JPH04321435A - Torque distribution mechanism of differential device - Google Patents

Torque distribution mechanism of differential device

Info

Publication number
JPH04321435A
JPH04321435A JP3088174A JP8817491A JPH04321435A JP H04321435 A JPH04321435 A JP H04321435A JP 3088174 A JP3088174 A JP 3088174A JP 8817491 A JP8817491 A JP 8817491A JP H04321435 A JPH04321435 A JP H04321435A
Authority
JP
Japan
Prior art keywords
gear
torque distribution
distribution mechanism
planetary
differential
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3088174A
Other languages
Japanese (ja)
Other versions
JP2687052B2 (en
Inventor
Koji Shibahata
康二 芝端
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP3088174A priority Critical patent/JP2687052B2/en
Priority to US07/832,847 priority patent/US5387161A/en
Publication of JPH04321435A publication Critical patent/JPH04321435A/en
Application granted granted Critical
Publication of JP2687052B2 publication Critical patent/JP2687052B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H48/00Differential gearings
    • F16H48/06Differential gearings with gears having orbital motion
    • F16H48/10Differential gearings with gears having orbital motion with orbital spur gears
    • F16H48/11Differential gearings with gears having orbital motion with orbital spur gears having intermeshing planet gears
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H48/00Differential gearings
    • F16H48/06Differential gearings with gears having orbital motion
    • F16H48/08Differential gearings with gears having orbital motion comprising bevel gears
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H48/00Differential gearings
    • F16H48/06Differential gearings with gears having orbital motion
    • F16H48/10Differential gearings with gears having orbital motion with orbital spur gears
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H48/00Differential gearings
    • F16H48/20Arrangements for suppressing or influencing the differential action, e.g. locking devices
    • F16H48/27Arrangements for suppressing or influencing the differential action, e.g. locking devices using internally-actuatable fluid pressure, e.g. internal pump types
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H48/00Differential gearings
    • F16H48/20Arrangements for suppressing or influencing the differential action, e.g. locking devices
    • F16H48/30Arrangements for suppressing or influencing the differential action, e.g. locking devices using externally-actuatable means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H48/00Differential gearings
    • F16H48/20Arrangements for suppressing or influencing the differential action, e.g. locking devices
    • F16H48/30Arrangements for suppressing or influencing the differential action, e.g. locking devices using externally-actuatable means
    • F16H48/32Arrangements for suppressing or influencing the differential action, e.g. locking devices using externally-actuatable means using fluid pressure actuators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H48/00Differential gearings
    • F16H48/36Differential gearings characterised by intentionally generating speed difference between outputs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K17/00Arrangement or mounting of transmissions in vehicles
    • B60K17/04Arrangement or mounting of transmissions in vehicles characterised by arrangement, location, or kind of gearing
    • B60K17/12Arrangement or mounting of transmissions in vehicles characterised by arrangement, location, or kind of gearing of electric gearing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H48/00Differential gearings
    • F16H48/20Arrangements for suppressing or influencing the differential action, e.g. locking devices
    • F16H2048/204Control of arrangements for suppressing differential actions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H48/00Differential gearings
    • F16H48/36Differential gearings characterised by intentionally generating speed difference between outputs
    • F16H2048/364Differential gearings characterised by intentionally generating speed difference between outputs using electric or hydraulic motors

Abstract

PURPOSE:To construct a torque distribution mechanism in small size, which is to control any as desired the distributing proportion of the torque transmitted from one input element of a differential device to its two output elements. CONSTITUTION:A planetary carrier 8 as one of the output elements of a differential device D is coupled with a right shaft 9, while a sun gear 5 as the other output element is coupled with the left shaft 10. A planetary carrier 12 of this torque distribution mechanism 11 of planetary gearing type is coupled with the left shaft 10, and external cogs 17 of a ring gear 15 are interlocked with the external cogs of the first named planetary carrier 8 with a certain reduction ratio through a pair of spur gears 18, 19, and a sun gear 14 is rotated by a motor 20. Use of spur gears 18, 19 instead of bevel gears for coupling the differential device D with the torque distribution mechanism 11 permits shortening the axial direction dimension of the mechanism 11.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、1つの入力要素と2つ
の出力要素を備えた差動装置において、その差動装置の
入力要素に加えられるトルクを2つの出力要素に所定の
比率で分配する差動装置のトルク分配機構に関する。
[Industrial Application Field] The present invention provides a differential device having one input element and two output elements, in which torque applied to the input element of the differential device is distributed to the two output elements at a predetermined ratio. The present invention relates to a torque distribution mechanism for a differential device.

