591 A JP 8813591A JP 8813591 A JP8813591 A JP 8813591A JP H04321785 A JPH04321785 A JP H04321785A
Authority
JP
Japan
Prior art keywords
eccentric shaft
center
balance weight
centrifugal force
pivot pin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8813591A
Other languages
Japanese (ja)
Other versions
JP2897449B2 (en
Inventor
Kazutaka Suefuji
和孝 末藤
Masao Shiibayashi
正夫 椎林
Naoshi Uchikawa
内川 直志
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP3088135A priority Critical patent/JP2897449B2/en
Publication of JPH04321785A publication Critical patent/JPH04321785A/en
Application granted granted Critical
Publication of JP2897449B2 publication Critical patent/JP2897449B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/0021Systems for the equilibration of forces acting on the pump
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/0042Driving elements, brakes, couplings, transmissions specially adapted for pumps
    • F04C29/005Means for transmitting movement from the prime mover to driven parts of the pump, e.g. clutches, couplings, transmissions
    • F04C29/0057Means for transmitting movement from the prime mover to driven parts of the pump, e.g. clutches, couplings, transmissions for eccentric movement
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2240/00Components
    • F04C2240/80Other components
    • F04C2240/807Balance weight, counterweight

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Rotary Pumps (AREA)

Abstract

PURPOSE:To reduce vibration noise and mechanical loss by slightly shifting the centrifugal force working line of a main balance weight from the center of an eccentric shaft to the side of a pivot pin and letting gas compression load work so that the eccentric shaft is rotated in the direction to enlarge its eccentric quantity. CONSTITUTION:The centrifugal force working line of a main balance weight 9 is slightly shifted from the center of an eccentric shaft 5 to the side of a pivot pin 4 so as to balance the rotary moment generated by the centrifugal force of a scroll 3 revolving around the center of the pivot pin 4 and the rotary moment generated by the main balance weight 9. An eccentric shaft 5 is rotated or slid until the clearance between laps become zero due to the component of force. Since a rotary scroll lap is thus made to be pressed to a fixed scroll lap at an approximate small constant force without depending upon revolution, a high efficient scroll compressor of small mechanical loss and leakage loss in a wide variable range can be realized.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は冷凍空調用,空気用その
他のあらゆるスクロール圧縮機に応用可能な、漏れと機
械損失を少なくして高性能化を図る可変クランク機構に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a variable crank mechanism that can be applied to scroll compressors for refrigeration and air conditioning, air use, and all other scroll compressors, and that improves performance by reducing leakage and mechanical loss.

【0002】0002

【従来の技術】従来の可変クランク機構は特願昭63−
88645 号に見られるように主バランスウェイトの
遠心力が主軸中心と偏心軸中心を結ぶ線上に作用する従
動クランク構造であった。系全体の慣性バランスをとる
設計上、主バランスウェイトの遠心力は旋回スクロール
の遠心力より大きくなるため、偏心軸は旋回半径を小さ
くする方向に力を受ける。この力を相殺して旋回半径を
大きくする方向に力を作用させ、ラップ同士の径方向隙
間をゼロにする目的で、ガス圧縮荷重によるモーメント
を利用して、枢動ピンを中心として旋回半径を大きくす
る方向に偏心軸を回転させるような力を作用させていた
[Prior Art] The conventional variable crank mechanism is
As seen in No. 88645, it had a driven crank structure in which the centrifugal force of the main balance weight acted on a line connecting the center of the main shaft and the center of the eccentric shaft. Due to the design of balancing the inertia of the entire system, the centrifugal force of the main balance weight is greater than the centrifugal force of the orbiting scroll, so the eccentric shaft receives a force in a direction that reduces the radius of rotation. In order to offset this force and apply a force in the direction of increasing the turning radius, and to eliminate the radial gap between the wraps, the moment due to the gas compression load is used to increase the turning radius around the pivot pin. A force was applied that rotated the eccentric shaft in the direction of increasing the size.

【0003】特開昭61−147389号公報では、従
動クランク構造において主バランスウェイトを二分して
いるが、これはスペース上の問題解決を図ったものであ
る。
[0003] In Japanese Patent Application Laid-Open No. 147389/1989, the main balance weight is divided into two parts in the driven crank structure, but this is intended to solve the problem of space.

【0004】0004

【発明が解決しようとする課題】従来の構造では主バラ
ンスウェイトの遠心力がそのまま偏心軸に作用し旋回ス
クロールの遠心力とアンバランスなので、回転数により
このアンバランス量が異なり、回転数によらず、ほぼ、
一定のガス圧縮荷重でこの遠心力を常にバランスさせる
ことはできない。従って、可変速圧縮機において、高速
回転のときに適度なラップ接触荷重になるように設計し
ておくと、低速回転では遠心力が小さくなるため、ガス
圧縮荷重が大きくなりすぎ、ラップ接触荷重が過大にな
る可能性がある。ラップ接触荷重が過大になると、振動
,騒音の原因になったり、機械損失を増大させて性能を
低下させたり、ラップの摩耗が増大して信頼性を低下さ
せたりする。
[Problem to be solved by the invention] In the conventional structure, the centrifugal force of the main balance weight directly acts on the eccentric shaft, creating an unbalance with the centrifugal force of the orbiting scroll, so the amount of unbalance varies depending on the rotation speed. Almost,
This centrifugal force cannot always be balanced with a constant gas compression load. Therefore, if a variable speed compressor is designed to have an appropriate lap contact load at high speed rotation, the centrifugal force will be small at low speed rotation, so the gas compression load will become too large and the lap contact load will increase. It may become excessive. If the wrap contact load becomes excessive, it may cause vibration and noise, increase mechanical loss and degrade performance, or increase wear on the wraps and reduce reliability.

