JPH04321599A - Production of oxide superconducting article - Google Patents

Production of oxide superconducting article

Info

Publication number
JPH04321599A
JPH04321599A JP3117826A JP11782691A JPH04321599A JP H04321599 A JPH04321599 A JP H04321599A JP 3117826 A JP3117826 A JP 3117826A JP 11782691 A JP11782691 A JP 11782691A JP H04321599 A JPH04321599 A JP H04321599A
Authority
JP
Japan
Prior art keywords
target
vacuum chamber
oxide superconducting
base material
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3117826A
Other languages
Japanese (ja)
Inventor
Moriaki Ono
守章 小野
Yoshihito Uemoto
好仁 上元
Makoto Kabasawa
樺沢 真事
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP3117826A priority Critical patent/JPH04321599A/en
Publication of JPH04321599A publication Critical patent/JPH04321599A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Superconductor Devices And Manufacturing Methods Thereof (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

PURPOSE:To obtain the title article by forming on the surface of a base material a film with excellent superconducting characteristics. CONSTITUTION:A target 7 for an oxide superconducting material is set up in an oxygen-contg. vacuum chamber 6, in which a base material 8 is also set up against the target 7. Laser beams are then irradiated toward the target 7 to partially evaporate said target 7. The resulting evaporated particles are deposited on the surface of the base material 8, thus obtaining the objective article made up of (A) the base material 8 and (B) a film of the oxide superconducting material formed thereon. In the present process, the atmospheric gas in the chamber 6 is activated by a high-frequency coil or rays with vacuum ultraviolet wavelength.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】この発明は、酸化物超電導物品の
製造方法、特に、優れた超電導特性を有する酸化物超電
導物品の製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention This invention relates to a method for manufacturing oxide superconducting articles, and more particularly to a method for manufacturing oxide superconducting articles having excellent superconducting properties.

【0002】0002

【従来の技術】従来、基板とこの基板の表面上に形成さ
れた Y1Ba2Cu3Ox 等の酸化物超電導物質の
被膜とからなる酸化物超電導物品を製造する方法の一つ
を、図面を参照しながら説明する。図2は、従来の、酸
化物超電導物品の製造方法を示す概略断面図である。図
2において、1は、真空チャンバーである。真空チャン
バー1内は、10−2から10−1Torrの酸素分圧
に維持されており、このような雰囲気になるように、真
空チャンバー1に対して酸素の供給および排気が行われ
る。2は、真空チャンバー1内に設置された Y1Ba
2Cu3Ox 等の酸化物超電導物質のターゲットであ
り、ターゲット2の表面全体に亘って後述するレーザー
が均一に照射されるように、定速度で一方向に回転して
いる。3は、真空チャンバー1内に、ターゲット2と対
向して設置されたシリコン(Si)等の基板であり、ヒ
ーター4により600 から700℃の温度に加熱され
ている。そして、5は、真空チャンバー1の透過窓1A
からターゲット2に向けてレーザーを照射するためのレ
ーザー光源である。
BACKGROUND OF THE INVENTION One of the conventional methods for manufacturing an oxide superconducting article consisting of a substrate and a film of an oxide superconducting material such as Y1Ba2Cu3Ox formed on the surface of the substrate will be explained with reference to the drawings. . FIG. 2 is a schematic cross-sectional view showing a conventional method for manufacturing an oxide superconducting article. In FIG. 2, 1 is a vacuum chamber. The interior of the vacuum chamber 1 is maintained at an oxygen partial pressure of 10 -2 to 10 -1 Torr, and oxygen is supplied to and exhausted from the vacuum chamber 1 to maintain such an atmosphere. 2 is Y1Ba installed in the vacuum chamber 1
The target is made of an oxide superconducting material such as 2Cu3Ox, and is rotated in one direction at a constant speed so that the entire surface of the target 2 is uniformly irradiated with the laser described below. Reference numeral 3 denotes a substrate made of silicon (Si) or the like that is placed in the vacuum chamber 1 facing the target 2, and is heated to a temperature of 600 to 700° C. by a heater 4. 5 is a transmission window 1A of the vacuum chamber 1.
This is a laser light source for irradiating a laser toward the target 2 from the target.