【0002】0002

【従来の技術】自動車の動力伝達系に設けられる差動装
置は、自動車の旋回時に左右の車輪に生じる回転速度差
を吸収し、エンジンのトルクを左右両輪に適切な比率で
分配するように構成される。しかしながら、一般の差動
装置は左右の車輪に加わる負荷の差により作動するため
、一方の車輪が摩擦係数が小さい路面に乗り上げて空転
したような場合に、他方の車輪へのトルクの伝達量が減
少したりトルクの伝達が遮断される問題がある。
[Prior Art] A differential device installed in the power transmission system of an automobile is configured to absorb the difference in rotational speed that occurs between the left and right wheels when the automobile turns, and distribute engine torque to the left and right wheels in an appropriate ratio. be done. However, general differentials operate based on the difference in the load applied to the left and right wheels, so if one wheel runs onto a road surface with a low coefficient of friction and spins, the amount of torque transmitted to the other wheel will be reduced. There is a problem that the torque transmission may be reduced or the torque transmission may be interrupted.

【0003】かかる不都合を回避するために、ステアリ
ングホイールの回転角や車速に基づいて差動装置を積極
的に制御し、その時の運転状態に適したトルクを左右の
車輪に分配する差動装置のトルク分配機構が提案されて
いる。
In order to avoid such inconveniences, a differential device has been developed that actively controls the differential device based on the rotation angle of the steering wheel and the vehicle speed, and distributes torque to the left and right wheels appropriate for the current driving condition. Torque distribution mechanisms have been proposed.

【0004】図7は、かかる従来の差動装置のトルク分
配機構の構造を示すものである。同図において、エンジ
ンEおよびミッションMに接続されて駆動されるプロペ
ラシャフト01はベベルギヤ02およびベベルギヤ03
を介して中央シャフト04に伝達される。中央シャフト
04の左右両側には、右輪WR を駆動する右シャフト
05R と左輪WL を駆動する左シャフト05L が
同軸に配設され、中央シャフト04と右シャフト05R
 の間には右側の差動装置DR が設けられ、中央シャ
フト04と左シャフト05L の間には左側の差動装置
DL が設けられる。
FIG. 7 shows the structure of a torque distribution mechanism of such a conventional differential gear. In the figure, a propeller shaft 01 connected to and driven by an engine E and a transmission M is connected to a bevel gear 02 and a bevel gear 03.
is transmitted to the central shaft 04 via. A right shaft 05R that drives the right wheel WR and a left shaft 05L that drives the left wheel WL are coaxially arranged on the left and right sides of the central shaft 04, and the central shaft 04 and the right shaft 05R
A right differential DR is provided between the central shaft 04 and the left shaft 05L, and a left differential DL is provided between the central shaft 04 and the left shaft 05L.

【0005】前記両差動装置DR ,DL は何れもプ
ラネタリギヤ式のもので、右シャフト05R と左シャ
フト05L にそれぞれ固着されたプラネタリキャリヤ
06R ,06L と、各プラネタリキャリヤ06R 
,06L に回転自在に支持されたプラネタリギヤ07
R ,07L と、中央シャフト04に固着されて各プ
ラネタリギヤ07R ,07L に噛合する左右一対の
サンギヤ08R ,08L と、各プラネタリギヤ07
R ,07L に噛合する左右一対のリングギヤ09R
 ,09L とから構成される。そして、左右のリング
ギヤ09R ,09L と一体に形成した左右一対のベ
ベルギヤ010R ,010L は、モータ011によ
り減速機012を介して駆動される共通のベベルギヤ0
13に噛合する。
Both differential devices DR and DL are of the planetary gear type, and include planetary carriers 06R and 06L fixed to the right shaft 05R and the left shaft 05L, respectively, and each planetary carrier 06R.
, 06L, the planetary gear 07 is rotatably supported by
R, 07L, a pair of left and right sun gears 08R, 08L fixed to the central shaft 04 and meshing with each planetary gear 07R, 07L, and each planetary gear 07
A pair of left and right ring gears 09R meshing with R and 07L
,09L. A pair of left and right bevel gears 010R, 010L formed integrally with the left and right ring gears 09R, 09L is a common bevel gear 0 driven by a motor 011 via a reduction gear 012.
It meshes with 13.