【0005】本発明の目的は主バランスウェイトの遠心
力が常に旋回スクロールの遠心力と釣り合うようにして
、ガス圧縮荷重の一部を偏心軸の旋回半径を大きくする
方向に作用させ、回転数によらずラップ接触荷重がほぼ
一定になるようにして、振動,騒音や機械損失が少なく
、ラップの摩耗も少ない、高効率で高信頼性のスクロー
ル圧縮機を提供する。
The purpose of the present invention is to always balance the centrifugal force of the main balance weight with the centrifugal force of the orbiting scroll, so that a part of the gas compression load is applied in the direction of increasing the radius of rotation of the eccentric shaft, thereby increasing the rotation speed. To provide a highly efficient and highly reliable scroll compressor with little vibration, noise, mechanical loss, and little wear on the laps by keeping the lap contact load almost constant regardless of the fluctuation.

【0006】[0006]

【課題を解決するための手段】第一の方法は、従動クラ
ンク構造において、主バランスウェイトの遠心力作用線
を偏心軸中心から枢動ピン側へ少しずらし、枢動ピンを
中心とする旋回スクロールの遠心力による回転モーメン
トと、主バランスウエイトによる回転モーメントが釣り
合うようにする。その上でガス圧縮荷重を、枢動ピンを
中心として偏心軸が偏心量が大きくなる方向へ回転する
ように作用さる。
[Means for solving the problem] The first method is to slightly shift the line of action of the centrifugal force of the main balance weight from the center of the eccentric shaft toward the pivot pin in the driven crank structure, and to create an orbiting scroll centered on the pivot pin. The rotational moment due to the centrifugal force of the main balance weight should be balanced with the rotational moment due to the main balance weight. Then, a gas compression load is applied so that the eccentric shaft rotates about the pivot pin in a direction that increases the amount of eccentricity.

【0007】第二の方法は、主バランスウェイトを二分
し、一方をその遠心力が旋回スクロールの遠心力と釣り
合う大きさにして偏心軸に装着し、他方を残りの遠心力
を発生する大きさにして主軸に装着する。その上で、偏
心軸が主軸に対し半径方向にスライドできるように嵌合
させた非円形軸と孔の機構を用いて、スライド方向を偏
心方向から反回転方向に傾かせ、ガス圧縮荷重の分力が
偏心軸の偏心量を大きくするように作用させる。
[0007] The second method is to divide the main balance weight into two parts, attach one part to an eccentric shaft so that its centrifugal force balances the centrifugal force of the orbiting scroll, and the other part to a size that generates the remaining centrifugal force. and attach it to the main shaft. Then, by using a mechanism of a non-circular shaft and a hole that are fitted so that the eccentric shaft can slide in the radial direction relative to the main shaft, the sliding direction is tilted from the eccentric direction to the counter-rotational direction, and the gas compression load is A force is applied to increase the amount of eccentricity of the eccentric shaft.

【0008】[0008]

【作用】いずれの構造でも、ガス圧縮荷重による作用力
を任意に設定できるので、常に適度な力で旋回スクロー
ルラップを固定スクロールラップに押しつけるようにこ
れを設定する。このようにすることによって、旋回スク
ロールのラップと固定スクロールのラップは径方向の隙
間がゼロになり、低速回転でももれが少なくなるので高
性能化が図ることができる。また、ラップの押しつけ力
が回転数によらず常に適度な大きさになるため、振動,
騒音が少なくなる。さらに、ラップの摩耗も少なくなる
[Operation] In either structure, the acting force due to the gas compression load can be set arbitrarily, so it is set so that the orbiting scroll wrap is always pressed against the fixed scroll wrap with an appropriate force. By doing this, the gap in the radial direction between the orbiting scroll wrap and the fixed scroll wrap becomes zero, and leakage is reduced even at low speed rotation, so that high performance can be achieved. In addition, since the pressing force of the wrap is always at an appropriate level regardless of the rotation speed, vibrations and
Less noise. Additionally, there is less wear on the wrap.

【0009】[0009]