【0003】真空チャンバー1内を上述した酸素分圧に
維持し、ヒーター4により上述した温度範囲内に基板3
を加熱し、そして、レーザー光源5からレーザーをター
ゲット2に照射する。これによって、基板3の表面上に
 Y1Ba2Cu3Ox 等の酸化物超電導物質の被膜
が形成される。
The inside of the vacuum chamber 1 is maintained at the above-mentioned oxygen partial pressure, and the substrate 3 is heated within the above-mentioned temperature range using the heater 4.
is heated, and the target 2 is irradiated with laser from the laser light source 5. As a result, a film of oxide superconducting material such as Y1Ba2Cu3Ox is formed on the surface of the substrate 3.

【0004】上述したようにして、基板とこの基板上に
形成された Y1Ba2Cu3Ox 等の酸化物超電導
物質の被膜とからなる超電導物品が製造されるが、この
従来方法は、以下のような問題を有している。即ち、■
  真空チャンバー1内を上述した酸素分圧に維持し且
つヒーター4により上述した温度範囲内に基板3を加熱
する理由は、基板3上に超電導被膜を形成した後、被膜
の結晶化を図り且つ酸素欠損を補うために施す熱処理を
行うことなく、優れた超電導特性を被膜に付与すること
にあるが、基板3を600 から700 ℃の高温に加
熱すると、基板3のシリコンが被膜中に拡散して、被膜
の超電導特性が劣化する。■  真空チャンバー1内の
酸素分圧が10−2から10−1Torrと大きいと、
ターゲット2からの蒸発粒子が酸素分子と衝突し易く、
その平均自由行程が短くなるので、ターゲット2からの
蒸発粒子の運動エネルギーが低下する。この結果、被膜
の結晶化が低下し且つ被膜の緻密性が低下して、被膜の
超電導特性が劣化する。
[0004] As described above, a superconducting article consisting of a substrate and a film of an oxide superconducting material such as Y1Ba2Cu3Ox formed on the substrate is manufactured, but this conventional method has the following problems. are doing. That is, ■
The reason why the inside of the vacuum chamber 1 is maintained at the above-mentioned oxygen partial pressure and the substrate 3 is heated within the above-mentioned temperature range by the heater 4 is that after forming a superconducting film on the substrate 3, the film is crystallized and oxygen is heated. The purpose is to impart excellent superconducting properties to the film without performing heat treatment to compensate for defects, but when the substrate 3 is heated to a high temperature of 600 to 700 °C, the silicon in the substrate 3 diffuses into the film. , the superconducting properties of the coating deteriorate. ■ If the oxygen partial pressure inside the vacuum chamber 1 is as high as 10-2 to 10-1 Torr,
Evaporated particles from target 2 easily collide with oxygen molecules,
Since the mean free path becomes shorter, the kinetic energy of the evaporated particles from the target 2 decreases. As a result, the crystallization of the coating decreases and the denseness of the coating decreases, resulting in deterioration of the superconducting properties of the coating.

【0005】従って、この発明の目的は、真空チャンバ
ー内の酸素分圧を大きくすることなく、且つ、基材の加
熱温度を高くすることなく、優れた特性を有する超電導
被膜が形成された超電導物品を製造することにある。
[0005] Therefore, an object of the present invention is to provide a superconducting article in which a superconducting film having excellent properties is formed without increasing the oxygen partial pressure in a vacuum chamber and without increasing the heating temperature of the base material. The purpose is to manufacture.

【0006】[0006]