【0006】上述の構造のトルク分配機構によれば、中
央シャフト04に伝達されたトルクが両差動装置DR 
,DL を介して右輪WRおよび左輪WL に均等に伝
達される場合には、左右のリングギヤ09R ,09L
 、すなわち左右のベベルギヤ010R,010L は
回転しない。 しかるに、右輪WR と左輪WL に加わる負荷に差が
生じた場合に右シャフト05R と左シャフト05L 
に回転速度差が発生しようとする結果、左右のリングギ
ヤ09R ,09L にも回転速度差が発生する。従っ
て、モータ011により共通のベベルギヤ013を介し
て左右のベベルギヤ010R ,010L 、すなわち
左右のリングギヤ09R ,09L に積極的に回転速
度差を与えれば、中央シャフト04から右シャフト05
R と左シャフト05L に伝達されるトルクの分配比
率を任意に制御することができる。
According to the torque distribution mechanism having the above structure, the torque transmitted to the central shaft 04 is transmitted to both differential gears DR.
, DL to the right wheel WR and the left wheel WL, the left and right ring gears 09R, 09L
That is, the left and right bevel gears 010R and 010L do not rotate. However, if there is a difference in the loads applied to the right wheel WR and the left wheel WL, the right shaft 05R and the left shaft 05L
As a result, a rotational speed difference also occurs between the left and right ring gears 09R and 09L. Therefore, if the motor 011 actively applies a rotational speed difference to the left and right bevel gears 010R and 010L, that is, the left and right ring gears 09R and 09L, through the common bevel gear 013, the center shaft 04 to the right shaft 05
The distribution ratio of the torque transmitted to R and the left shaft 05L can be arbitrarily controlled.

【0007】[0007]

【発明が解決しようとする課題】しかしながら上記従来
の差動装置のトルク分配機構は、左右のリングギヤ09
R ,09L に回転速度差を与えるための左右一対の
ベベルギヤ010R ,010L と該ベベルギヤ01
0R ,010L に噛合する共通のベベルギヤ013
が必須であり、そのためにトルク分配機構の軸方向寸法
が増加してしまう問題がある。
Problems to be Solved by the Invention However, the torque distribution mechanism of the conventional differential device described above is limited to the left and right ring gears.
A pair of left and right bevel gears 010R, 010L for giving a rotational speed difference to R, 09L and the bevel gear 01
Common bevel gear 013 that meshes with 0R and 010L
is essential, and therefore there is a problem in that the axial dimension of the torque distribution mechanism increases.

【0008】本発明は前述の事情に鑑みてなされたもの
で、ベベルギヤを廃止することにより差動装置のトルク
分配機構の小型化を図ることを目的とする。
The present invention has been made in view of the above-mentioned circumstances, and it is an object of the present invention to downsize the torque distribution mechanism of a differential gear by eliminating the bevel gear.

【0009】[0009]

【課題を解決するための手段】上記目的を達成するため
に、本発明は、1つの入力要素と2つの出力要素を備え
た差動装置において、その差動装置の入力要素に加えら
れるトルクを2つの出力要素に所定の比率で分配する差
動装置のトルク分配機構であって、リングギヤと、サン
ギヤと、前記リングギヤおよびサンギヤに噛合するプラ
ネタリギヤを支持するプラネタリキャリヤよりなる遊星
歯車機構を備え、前記プラネタリキャリヤを前記一方の
出力要素に結合するとともに、前記リングギヤを前記他
方の出力要素にスパーギヤを介して連結し、かつ前記サ
ンギヤを駆動源に接続したことを第1の特徴とする。
SUMMARY OF THE INVENTION In order to achieve the above object, the present invention provides a differential device having one input element and two output elements, in which the torque applied to the input element of the differential device is A torque distribution mechanism for a differential device that distributes torque to two output elements at a predetermined ratio, comprising a planetary gear mechanism including a ring gear, a sun gear, and a planetary carrier that supports a planetary gear that meshes with the ring gear and the sun gear, A first feature is that the planetary carrier is coupled to the one output element, the ring gear is coupled to the other output element via a spur gear, and the sun gear is connected to a drive source.

【0010】また本発明は前述の第1の特徴に加えて、
前記差動装置が、リングギヤ、サンギヤ、および前記リ
ングギヤとサンギヤに噛合するプラネタリギヤを支持す
るプラネタリキャリヤよりなることを第2の特徴とする
[0010] In addition to the above-mentioned first feature, the present invention also has the following features:
A second feature is that the differential device includes a ring gear, a sun gear, and a planetary carrier that supports a planetary gear that meshes with the ring gear and the sun gear.