【実施例】図1は一般的な密閉型スクロール圧縮機の構
造を示している。密閉容器1内に固定スクロール2及び
旋回スクロール3からなる圧縮部と旋回スクロール3を
駆動する主軸4及び偏心軸5からなる駆動軸,主軸4を
支持し固定スクロールを固定するフレーム6,主軸4の
下部には駆動用の電動機が装着されて、これらが一体と
なって収納されている。旋回スクロール3はオルダムリ
ング7により自転を拘束され、主軸4の回転により偏心
軸5によって旋回駆動される。主軸4には旋回スクロー
ルの遠心力を打ち消して振動の発生を防ぐために、主バ
ランスウェイト9及び副バランスウェイト10が取り付
けられている。ガスは吸入管11から吸入され、圧縮室
12で圧縮されて吐出ポート13から吐出室へ吐出され
、下部室16を経て吐出管17から密閉容器外へ吐出さ
れる。軸受や摺動部へは油18が主軸下方から給油され
る。
DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 shows the structure of a general hermetic scroll compressor. A compressor section consisting of a fixed scroll 2 and an orbiting scroll 3, a drive shaft consisting of a main shaft 4 and an eccentric shaft 5 for driving the orbiting scroll 3, a frame 6 for supporting the main shaft 4 and fixing the fixed scroll, and a frame 6 for supporting the main shaft 4 and fixing the fixed scroll; A driving electric motor is attached to the bottom, and these are housed together. The orbiting scroll 3 is restrained from rotating by the Oldham ring 7, and is driven to rotate by the eccentric shaft 5 as the main shaft 4 rotates. A main balance weight 9 and a sub-balance weight 10 are attached to the main shaft 4 in order to counteract the centrifugal force of the orbiting scroll and prevent vibrations from occurring. Gas is sucked in through the suction pipe 11, compressed in the compression chamber 12, discharged from the discharge port 13 into the discharge chamber, passes through the lower chamber 16, and is discharged from the discharge pipe 17 to the outside of the closed container. Oil 18 is supplied to the bearings and sliding parts from below the main shaft.

【0010】旋回スクロール及びバランスウエイトの遠
心力の関係を図2により説明する。駆動軸は主軸4と偏
心軸5からなっており、偏心軸には旋回スクロール3の
遠心力Fc が作用する。主軸4にはFc を相殺する
ために上部に主バランスウエイト9を、下部に副バラン
スウェイト10を装着する。主バランスウェイト9の遠
心力をFb ,副バランスウェイト10の遠心力をFb
sとし、旋回スクロール3と副バランスウエイト10の
軸方向重心間距離をLc ,主バランスウェイト9と副
バランスウェイト10の軸方向重心間距離をLb とす
ると、これらの間には次の関係がある。
The relationship between the centrifugal forces of the orbiting scroll and the balance weight will be explained with reference to FIG. The drive shaft consists of a main shaft 4 and an eccentric shaft 5, and the centrifugal force Fc of the orbiting scroll 3 acts on the eccentric shaft. A main balance weight 9 is attached to the upper part of the main shaft 4 and a sub-balance weight 10 is attached to the lower part of the main shaft 4 in order to offset Fc. The centrifugal force of the main balance weight 9 is Fb, and the centrifugal force of the sub balance weight 10 is Fb.
s, the distance between the axial centers of gravity of the orbiting scroll 3 and the sub-balance weight 10 is Lc, and the distance between the axial centers of gravity of the main balance weight 9 and the sub-balance weight 10 is Lb, then the following relationship exists between these: .

【0011】[0011]

【数1】                     Fb=Fc
+Fbs                     
           (1)
[Equation 1] Fb=Fc
+Fbs
(1)

【0012】0012

【数2】                     Fc×Lc
=Fb×Lb                   
         (2)式(2)を変形すると次のよ
うになる。
[Math. 2] Fc×Lc
=Fb×Lb
(2) Equation (2) is transformed as follows.

【0013】[0013]

【数3】                     Fb/Fc
=Lc/Lb(>1)               
     (3)式(1)及び式(3)から分かるよう
に、fbはFcよりも大きくなる。
[Math 3] Fb/Fc
=Lc/Lb(>1)
(3) As can be seen from equations (1) and (3), fb is larger than Fc.

【0014】本発明の第一の実施例を図3及び図4によ
り説明する。
A first embodiment of the present invention will be explained with reference to FIGS. 3 and 4.

【0015】図3は第一の実施例の発明部分の部品組合
せを示している。主軸4と偏心軸5及び主バランスウェ
イト9は別体で構成されている。主軸4の上部には枢動
ピン4bとストッパ孔4bが設けられている。主軸4に
は、まず、主バランスウェイト9が組み合わせられる。 主バランスウェイト9には幅が枢動ピン4bと隙間無く
はめ合わされる寸法で、長さはこれより少し長い長孔9
bと、係合孔9cとが設けられている。組み付けは長孔
9bを枢動ピン4bに通して行なわれる。次に、偏心軸
5が組み付けられる。偏心軸5には被枢動孔5bが設け
られ、基底部5aには主バランスウェイト係合ピン6c
が下向きに設けられている。被枢動孔は枢動ピン4bに
、係合ピン6cは係合孔9cにそれぞれはめ合わされる
。係合ピン6cはさらにストッパ孔4cに挿入される。 ストッパ孔4cの直径は係合ピン6cの直径よりやや大
きくなっており、偏心軸5は枢動ピン4bを中心として
僅かに回転することができる。
FIG. 3 shows the assembly of the inventive parts of the first embodiment. The main shaft 4, eccentric shaft 5, and main balance weight 9 are constructed separately. A pivot pin 4b and a stopper hole 4b are provided in the upper part of the main shaft 4. First, the main balance weight 9 is combined with the main shaft 4. The main balance weight 9 has an elongated hole 9 with a width that fits the pivot pin 4b without a gap, and a length that is slightly longer than this.
b and an engagement hole 9c are provided. Assembly is performed by passing the pivot pin 4b through the elongated hole 9b. Next, the eccentric shaft 5 is assembled. The eccentric shaft 5 is provided with a pivot hole 5b, and the base portion 5a is provided with a main balance weight engagement pin 6c.
is placed facing downward. The pivot pin 4b is fitted into the pivot pin 4b, and the engagement pin 6c is fitted into the engagement hole 9c. The engagement pin 6c is further inserted into the stopper hole 4c. The diameter of the stopper hole 4c is slightly larger than the diameter of the engagement pin 6c, and the eccentric shaft 5 can rotate slightly around the pivot pin 4b.