【課題を解決するための手段】第1発明は、酸素を含有
する真空チャンバー内に酸化物超電導物質のターゲット
を設置し、前記真空チャンバー内に前記ターゲットと相
対して基材を設置し、そして、前記ターゲットに向けて
レーザーを照射して、前記ターゲットを蒸発させ、これ
によって生じた前記ターゲットの蒸発粒子を、前記基材
の表面上に付着させ、かくして、前記基材と前記基材の
表面上に形成された前記酸化物超電導物質の被膜とから
なる酸化物超電導物品を製造する方法において、前記真
空チャンバー内に設けたコイルに高周波電流を通電して
、前記真空チャンバー内の雰囲気ガスを活性化すること
に特徴を有し、第2発明は、上記第1発明において、前
記基材に向けて200nm 未満の真空紫外域の波長の
光線を照射することに特徴を有し、そして、第3発明は
、上記第1または第2発明において、前記真空チャンバ
ー内に、二酸化炭素NO2 、オゾンO3等の分解し易
いガスを導入することに特徴を有するものである。
[Means for Solving the Problems] A first invention provides a target made of an oxide superconducting material placed in a vacuum chamber containing oxygen, a base material placed opposite to the target in the vacuum chamber, and , irradiate the target with a laser to evaporate the target, thereby causing evaporated particles of the target to adhere to the surface of the base material, and thus, the surface of the base material and the base material In the method for manufacturing an oxide superconducting article comprising a coating of the oxide superconducting material formed on the oxide superconducting material, a high-frequency current is passed through a coil provided in the vacuum chamber to activate the atmospheric gas in the vacuum chamber. A second invention is characterized in that in the first invention, a light beam having a wavelength in the vacuum ultraviolet region of less than 200 nm is irradiated toward the base material, The invention is characterized in that in the first or second invention, a gas that is easily decomposed, such as carbon dioxide NO2 or ozone O3, is introduced into the vacuum chamber.

【0007】次に、この発明の、超電導物品の製造方法
の一実施態様を、図面を参照しながら説明する。図1は
、この発明の、超電導物品の製造方法の一実施態様を示
す概略平面図である。図1において、6は、真空チャン
バーである。真空チャンバー6内は、10−2を超える
酸素分圧に維持されており、このような雰囲気になるよ
うに、真空チャンバー6に対して酸素の供給および排気
が行われる。7は、真空チャンバー6内に設置された 
Y1Ba2Cu3Ox 等の酸化物超電導物質のターゲ
ットであり、ターゲット7の表面全体に亘って後述する
レーザーが均一に照射されるように、定速度で一方向に
回転している。 8は、真空チャンバー6内に、ターゲット7と対向して
設置されたセラミック等の基板であり、ヒーター9によ
り600 ℃未満の温度に加熱されている。10は、真
空チャンバー6の透過窓6Aからターゲット7に向けて
レーザーを照射するためのレーザー光源である。そして
、11は、ターゲットの上方に設けたコイルであり、高
周波電源12から高周波電流が通電される。
Next, one embodiment of the method for manufacturing a superconducting article according to the present invention will be described with reference to the drawings. FIG. 1 is a schematic plan view showing one embodiment of the method for manufacturing a superconducting article according to the present invention. In FIG. 1, 6 is a vacuum chamber. The inside of the vacuum chamber 6 is maintained at an oxygen partial pressure exceeding 10 −2 , and oxygen is supplied to and exhausted from the vacuum chamber 6 to create such an atmosphere. 7 was installed in the vacuum chamber 6
The target is made of an oxide superconducting material such as Y1Ba2Cu3Ox, and is rotated in one direction at a constant speed so that the entire surface of the target 7 is uniformly irradiated with a laser beam, which will be described later. Reference numeral 8 denotes a substrate made of ceramic or the like that is placed in the vacuum chamber 6 facing the target 7, and is heated to a temperature of less than 600° C. by a heater 9. Reference numeral 10 denotes a laser light source for irradiating a laser beam from the transmission window 6A of the vacuum chamber 6 toward the target 7. Reference numeral 11 denotes a coil provided above the target, to which a high frequency current is supplied from a high frequency power source 12.

【0008】真空チャンバー6内を上述した酸素分圧に
維持し、ヒーター9により上述した温度範囲内に基板8
を加熱し、そして、レーザー光源10からレーザーをタ
ーゲット7に照射するとともに、コイル11に、例えば
、13.56MHzの高周波電流を通電する。これによ
って、以下のような効果が生じる。即ち、■  真空チ
ャンバー6内の酸素分子が活性化されて酸素分子が励起
状態になる。 ■  ターゲット7からの蒸発粒子が活性化される。■
  基板8の表面が活性化される。これらの結果、真空
チャンバー6内の酸素分圧を大きくすることなく、且つ
、基板8の加熱温度を高くすることなく、基板8の表面
上には、優れた特性を有する Y1Ba2Cu3Ox 
等の酸化物超電導物質の被膜が形成される。
The inside of the vacuum chamber 6 is maintained at the above-mentioned oxygen partial pressure, and the substrate 8 is heated within the above-mentioned temperature range using the heater 9.
Then, the target 7 is irradiated with laser from the laser light source 10, and a high frequency current of, for example, 13.56 MHz is applied to the coil 11. This produces the following effects. That is, (1) the oxygen molecules in the vacuum chamber 6 are activated and become excited; ■ Evaporated particles from target 7 are activated. ■
The surface of substrate 8 is activated. As a result, Y1Ba2Cu3Ox having excellent properties can be formed on the surface of the substrate 8 without increasing the oxygen partial pressure in the vacuum chamber 6 and without increasing the heating temperature of the substrate 8.
A film of oxide superconducting material such as the following is formed.