【0011】また本発明は前述の第1の特徴に加えて、
前記駆動源とサンギヤを、サンギヤから駆動源へ動力が
伝達される時に該サンギヤの回転を規制する伝動手段を
介して接続したことを第3の特徴とする。
[0011] In addition to the above-mentioned first feature, the present invention also has the following features:
A third feature is that the drive source and the sun gear are connected via a transmission means that restricts rotation of the sun gear when power is transmitted from the sun gear to the drive source.

【0012】また本発明は前述の第1の特徴に加えて、
前記駆動源をサンギヤの回転軸と同軸に配置したことを
第4の特徴とする。
[0012] In addition to the above-mentioned first feature, the present invention also has the following features:
A fourth feature is that the drive source is arranged coaxially with the rotation axis of the sun gear.

【0013】[0013]

【実施例】以下、図面に基づいて本発明の実施例を説明
する。
Embodiments Hereinafter, embodiments of the present invention will be explained based on the drawings.

【0014】図1は本発明の第1実施例による差動装置
のトルク分配機構を、フロントエンジン・フロントドラ
イブ車に適用したものである。同図に示すように、車体
に横置きに搭載したエンジンEにはミッションMが接続
され、そのミッションMの出力軸である差動装置入力軸
1はプラネタリギヤ式の差動装置Dに駆動力を伝達する
ための入力ギヤ2を備える。
FIG. 1 shows a differential torque distribution mechanism according to a first embodiment of the present invention applied to a front engine/front drive vehicle. As shown in the figure, a transmission M is connected to an engine E mounted horizontally on the vehicle body, and a differential input shaft 1, which is the output shaft of the transmission M, supplies driving force to a planetary gear type differential D. An input gear 2 for transmission is provided.

【0015】差動装置Dは前記差動装置入力軸1の入力
ギヤ2に噛合する外歯ギヤ3を外周に有するリングギヤ
4と、このリングギヤ4の内部に同軸に配設されたサン
ギヤ5と、前記リングギヤ4に噛合するアウタプラネタ
リギヤ6と前記サンギヤ5に噛合するインナプラネタリ
ギヤ7を、それらが相互に噛合する状態で支持するプラ
ネタリキャリヤ8から構成される。前記差動装置Dは、
そのリングギヤ4が入力要素として機能するとともに、
一方の出力要素として機能するプラネタリキャリヤ8が
右シャフト9を介して右輪WR に接続され、他方の出
力要素として機能するサンギヤ5が左シャフト10を介
して左輪WL に接続される。
The differential device D includes a ring gear 4 having an external gear 3 on its outer periphery that meshes with the input gear 2 of the differential device input shaft 1, and a sun gear 5 coaxially disposed inside the ring gear 4. It is comprised of a planetary carrier 8 that supports an outer planetary gear 6 that meshes with the ring gear 4 and an inner planetary gear 7 that meshes with the sun gear 5 in a state where they mesh with each other. The differential device D is
The ring gear 4 functions as an input element, and
Planetary carrier 8, which functions as one output element, is connected to right wheel WR through right shaft 9, and sun gear 5, which functions as the other output element, is connected to left wheel WL through left shaft 10.

【0016】次に、差動装置Dの入力要素であるリング
ギヤ4から入力されたトルクを2つの出力要素であるプ
ラネタリキャリヤ8とサンギヤ5に所定の比率で分配す
るトルク分配機構11の構造を説明する。
Next, the structure of the torque distribution mechanism 11 that distributes the torque input from the ring gear 4, which is the input element of the differential device D, to the planetary carrier 8 and the sun gear 5, which are the two output elements, at a predetermined ratio will be explained. do.