【0016】図4により平面図上の各部の位置関係及び
力の作用について説明する。方向については便宜上、図
に示したように、x,yにそれぞれ符号を付けて定義す
る。Oc は主軸4の中心である。Os は偏心軸5の
中心であり、Oc から旋回半径の距離にある。今、主
軸4は時計方向に回転するものとする。枢動ピン4b及
び被枢動孔5bは、Os に対して+x方向にLsx,
+y方向にLsyの位置にある。
The positional relationship of each part on a plan view and the action of force will be explained with reference to FIG. For convenience, the directions are defined by assigning symbols to x and y, respectively, as shown in the figure. Oc is the center of the principal axis 4. Os is the center of the eccentric shaft 5 and is located at a distance of the turning radius from Oc. It is now assumed that the main shaft 4 rotates clockwise. The pivot pin 4b and the pivoted hole 5b move Lsx in the +x direction with respect to Os,
It is located at the position Lsy in the +y direction.

【0017】Obは主バランスウェイト係合ピン5c及
び係合孔4cの中心である。ObはOc及びOs から
+x方向にLbxの位置にある。また、ObはOsより
も−yの方向にある。
Ob is the center of the main balance weight engagement pin 5c and the engagement hole 4c. Ob is located at a position Lbx in the +x direction from Oc and Os. Moreover, Ob is located in the -y direction relative to Os.

【0018】旋回スクロールの遠心力FcはOsに対し
、+yの方向に作用する。ガス圧縮荷重は、旋回軌道接
線方向荷重Fgtと半径方向荷重Fgrに分割して考え
ると、図のように作用する。主バランスウエイト9の重
心はOsとOcを通る直線上にあるが、長穴9bは枢動
ピン4bからx方向にのみ拘束され、y方向には拘束さ
れないので、主バランスウエイト9の遠心力FbはOb
に対して−y方向に作用する。ここで、LsxとLbx
を次のように設定する。
The centrifugal force Fc of the orbiting scroll acts on Os in the +y direction. When the gas compression load is divided into a swing orbit tangential load Fgt and a radial load Fgr, it acts as shown in the figure. The center of gravity of the main balance weight 9 is on a straight line passing through Os and Oc, but since the elongated hole 9b is restrained only in the x direction from the pivot pin 4b and not in the y direction, the centrifugal force Fb of the main balance weight 9 is Ob
It acts in the -y direction. Here, Lsx and Lbx
Set as follows.

【0019】[0019]

【数4】                     Lbx/L
sx=Fc/Fb                 
         (4)Od を中心とする遠心力の
モーメントは、時計回りを正として次のようになる。
[Math. 4] Lbx/L
sx=Fc/Fb
(4) The moment of centrifugal force centered on Od is as follows, with the clockwise direction being positive.

【0020】1)旋回スクロール+偏心軸の遠心力によ
るモーメントMcは
1) The moment Mc due to the centrifugal force of the orbiting scroll + eccentric shaft is

【0021】[0021]

【数5】                     Mc=Fc
×Lsx                     
           (5)2)主バランスウエイト
の遠心力によるモーメントMbは
[Formula 5] Mc=Fc
×Lsx
(5)2) The moment Mb due to the centrifugal force of the main balance weight is

【0022】[0022]

【数6】                     Mb=−F
b×Lbx                    
          (6)式(4)の関係からMc+
Mb=0となり、偏心軸に作用する遠心力による荷重は
釣り合うことになる。
[Formula 6] Mb=-F
b×Lbx
(6) From the relationship of equation (4), Mc+
Mb=0, and the loads due to centrifugal force acting on the eccentric shaft are balanced.

【0023】旋回スクロールの質量をms、旋回半径を
ε、バランスウェイトの質量をmb、重心半径をeとす
ると、Fc及びFbは次式で表される。
When the mass of the orbiting scroll is ms, the radius of rotation is ε, the mass of the balance weight is mb, and the radius of the center of gravity is e, Fc and Fb are expressed by the following equations.

【0024】[0024]

【数7】                     Fc=ms
×ε                       
           (7)
[Formula 7] Fc=ms
×ε
(7)

【0025】[0025]

【数8】                     Fb=mb
×e                       
           (8)よって、式(4)は次の
ように表すことができる。
[Formula 8] Fb=mb
×e
(8) Therefore, equation (4) can be expressed as follows.

【0026】[0026]

【数9】                     Lbx/L
sx=ms×ε/(mb×e)           
     (9)一方、ガス圧縮荷重によるモーメント
の関係は次のようになる。
[Formula 9] Lbx/L
sx=ms×ε/(mb×e)
(9) On the other hand, the relationship between the moment due to the gas compression load is as follows.