【0009】上述したように、コイル11に高周波電流
を通電して、真空チャンバー6内の酸素分子を活性化す
る以外に、図1に示すように、光源13から基板8に向
けて200nm未満の真空紫外域の波長の光線を照射し
たり、あるいは、真空チャンバー6内に、酸素以外に二
酸化炭素NO2 またはオゾンO3等の分解し易いガス
を導入することによって、上述した効果が更に顕著に現
れるので、更に優れた特性を有するY1Ba2Cu3O
x 等の酸化物超電導物質の被膜を形成することができ
る。
As described above, in addition to applying high frequency current to the coil 11 to activate oxygen molecules in the vacuum chamber 6, as shown in FIG. The above-mentioned effects can be made more pronounced by irradiating light with a wavelength in the vacuum ultraviolet region or by introducing into the vacuum chamber 6 a gas that is easily decomposed, such as carbon dioxide NO2 or ozone O3, in addition to oxygen. , Y1Ba2Cu3O with even better properties
A film of an oxide superconducting material such as x can be formed.

【0010】0010

【実施例】次に、この発明を実施例によって更に詳細に
説明する。図1に示すように、真空チャンバー6内に、
 Y1Ba2Cu3Ox の酸化物超電導物質のターゲ
ット7とMgO の単結晶の基板8とを対向して設置し
、ターゲット7を連続的に一方向に回転させ、基板8を
ヒーター9により加熱しながら、真空チャンバー6の透
過窓6Aから2J/パルスの出力のエキシマレーザーK
rF(波長:248nm)をターゲット7に照射し、タ
ーゲット7の上方部にコイル11を設置し、コイル11
に13.56MHzの高周波電流を通電し、そして、基
板8に向けて160nmの波長の光線を連続的に照射し
た。そして、真空チャンバー6内の酸素分圧を10−1
Torrに調整し、基板8の加熱温度を400 から7
00 ℃の範囲内で段階的に変化させ、各加熱温度にお
いて、コイル11に高周波電流を通電した場合および高
周波電流を通電し且つ光照射を行った場合における臨界
温度(Tc)を、高周波電流を通電および光照射をしな
かった場合とあわせて測定した。この結果を表1に示す
EXAMPLES Next, the present invention will be explained in more detail by way of examples. As shown in FIG. 1, in the vacuum chamber 6,
A target 7 made of an oxide superconducting material such as Y1Ba2Cu3Ox and a substrate 8 made of a single crystal MgO2 are placed facing each other, and while the target 7 is continuously rotated in one direction and the substrate 8 is heated by a heater 9, the vacuum chamber 6 is heated. excimer laser K with an output of 2 J/pulse from the transmission window 6A of
The target 7 is irradiated with rF (wavelength: 248 nm), the coil 11 is installed above the target 7, and the coil 11
A high frequency current of 13.56 MHz was applied to the substrate 8, and a light beam with a wavelength of 160 nm was continuously irradiated onto the substrate 8. Then, the oxygen partial pressure in the vacuum chamber 6 is set to 10-1
Adjust the heating temperature of the substrate 8 to 400 to 7 Torr.
At each heating temperature, the critical temperature (Tc) is determined when high-frequency current is applied to the coil 11 and when both high-frequency current and light irradiation are performed. Measurements were taken in addition to cases in which electricity was not applied and light was not irradiated. The results are shown in Table 1.