【0017】トルク分配機構11は遊星歯車機構Pを備
え、左シャフト10に結合したプラネタリキャリヤ12
に設けられたプラネタリギヤ13は左シャフト10に相
対回転自在に支持したサンギヤ14に噛合するとともに
、前記プラネタリギヤ13はプラネタリキャリヤ12の
外周に配設したリングギヤ15に噛合する。差動装置D
のプラネタリキャリヤ8と一体に形成した外歯ギヤ16
と遊星歯車機構Pのリングギヤ15に形成した外歯ギヤ
17は、一体に形成された一対のスパーギヤとしてのピ
ニオン18,19にそれぞれ噛合する、これにより差動
装置Dと遊星歯車機構Pが相互に連結される。
The torque distribution mechanism 11 includes a planetary gear mechanism P, and a planetary carrier 12 connected to the left shaft 10.
A planetary gear 13 provided on the left shaft 10 meshes with a sun gear 14 relatively rotatably supported, and the planetary gear 13 meshes with a ring gear 15 disposed on the outer periphery of the planetary carrier 12. Differential device D
External gear 16 integrally formed with planetary carrier 8 of
The external gear 17 formed on the ring gear 15 of the planetary gear mechanism P meshes with pinions 18 and 19 as a pair of integrally formed spur gears, so that the differential device D and the planetary gear mechanism P are mutually connected. Concatenated.

【0018】さて、遊星歯車機構Pのプラネタリキャリ
ヤ12、サンギヤ14、およびリングギヤ15の歯数を
それぞれZC ,ZS ,ZR とし、回転速度をそれ
ぞれωC , ωS ,ωR とすると、サンギヤ14
を固定した場合(すなわちωS =0)には、良く知ら
れているように、ωR =ωC ×(1+ZS /ZR
 )  ・・・■が成り立つ。
Now, if the numbers of teeth of the planetary carrier 12, sun gear 14, and ring gear 15 of the planetary gear mechanism P are respectively ZC, ZS, and ZR, and the rotational speeds are respectively ωC, ωS, and ωR, then the sun gear 14
When fixed (i.e., ωS = 0), as is well known, ωR = ωC × (1+ZS /ZR
)...■ holds true.

【0019】ここで右輪WR と左輪WL が同一速度
で回転する場合を考えると、左輪WL と一体に回転す
る前記遊星歯車機構Pのプラネタリキャリヤ12の回転
速度は前述のようにωC であり、その左輪WL と同
一速度である右輪WR と一体に回転する差動装置Dの
プラネタリキャリヤ8の回転速度もωC となる。そし
て、遊星歯車機構Pのプラネタリキャリヤ12により駆
動されるリングギヤ15の回転速度ωR は前記■式に
よりωC ×(1+ZS /ZR )で表される。
Now, considering the case where the right wheel WR and the left wheel WL rotate at the same speed, the rotational speed of the planetary carrier 12 of the planetary gear mechanism P that rotates together with the left wheel WL is ωC as described above, The rotational speed of the planetary carrier 8 of the differential device D, which rotates integrally with the right wheel WR which has the same speed as the left wheel WL, also becomes ωC. The rotational speed ωR of the ring gear 15 driven by the planetary carrier 12 of the planetary gear mechanism P is expressed as ωC×(1+ZS/ZR) according to the equation (2) above.

【0020】すなわち、右輪WR と左輪WL が同一
速度ωC で回転するためには、差動装置Dのプラネタ
リキャリヤ8の回転速度がωC となり、遊星歯車機構
Pのリングギヤ15の回転速度がωC ×(1+ZS 
/ZR )となるように、前記一対のピニオン18,1
9によりプラネタリキャリヤ8とリングギヤ15を相互
に連動連結する必要がある。そのためには、リングギヤ
15に形成した外歯ギヤ17の半径r1 とプラネタリ
キャリヤ8に形成した外歯ギヤ16の半径r2 が、 r2 /r1 =1+(ZS /ZR )  ・・・■
の関係を満たすように設定すれば良い。
That is, in order for the right wheel WR and the left wheel WL to rotate at the same speed ωC, the rotation speed of the planetary carrier 8 of the differential device D becomes ωC, and the rotation speed of the ring gear 15 of the planetary gear mechanism P becomes ωC× (1+ZS
/ZR), the pair of pinions 18,1
It is necessary to interlock the planetary carrier 8 and ring gear 15 with each other by means of 9. To do this, the radius r1 of the external gear 17 formed on the ring gear 15 and the radius r2 of the external gear 16 formed on the planetary carrier 8 are determined as follows: r2 /r1 =1+(ZS /ZR)...■
It is sufficient to set it so that the following relationship is satisfied.

【0021】そして、車両のステアリングホイールの回
転角や車速等に基づいて駆動される電動モータ20のピ
ニオン21により、遊星歯車機構Pのサンギヤ14と一
体に形成された遊星歯車機構入力ギヤ22が回転駆動さ
れる。
[0021] A planetary gear mechanism input gear 22, which is integrally formed with the sun gear 14 of the planetary gear mechanism P, is rotated by the pinion 21 of the electric motor 20, which is driven based on the rotation angle of the steering wheel of the vehicle, the vehicle speed, etc. Driven.