【0027】1)接線方向荷重Fgtによるモーメント
Mgt
1) Moment Mgt due to tangential load Fgt

【0028】[0028]

【数10】                     Mgt=F
gt×Lsy                   
         (10) 2)半径方向荷重FgrによるモーメントMgr
[Formula 10] Mgt=F
gt×Lsy
(10) 2) Moment Mgr due to radial load Fgr

【00
29】
00
29]

【数11】                     Mgr=−
Fgr×Lsx                  
        (11)Mgt+Mgrが正になるよ
うにすると、偏心軸5は偏心量が大きくなる方向に力を
受ける。ストッパ孔4cの直径と係合ピン5cの直径の
差を適度に設定すると、図1に示した旋回スクロールラ
ップ3aは固定スクロールラップ2aに押しつけられ、
隙間が0になる。この条件を式で表すと式(10),(
11)から次のように表すことができる。
[Formula 11] Mgr=-
Fgr×Lsx
(11) When Mgt+Mgr is set to be positive, the eccentric shaft 5 receives a force in a direction that increases the amount of eccentricity. When the difference between the diameter of the stopper hole 4c and the diameter of the engagement pin 5c is set appropriately, the orbiting scroll wrap 3a shown in FIG. 1 is pressed against the fixed scroll wrap 2a,
The gap becomes 0. Expressing this condition in equations, equation (10), (
11), it can be expressed as follows.

【0030】[0030]

【数12】                     Fgt×L
sy−Fgr×Lsx>0             
     (12)式(12)を変形すると次のように
なる。
[Formula 12] Fgt×L
sy-Fgr×Lsx>0
(12) When formula (12) is transformed, it becomes as follows.

【0031】[0031]

【数13】                     1>Lsy
/Lsx>Fgr/Fgt             
     (13)Mgt+Mgrが圧縮機に必要な全
運転範囲において、負にならない範囲でなるべく小さく
なるようにLsx及びLsyを設定すると、ラップの押
しつけ力は小さく、かつ隙間を0にすることができる。 通常、FgrはFgtより小さいので、Fgr/Fgt
<1であり、適正なLsxとLsyの関係を次のように
表すことができる。
[Formula 13] 1>Lsy
/Lsx>Fgr/Fgt
(13) If Lsx and Lsy are set so that Mgt+Mgr is as small as possible without becoming negative in the entire operating range required for the compressor, the pressing force of the wrap can be small and the gap can be reduced to 0. Usually, Fgr is smaller than Fgt, so Fgr/Fgt
<1, and the appropriate relationship between Lsx and Lsy can be expressed as follows.

【0032】[0032]

【数14】                     Lsy/L
sx>Fgr/Fgt               
       (14)したがって、適正な枢動ピン4
b及び被枢動孔5bの位置を、運転範囲の中で、吐出圧
力と吸入圧力の差圧が最も大きい条件で、Lsx及びL
syが式(19)を満たす適切な位置に設定すればよい
[Formula 14] Lsy/L
sx>Fgr/Fgt
(14) Therefore, the proper pivot pin 4
b and the position of the pivoted hole 5b, Lsx and L under the condition that the differential pressure between the discharge pressure and the suction pressure is the largest within the operating range.
It is sufficient to set it at an appropriate position where sy satisfies equation (19).

【0033】次に、本発明の第二の実施例を図5及び図
6により説明する。
Next, a second embodiment of the present invention will be explained with reference to FIGS. 5 and 6.

【0034】図5は第二の実施例の発明部分の部品組合
せを示している。主軸4と偏心軸5は別体で構成されて
いる。主軸4の上部には方形の駆動軸4dが設けられて
いる。主軸4には偏心軸5が組み付けられる。偏心軸5
には、駆動軸4dと幅が微小隙間ではめあわされ、これ
と直角方向には少し大きな隙間があくような、長方形の
被駆動孔5dが設けられ、基底部5aには主バランスウ
ェイト主部9Aの装着孔9Aaがやきばめなどによって
とりつけられる。また主バランスウェイト副部9Bが同
様な方法で駆動軸4dの下にとりつけられる。
FIG. 5 shows the assembly of the inventive parts of the second embodiment. The main shaft 4 and the eccentric shaft 5 are constructed separately. A rectangular drive shaft 4d is provided above the main shaft 4. An eccentric shaft 5 is attached to the main shaft 4. Eccentric shaft 5
is provided with a rectangular driven hole 5d which is fitted with the drive shaft 4d with a small gap in width and has a slightly larger gap in the direction perpendicular to this, and the base portion 5a has a main balance weight main portion. The mounting hole 9Aa of 9A is attached by a blind fit or the like. Further, the main balance weight sub-portion 9B is attached under the drive shaft 4d in a similar manner.

【0035】図6により平面図上の各部の位置関係及び
力の作用について説明する。方向についてはここでも便
宜上、図に示したようにように、x,yにそれぞれ符号
を付けて定義する。Oc は主軸4の中心である。Os
 は偏心軸5の中心であり、Ocから旋回半径の距離に
ある。今、主軸4は時計方向に回転するものとする。駆
動軸4d及び被駆動孔5dのスライド面はy軸に対して
少し傾いて設定されている。偏心軸5はスライド面の方
向に駆動軸4dと被駆動孔5dの隙間の分だけ移動可能
である。
The positional relationship of each part on a plan view and the effect of force will be explained with reference to FIG. For the sake of convenience, the directions are defined here by assigning symbols to x and y, respectively, as shown in the figure. Oc is the center of the principal axis 4. Os
is the center of the eccentric shaft 5 and is located at a distance of the turning radius from Oc. It is now assumed that the main shaft 4 rotates clockwise. The sliding surfaces of the driving shaft 4d and the driven hole 5d are set to be slightly inclined with respect to the y-axis. The eccentric shaft 5 is movable in the direction of the sliding surface by the gap between the drive shaft 4d and the driven hole 5d.