【0011】次に、基板8の加熱温度を600 ℃に調
整し、真空チャンバー6内の酸素分圧を10−4から1
0−1Torrの範囲内で段階的に変化させ、各酸素分
圧において、コイル11に高周波電流を通電した場合お
よび高周波電流を通電し且つ光照射を行った場合におけ
る臨界温度(Tc)を、高周波電流を通電および光照射
をしなかった場合とあわせて測定した。この結果を表2
に示す。
Next, the heating temperature of the substrate 8 is adjusted to 600° C., and the oxygen partial pressure in the vacuum chamber 6 is increased from 10 −4 to 1
The critical temperature (Tc) is determined by changing stepwise within the range of 0-1 Torr, and at each oxygen partial pressure, when a high-frequency current is applied to the coil 11, and when a high-frequency current is applied and light irradiation is performed, the critical temperature (Tc) is Measurements were made in addition to cases in which no current was applied and no light was irradiated. This result is shown in Table 2.
Shown below.

【0012】0012

【0013】[0013]

【0014】表1および表2から明らかなように、真空
チャンバー6内の雰囲気ガスを高周波電流により励起す
ることによって、真空チャンバー内の酸素分圧を大きく
することなく、且つ、基材の加熱温度を高くすることな
く、優れた特性を有する超電導被膜が形成された超電導
物品を製造できることがわかる。そして、この効果は、
光源13から基板8に向けて200 nm未満の真空紫
外域の波長の光線を照射することによって更に向上する
ことがわかる。
As is clear from Tables 1 and 2, by exciting the atmospheric gas in the vacuum chamber 6 with a high frequency current, the heating temperature of the substrate can be reduced without increasing the oxygen partial pressure in the vacuum chamber. It can be seen that a superconducting article on which a superconducting film having excellent properties is formed can be manufactured without increasing the temperature. And this effect is
It can be seen that further improvement can be achieved by irradiating the substrate 8 with a light beam having a wavelength in the vacuum ultraviolet region of less than 200 nm from the light source 13.

【0015】以上説明したように、この発明によれば、
真空チャンバー内の酸化物超電導物質のターゲットにレ
ーザーを照射して、基材とこの表面上に形成された酸化
物超電導物質の被膜とからなる酸化物超電導物品を製造
する方法において、レーザーの照射とともに、真空チャ
ンバー内のガスを高周波コイルによって活性化すること
によって、また、基材に波長が200nm 以下の光線
を照射することによって、更に、真空チャンバー内に二
酸化炭素やオゾンを導入することによって、真空チャン
バー内の酸素分圧を大きくすることなく、且つ、基材の
加熱温度を高くすることなく、優れた特性を有する超電
導被膜が形成された超電導物品を製造できるといった有
用な効果がもたらされる。
As explained above, according to the present invention,
In a method for manufacturing an oxide superconducting article consisting of a base material and a coating of oxide superconducting material formed on the surface of the base material by irradiating a target of oxide superconducting material in a vacuum chamber with a laser, the method includes: , by activating the gas in the vacuum chamber with a high-frequency coil, by irradiating the substrate with light beams with a wavelength of 200 nm or less, and by introducing carbon dioxide or ozone into the vacuum chamber. Useful effects such as being able to manufacture a superconducting article on which a superconducting film having excellent properties is formed can be brought about without increasing the oxygen partial pressure in the chamber and without increasing the heating temperature of the base material.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】この発明の、酸化物超電導物品の製造方法の一
実施態様を示す概略断面図である。
FIG. 1 is a schematic cross-sectional view showing one embodiment of the method for manufacturing an oxide superconducting article of the present invention.

【図2】従来の、酸化物超電導物品の製造方法を示す概
略断面図である。
FIG. 2 is a schematic cross-sectional view showing a conventional method for manufacturing an oxide superconducting article.