【0022】次に、前述の構成を備えた本発明の第1実
施例の作用について説明する。
Next, the operation of the first embodiment of the present invention having the above-described configuration will be explained.

【0023】車両の直進走行中にモータ20は停止状態
に保持され、そのモータ20のピニオン21に遊星歯車
機構入力ギヤ22を介して接続された遊星歯車機構Pの
サンギヤ14が固定される。このとき差動装置Dのプラ
ネタリキャリヤ8と遊星歯車機構Pのプラネタリキャリ
ヤ12は、前述のようにリングギヤ15、外歯ギヤ17
、ピニオン19、ピニオン18、および外歯ギヤ16を
介して所定のギヤ比で連動連結されている。したがって
、両プラネタリキャリヤ8,12の回転速度、すなわち
差動装置Dの一対の出力要素であるプラネタリキャリヤ
8とサンギヤ5の回転速度は強制的に一致せしめられ、
右輪WR と左輪WL は同一速度で回転する。
While the vehicle is traveling straight, the motor 20 is held in a stopped state, and the sun gear 14 of the planetary gear mechanism P, which is connected to the pinion 21 of the motor 20 via the planetary gear mechanism input gear 22, is fixed. At this time, the planetary carrier 8 of the differential device D and the planetary carrier 12 of the planetary gear mechanism P are connected to the ring gear 15 and the external gear 17 as described above.
, pinion 19, pinion 18, and externally toothed gear 16 at a predetermined gear ratio. Therefore, the rotational speeds of both planetary carriers 8 and 12, that is, the rotational speeds of the planetary carrier 8 and the sun gear 5, which are a pair of output elements of the differential device D, are forced to match.
The right wheel WR and the left wheel WL rotate at the same speed.

【0024】さて、車両を旋回させるべくステアリング
ホイールが操作されると、その操舵角と車速に基づいて
必要な左右両輪WR ,WL の回転速度差が演算され
、その回転速度差に対応する方向および速度でモータ2
0が駆動される。その結果、遊星歯車機構Pのサンギヤ
14が回転し、両プラネタリキャリヤ8,12の回転速
度、すなわち差動装置Dのプラネタリキャリヤ8とサン
ギヤ5の回転速度に所定の差が発生する。而して、ミッ
ションMから差動装置Dのリングギヤ4に伝達されたト
ルクは、モータ20の回転方向および回転速度により決
定される所定の比率で左右両輪WR ,WL に伝達さ
れる。
Now, when the steering wheel is operated to turn the vehicle, the required rotational speed difference between the left and right wheels WR, WL is calculated based on the steering angle and the vehicle speed, and the direction and direction corresponding to the rotational speed difference are calculated. Motor 2 at speed
0 is driven. As a result, the sun gear 14 of the planetary gear mechanism P rotates, and a predetermined difference occurs between the rotational speeds of both planetary carriers 8 and 12, that is, the rotational speeds of the planetary carrier 8 and the sun gear 5 of the differential device D. Thus, the torque transmitted from the mission M to the ring gear 4 of the differential device D is transmitted to the left and right wheels WR and WL at a predetermined ratio determined by the rotational direction and rotational speed of the motor 20.

【0025】而して、この差動装置Dと遊星歯車機構P
がスパーギヤよりなるピニオン18,19で接続される
ため、従来のベベルギヤを用いたものに比べてトルク分
配機構の軸方向寸法を短縮することができる。
[0025] Then, this differential device D and the planetary gear mechanism P
Since these are connected by pinions 18 and 19 made of spur gears, the axial dimension of the torque distribution mechanism can be shortened compared to a conventional mechanism using bevel gears.

【0026】図2は本発明の第2実施例を示すもので、
この実施例は遊星歯車機構Pのサンギヤ14の駆動源と
して油圧モータ20を用い、このモータ20に油圧発生
源23を接続した点に特徴を有している。油圧発生源2
3としては、電動モータにより駆動される油圧ポンプ、
エンジンEにより駆動される油圧ポンプ、エンジンEか
ら車輪WR ,WL への動力伝達系に設けられる油圧
ポンプ等の適宜のものを使用することができる。
FIG. 2 shows a second embodiment of the present invention.
This embodiment is characterized in that a hydraulic motor 20 is used as the drive source for the sun gear 14 of the planetary gear mechanism P, and a hydraulic pressure generation source 23 is connected to the motor 20. Hydraulic pressure source 2
3 is a hydraulic pump driven by an electric motor;
An appropriate hydraulic pump such as a hydraulic pump driven by the engine E, a hydraulic pump provided in the power transmission system from the engine E to the wheels WR, WL, etc. can be used.