【0036】旋回スクロールの遠心力FcはOsに対し
、+yの方向に作用する。ガス圧縮荷重は、旋回軌道接
線方向荷重Fgtと半径方向荷重Fgrである。主バラ
ンスウエイト主部9Aの遠心力Fb1 は、偏心軸5に
−y方向に作用する。主バランスウェイト副部の遠心力
Fb2は、主軸4に−y方向に作用する。Fb1とFb
2及び式(1)の上bとの関係を次のように設定する。
The centrifugal force Fc of the orbiting scroll acts on Os in the +y direction. The gas compression loads are a swing orbit tangential load Fgt and a radial load Fgr. The centrifugal force Fb1 of the main balance weight main portion 9A acts on the eccentric shaft 5 in the -y direction. The centrifugal force Fb2 of the main balance weight sub-portion acts on the main shaft 4 in the -y direction. Fb1 and Fb
2 and the upper b of equation (1) are set as follows.

【0037】[0037]

【数15】                     Fb1+F
b2=Fb                    
         (15)また、偏心軸に作用する遠
心力が常に釣り合うように、Fb1を次のように設定す
る。
[Formula 15] Fb1+F
b2=Fb
(15) Furthermore, Fb1 is set as follows so that the centrifugal force acting on the eccentric shaft is always balanced.

【0038】[0038]

【数16】                     Fb1=F
c                        
           (16)図7は駆動軸4dと被
駆動孔5dのスライド面の傾きθと接線方向荷重Fgt
の作用を示したものである。Fgtのy方向分力Fgt
yは次のように表される。
[Formula 16] Fb1=F
c.
(16) Figure 7 shows the slope θ of the sliding surface of the drive shaft 4d and the driven hole 5d and the tangential load Fgt.
This shows the effect of y-direction component force of Fgt Fgt
y is expressed as follows.

【0039】[0039]

【数17】                     Fgty=
Fgt×tanθ                 
      (17)Fgty がFgrより僅かに大
きくなるようにθを設定すると、図1に示した旋回スク
ロールラップ3aは固定スクロールラップ2aに小さい
力で押しつけられ、隙間が0になる。また、Fgrは通
常Fgtより小さいので、Fgty はFgtを超える
必要は無い。以上の関係を式で表すと、
[Formula 17] Fgty=
Fgt×tanθ
(17) When θ is set so that Fgty is slightly larger than Fgr, the orbiting scroll wrap 3a shown in FIG. 1 is pressed against the fixed scroll wrap 2a with a small force, and the gap becomes zero. Furthermore, since Fgr is usually smaller than Fgt, Fgty does not need to exceed Fgt. Expressing the above relationship in a formula, we get

【0040】[0040]

【数18】                     Fgt>F
gty>Fgr                  
         (18)式(17)を代入すると式
(18)は、
[Formula 18] Fgt>F
gty>Fgr
(18) Substituting equation (17), equation (18) becomes,

【0041】[0041]

【数19】                     Fgt>F
gt×tanθ>Fgr              
    (19)式(19)を変形すると、
[Formula 19] Fgt>F
gt×tanθ>Fgr
(19) Transforming equation (19), we get

【0042】[0042]

【数20】                     1>tan
θ>Fgr/Fgt                
    (20)したがって、適正なスライド面の傾き
角θを、運転範囲の中で、吐出圧力と吸入圧力の差圧が
最も大きい条件において、式(20)を満たす適切な値
に設定すればよい。
[Formula 20] 1>tan
θ>Fgr/Fgt
(20) Therefore, the appropriate inclination angle θ of the sliding surface may be set to an appropriate value that satisfies equation (20) under conditions where the differential pressure between the discharge pressure and the suction pressure is the largest within the operating range.

【0043】次に、本発明の第三の実施例を図8に示す
。本実施例では、駆動機構を第一の実施例と同様の構造
にし、バランスウェイトを第二の実施例と同様の構造に
してある。本実施例では、式(14)を満たすように枢
動ピンおよび被枢動孔の位置を設定し、式(15)及び
(16)を満たすように主バランスウェイトを設計する
ことによって同じ効果が得られることは明らかである。
Next, a third embodiment of the present invention is shown in FIG. In this embodiment, the drive mechanism has the same structure as the first embodiment, and the balance weight has the same structure as the second embodiment. In this example, the same effect can be achieved by setting the positions of the pivot pin and pivoted hole so as to satisfy equation (14), and designing the main balance weight so as to satisfy equations (15) and (16). The gains are clear.