【符号の説明】[Explanation of symbols]

1、6:真空チャンバー、 1A:透過窓、 2、7:ターゲット、 3、8:基板、 4、9:ヒーター、 5、10:レーザー光源、 11:コイル、 12:電源、 13:真空紫外域の光線用光源。 1, 6: Vacuum chamber, 1A: Transparent window, 2, 7: Target, 3, 8: Substrate, 4, 9: Heater, 5, 10: laser light source, 11: Coil, 12: Power supply, 13: Light source for vacuum ultraviolet light.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】  酸素を含有する真空チャンバー内に酸
化物超電導物質のターゲットを設置し、前記真空チャン
バー内に前記ターゲットと相対して基材を設置し、そし
て、前記ターゲットに向けてレーザーを照射して、前記
ターゲットを蒸発させ、これによって生じた前記ターゲ
ットの蒸発粒子を、前記基材の表面上に付着させ、かく
して、前記基材と前記基材の表面上に形成された前記酸
化物超電導物質の被膜とからなる酸化物超電導物品を製
造する方法において、前記真空チャンバー内に設けたコ
イルに高周波電流を通電し、かくして、前記真空チャン
バー内の雰囲気ガスを活性化することを特徴とする、酸
化物超電導物品の製造方法。
1. A target made of an oxide superconducting material is placed in a vacuum chamber containing oxygen, a base material is placed in the vacuum chamber facing the target, and a laser is irradiated toward the target. The target is evaporated, and the resulting evaporated particles of the target are deposited on the surface of the base material, and thus the oxide superconductor formed on the base material and the surface of the base material A method for manufacturing an oxide superconducting article comprising a film of a substance, characterized in that a high frequency current is applied to a coil provided in the vacuum chamber, thereby activating the atmospheric gas in the vacuum chamber. A method for manufacturing an oxide superconducting article.
【請求項2】  前記基材に向けて200nm 未満の
真空紫外域の波長の光線を照射することを特徴とする、
請求項1記載の方法。
2. A light beam having a wavelength in the vacuum ultraviolet region of less than 200 nm is irradiated toward the base material,
The method according to claim 1.
【請求項3】  前記真空チャンバー内に、二酸化炭素
NO2 、オゾンO3等の分解し易いガスを導入するこ
とを特徴とする、請求項1または2記載の酸化物超電導
物品の製造方法。
3. The method for manufacturing an oxide superconducting article according to claim 1, wherein a gas that easily decomposes, such as carbon dioxide NO2 or ozone O3, is introduced into the vacuum chamber.
JP3117826A 1991-04-23 1991-04-23 Production of oxide superconducting article Pending JPH04321599A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3117826A JPH04321599A (en) 1991-04-23 1991-04-23 Production of oxide superconducting article

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3117826A JPH04321599A (en) 1991-04-23 1991-04-23 Production of oxide superconducting article

Publications (1)

Publication Number Publication Date
JPH04321599A true JPH04321599A (en) 1992-11-11

Family

ID=14721202

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3117826A Pending JPH04321599A (en) 1991-04-23 1991-04-23 Production of oxide superconducting article

Country Status (1)

Country Link
JP (1) JPH04321599A (en)

Similar Documents

Publication Publication Date Title
KR100495828B1 (en) A method for manufacturing a semiconductor device
US4581248A (en) Apparatus and method for laser-induced chemical vapor deposition
US6489587B2 (en) Fabrication method of erbium-doped silicon nano-size dots
JP2001023916A (en) Method for treating material with electromagnetic wave and apparatus
JPS60245217A (en) Thin film formation equipment
JPS63224233A (en) Surface treatment
JPH04321599A (en) Production of oxide superconducting article
JP3351477B2 (en) Solid laser crystal thin film forming method and solid laser crystal thin film forming apparatus
JPH04321598A (en) Production of oxide superconducting article
JPH09162138A (en) Laser annealing method and laser annealer
JP4001645B2 (en) Crystalline silicon film manufacturing method and laser irradiation apparatus
JPH04242933A (en) Formation of oxide film
GB2300000A (en) Thin film forming using laser and activated oxidising gas
JPS62128528A (en) Laser surface treating device
JP2002194539A (en) Method and apparatus for forming thin film
JPS63119220A (en) Manufacture of thin-film
JP3605326B2 (en) Multi-chamber equipment
JPH0517291A (en) Treatment of substrate for deposition of diamond thin film
JPS61241913A (en) Manufacture of gallium nitride film
JPS6293366A (en) Manufacture of boron nitride film
JPH06158270A (en) Production of high yield strength film for laser
JPH02221120A (en) Production of superconducting thin film
JP2000031058A (en) Manufacture of amorphous silicon thin film
JP3059597B2 (en) Method and apparatus for manufacturing thin film
JPS59163831A (en) Manufacture of semiconductor device and manufacturing apparatus therefor