【0027】図3は本発明の第3実施例を示すもので、
この実施例はミッションMの出力軸である差動装置入力
軸1に油圧ポンプ24と油圧モータ20を一体に組み合
わせたものを用い、その油圧ポンプ24と油圧モータ2
0の少なくとも一方を可変容量型とした点に特徴を有し
ている。この実施例によれば、油圧ポンプ24あるいは
油圧モータ20の容量を変化させることにより遊星歯車
機構Pのサンギヤ14の回転速度を制御することができ
る。
FIG. 3 shows a third embodiment of the present invention.
In this embodiment, a hydraulic pump 24 and a hydraulic motor 20 are integrally combined on the differential gear input shaft 1, which is the output shaft of the mission M.
0 is of variable capacitance type. According to this embodiment, the rotational speed of the sun gear 14 of the planetary gear mechanism P can be controlled by changing the capacity of the hydraulic pump 24 or the hydraulic motor 20.

【0028】図4は本発明の第4実施例を示すもので、
この実施例は遊星歯車機構入力ギヤをウオームホイール
25により構成するとともに、電動モータ20に設けた
ウオームギヤ26を前記ウオームホイール25に噛合さ
せた点に特徴を有している。この実施例によれば、ウオ
ームギヤ26とウオームホイール25よりなる伝動機構
により、モータ20から遊星歯車機構Pへの駆動力の伝
達は支障無く行われるが、遊星歯車機構Pからモータ2
0への駆動力の伝達は阻止される。したがって、右輪W
R あるいは左輪WL の一方がスリップしたような場
合に、遊星歯車機構Pからモータ20へ入力される過剰
な負荷がウオームギヤ26で受止されるため、そのモー
タ20を小型化することができる。
FIG. 4 shows a fourth embodiment of the present invention.
This embodiment is characterized in that the planetary gear mechanism input gear is constituted by a worm wheel 25, and a worm gear 26 provided on the electric motor 20 is meshed with the worm wheel 25. According to this embodiment, the transmission mechanism consisting of the worm gear 26 and the worm wheel 25 allows the transmission of driving force from the motor 20 to the planetary gear mechanism P without any problem.
Transmission of the driving force to zero is blocked. Therefore, the right wheel W
When either R or the left wheel WL slips, the excessive load input from the planetary gear mechanism P to the motor 20 is received by the worm gear 26, so the motor 20 can be downsized.

【0029】図5は本発明の第5実施例を示すもので、
この実施例は左シャフト10に相対回転自在に支持され
る遊星歯車機構Pのサンギヤ14が、モータ20の出力
軸27に直結されて駆動される。そのためにモータ20
の出力軸27は中空に形成され、その内部を左シャフト
10が貫通する。この実施例によれば、トルク分配機構
11の半径方向寸法を小型化することができる。
FIG. 5 shows a fifth embodiment of the present invention.
In this embodiment, a sun gear 14 of a planetary gear mechanism P supported by a left shaft 10 so as to be relatively rotatable is directly connected to an output shaft 27 of a motor 20 and driven. For that purpose motor 20
The output shaft 27 is formed hollow, and the left shaft 10 passes through the inside thereof. According to this embodiment, the radial dimension of the torque distribution mechanism 11 can be reduced in size.

【0030】図6は本発明の第6実施例を示すもので、
この実施例は差動装置Dとして一般的なベベルギヤ式の
ものを用いた点に特徴を有している。すなわち、この差
動装置Dは入力ギヤ2に噛合する外歯ギヤ28を外周に
有して右シャフト9と左シャフト10に回転自在に支持
されたディファレンシャルケース29と、このディファ
レンシャルケース29の内部に支持されたディファレン
シャルピニオン30と、このディファレンシャルピニオ
ン30に噛合するとともに右シャフト9および左シャフ
ト10にそれぞれ結合された一対のディファレンシャル
サイドギヤ31,32から構成される。そして前記ディ
ファレンシャルケース29に設けた外歯ギヤ16は、前
述の第1実施例と同様にピニオン18,19を介して遊
星歯車機構Pに接続される。この実施例では前記ディフ
ァレンシャルケース29が入力要素として機能し、一対
のディファレンシャルサイドギヤ31,32が出力要素
として機能する。
FIG. 6 shows a sixth embodiment of the present invention.
This embodiment is characterized in that a common bevel gear type differential device D is used. That is, this differential device D includes a differential case 29 that has an external gear 28 on its outer periphery that meshes with the input gear 2 and is rotatably supported by the right shaft 9 and the left shaft 10, and a It is composed of a supported differential pinion 30 and a pair of differential side gears 31 and 32 that mesh with the differential pinion 30 and are connected to the right shaft 9 and the left shaft 10, respectively. The external gear 16 provided in the differential case 29 is connected to the planetary gear mechanism P via pinions 18 and 19 as in the first embodiment described above. In this embodiment, the differential case 29 functions as an input element, and the pair of differential side gears 31 and 32 function as output elements.