【0044】[0044]

【発明の効果】本発明によれば、旋回スクロール及び偏
心軸の遠心力を常にバランスさせた上で、圧力条件が一
定であれば回転数によらずほぼ一定になるガス圧縮荷重
を利用して偏心軸に半径方向の力を作用させ、旋回スク
ロールラップを小さな力で固定スクロールラップに押し
つけるようにしたので、高速運転のときにラップの接触
荷重が増大することが無く、また、低速運転のときにも
押しつけ荷重が確保されているのでラップ間に隙間が生
じることが無く、もれを生じない。したがって、幅広い
可変速範囲で機械損失やもれ損失が小さく、高効率のス
クロール圧縮機を実現することができる。また、ラップ
間の押しつけ荷重が常に適正になるので、振動や騒音が
少なく、ラップの摩耗も少なくなり、静かで信頼性の高
いスクロール圧縮機を提供することができる。
[Effects of the Invention] According to the present invention, the centrifugal force of the orbiting scroll and the eccentric shaft is constantly balanced, and the gas compression load is utilized which is almost constant regardless of the rotation speed as long as the pressure condition is constant. By applying a radial force to the eccentric shaft, the orbiting scroll wrap is pressed against the fixed scroll wrap with a small force, so the contact load on the wrap does not increase during high-speed operation, and it also prevents the contact load from increasing during low-speed operation. Since the pressing load is ensured, there will be no gaps between the wraps, and no leakage will occur. Therefore, it is possible to realize a highly efficient scroll compressor with small mechanical loss and leakage loss over a wide variable speed range. Furthermore, since the pressing load between the wraps is always appropriate, there is less vibration and noise, less wear on the wraps, and a quiet and highly reliable scroll compressor can be provided.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】一般的スクロール圧縮機の構造を示す断面図。FIG. 1 is a sectional view showing the structure of a general scroll compressor.

【図2】旋回スクロールとバランスウェイトの遠心力の
関係を示す説明図。
FIG. 2 is an explanatory diagram showing the relationship between the centrifugal force of the orbiting scroll and the balance weight.

【図3】本発明の第一の実施例を示す発明部分の斜視図
FIG. 3 is a perspective view of an inventive part showing a first embodiment of the present invention.

【図4】第一の実施例の荷重及び位置関係を示す平面図
FIG. 4 is a plan view showing the load and positional relationship of the first embodiment.

【図5】本発明の第二の実施例を示す発明部分の斜視図
FIG. 5 is a perspective view of an inventive part showing a second embodiment of the present invention.

【図6】第二の実施例の荷重及び位置関係を示す平面図
FIG. 6 is a plan view showing the load and positional relationship of the second embodiment.

【図7】第二の実施例のスライド面の傾き角と荷重の関
係を示す部分平面図。
FIG. 7 is a partial plan view showing the relationship between the inclination angle of the slide surface and the load in the second embodiment.

【図8】本発明の第三の実施例を示す発明部分の斜視図
FIG. 8 is a perspective view of an inventive part showing a third embodiment of the present invention.

【符号の説明】[Explanation of symbols]

3…旋回スクロール、4…主軸、5…偏心軸、9…主バ
ランスウェイト、10…副バランスウェイト。
3...Orbiting scroll, 4...Main shaft, 5...Eccentric shaft, 9...Main balance weight, 10...Sub balance weight.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】端板に渦巻状のラップを直立させた固定ス
クロール部材と、旋回スクロール部材を互いにラップを
向き合わせ、偏心させて組み合わせ、前記旋回スクロー
ル部材を自転することなく旋回運動させてガスを圧縮す
るようにしたスクロール圧縮機において、旋回スクロー
ルを駆動する偏心軸部は、主軸とは別体であり、前記主
軸の上部に設けた枢動ピンに前記偏心軸に設けた被枢動
孔が回転自在に係合し、前記枢動ピン及び被枢動孔の位
置は、前記偏心軸の中心を通る旋回軌道円接線より外周
側で、前記偏心軸の中心と前記主軸の中心を結ぶ平面よ
り回転方向に進んだ位置にあり、前記偏心軸の下部には
主バランスウェイトを係合して遠心力を作用させる係合
ピンを設け、前記係合ピン中心の位置は前記偏心軸の中
心と前記主軸の中心を通る平面より、前記枢動ピンの中
心側へずれていることを特徴とするスクロール圧縮機の
可変クランク機構。
1. A fixed scroll member having a spiral wrap upright on an end plate and an orbiting scroll member are combined with the wraps facing each other and eccentrically arranged, and the orbiting scroll member is rotated without rotating on its axis to generate gas. In a scroll compressor that compresses are rotatably engaged, and the position of the pivot pin and the pivoted hole is on the outer circumferential side of a tangent to the orbit circle passing through the center of the eccentric shaft, and is in a plane connecting the center of the eccentric shaft and the center of the main shaft. The eccentric shaft is located at a position further advanced in the rotational direction, and an engaging pin that engages the main balance weight to apply centrifugal force is provided at the lower part of the eccentric shaft, and the center position of the engaging pin is the same as the center of the eccentric shaft. A variable crank mechanism for a scroll compressor, characterized in that the variable crank mechanism is shifted toward the center of the pivot pin from a plane passing through the center of the main shaft.
JP3088135A 1991-04-19 1991-04-19 Variable crank mechanism of scroll compressor Expired - Fee Related JP2897449B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3088135A JP2897449B2 (en) 1991-04-19 1991-04-19 Variable crank mechanism of scroll compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3088135A JP2897449B2 (en) 1991-04-19 1991-04-19 Variable crank mechanism of scroll compressor

Publications (2)

Publication Number Publication Date
JPH04321785A true JPH04321785A (en) 1992-11-11
JP2897449B2 JP2897449B2 (en) 1999-05-31

Family

ID=13934488

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3088135A Expired - Fee Related JP2897449B2 (en) 1991-04-19 1991-04-19 Variable crank mechanism of scroll compressor

Country Status (1)

Country Link
JP (1) JP2897449B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5547354A (en) * 1993-12-02 1996-08-20 Kabushiki Kaisha Toyoda Jidoshokki Seisakusho Scroll compressor balancing
JP2008208717A (en) * 2007-02-23 2008-09-11 Mitsubishi Heavy Ind Ltd Scroll compressor
CN103089651A (en) * 2012-11-14 2013-05-08 柳州易舟汽车空调有限公司 Scroll compressor
FR2985557A1 (en) * 2012-01-11 2013-07-12 Valeo Japan Co Ltd ECCENTRIC BALANCE COMPRISING ROTATING BLOCK AND COUNTERWEIGHT
JP2015068248A (en) * 2013-09-30 2015-04-13 株式会社日立産機システム Scroll type fluid machine
CN112922808A (en) * 2021-03-05 2021-06-08 珠海格力节能环保制冷技术研究中心有限公司 Crankshaft assembly for compressor and compressor with crankshaft assembly
CN114033692A (en) * 2021-11-23 2022-02-11 珠海格力电器股份有限公司 Balance block group and design method and device thereof, storage medium and processor
WO2023161035A1 (en) * 2022-02-28 2023-08-31 OET GmbH Compensation mechanism for a displacement machine
US11955367B2 (en) 2020-09-15 2024-04-09 Shibaura Mechatronics Corporation Film formation apparatus

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5547354A (en) * 1993-12-02 1996-08-20 Kabushiki Kaisha Toyoda Jidoshokki Seisakusho Scroll compressor balancing
JP2008208717A (en) * 2007-02-23 2008-09-11 Mitsubishi Heavy Ind Ltd Scroll compressor
FR2985557A1 (en) * 2012-01-11 2013-07-12 Valeo Japan Co Ltd ECCENTRIC BALANCE COMPRISING ROTATING BLOCK AND COUNTERWEIGHT
WO2013104980A1 (en) * 2012-01-11 2013-07-18 Valeo Japan Co., Ltd. Balanced eccentric bearing including a ring and a counterweight that are rotatably locked
CN103089651A (en) * 2012-11-14 2013-05-08 柳州易舟汽车空调有限公司 Scroll compressor
JP2015068248A (en) * 2013-09-30 2015-04-13 株式会社日立産機システム Scroll type fluid machine
US11955367B2 (en) 2020-09-15 2024-04-09 Shibaura Mechatronics Corporation Film formation apparatus
CN112922808A (en) * 2021-03-05 2021-06-08 珠海格力节能环保制冷技术研究中心有限公司 Crankshaft assembly for compressor and compressor with crankshaft assembly
CN112922808B (en) * 2021-03-05 2023-12-29 珠海格力节能环保制冷技术研究中心有限公司 A compressor that is used for bent axle subassembly of compressor and has it
CN114033692A (en) * 2021-11-23 2022-02-11 珠海格力电器股份有限公司 Balance block group and design method and device thereof, storage medium and processor
WO2023161035A1 (en) * 2022-02-28 2023-08-31 OET GmbH Compensation mechanism for a displacement machine

Also Published As

Publication number Publication date
JP2897449B2 (en) 1999-05-31

Similar Documents

Publication Publication Date Title
KR920006046B1 (en) Scroll compressor
KR0183502B1 (en) Scroll type fluid machine
JPH0428916B2 (en)
US5460494A (en) Orbiting scroll actuating means of a scroll-type compressor
JPS59120794A (en) Scroll compressor
US4585402A (en) Scroll-type fluid machine with eccentric ring drive mechanism
JPH04321785A (en) Variable crank mechanism of scroll compressor
JPH10281083A (en) Scroll compressor
JPH0152591B2 (en)
JPH01273890A (en) Scroll-type compressor
KR960000092B1 (en) Scroll type fluid machinery
US4904170A (en) Scroll-type fluid machine with different terminal end wrap angles
JP3863685B2 (en) Scroll compressor
WO2019073605A1 (en) Scroll compressor
JPH01262393A (en) Scroll compressor
JPH10281084A (en) Scroll compressor
JPH09170572A (en) Scroll type fluid machine
JPH04175486A (en) Scroll type fluid machine
JP2003301784A (en) Rotation preventing mechanism of scroll fluid machine
JPH01271681A (en) Variable speed scroll compressor
JP2886968B2 (en) Scroll fluid machine
KR970006717Y1 (en) Balancer of scroll compressor
KR100332750B1 (en) Scroll compressor
JPH0330684B2 (en)
JPH07217558A (en) Scroll type unlubricated fluid machinery

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080312

Year of fee payment: 9

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080312

Year of fee payment: 9

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080312

Year of fee payment: 9

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080312

Year of fee payment: 9

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080312

Year of fee payment: 9

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080312

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090312

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090312

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100312

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110312

Year of fee payment: 12

LAPS Cancellation because of no payment of annual fees