【0031】而して、この第6実施例においても差動装
置Dと遊星歯車機構Pがスパーギヤよりなるピニオン1
8,19で接続されるため、従来のベベルギヤを用いた
ものに比べてトルク分配機構11の軸方向寸法を短縮す
ることができる。
[0031] Also in this sixth embodiment, the differential device D and the planetary gear mechanism P are connected to the pinion 1 consisting of a spur gear.
8 and 19, the axial dimension of the torque distribution mechanism 11 can be reduced compared to a conventional bevel gear.

【0032】以上、本発明の実施例を詳述したが、本発
明は前記実施例に限定されるものではなく、特許請求の
範囲に記載された本発明を逸脱することなく種々の小設
計変更を行うことができる。
Although the embodiments of the present invention have been described in detail above, the present invention is not limited to the above-mentioned embodiments, and various small design changes can be made without departing from the scope of the invention described in the claims. It can be performed.

【0033】例えば、第1〜第5実施例にける遊星歯車
式の差動装置Dにおいて、リングギヤ4、サンギヤ5、
およびプラネタリキャリヤ8の何れを入力要素あるいは
出力要素とするかは適宜変更可能である。また、本発明
のトルク分配機構は車両の前輪の駆動系に限らず後輪の
駆動系にも適用可能であり、四輪駆動車両における前輪
と後輪間のトルク分配にも適用可能である。
For example, in the planetary gear type differential device D according to the first to fifth embodiments, the ring gear 4, the sun gear 5,
And which of the planetary carriers 8 is used as an input element or an output element can be changed as appropriate. Furthermore, the torque distribution mechanism of the present invention is applicable not only to the front wheel drive system of a vehicle but also to the rear wheel drive system, and is also applicable to torque distribution between the front wheels and rear wheels of a four-wheel drive vehicle.

【0034】[0034]

【発明の効果】以上のように本発明の第1の特徴によれ
ば、差動装置とトルク分配機構の遊星歯車機構が、該ト
ルク分配機構の軸方向に厚さが薄いスパーギヤを介して
連結されているため、回転軸が前記軸方向に直交するベ
ベルギヤを用いた従来のトルク分配機構に比べて寸法を
小型化することができる。
As described above, according to the first feature of the present invention, the differential gear and the planetary gear mechanism of the torque distribution mechanism are connected via a spur gear having a thin thickness in the axial direction of the torque distribution mechanism. Therefore, the size can be reduced compared to a conventional torque distribution mechanism using a bevel gear whose rotating shaft is orthogonal to the axial direction.

【0035】また本発明の第2の特徴によれば、前記差
動装置をリングギヤ、サンギヤ、および前記リングギヤ
とサンギヤに噛合するプラネタリギヤを支持するプラネ
タリキャリヤよりなる遊星歯車式としたのでベベルギヤ
が不要となり、ベベルギヤ式の差動装置を採用した場合
に比べてトルク分配機構の軸方向寸法を小型化すること
ができる。
According to a second feature of the present invention, the differential device is a planetary gear type consisting of a ring gear, a sun gear, and a planetary carrier that supports a planetary gear that meshes with the ring gear and the sun gear, so that a bevel gear is not required. , the axial dimension of the torque distribution mechanism can be reduced in size compared to the case where a bevel gear type differential device is adopted.

【0036】また本発明の第3の特徴によれば、遊星歯
車機構のサンギヤから駆動源への動力の逆伝達が規制さ
れるので、その駆動源に過剰な負荷が加わることが防止
される。その結果、駆動源として小型軽量な小出力のも
のが使用可能になる。
According to the third feature of the present invention, reverse transmission of power from the sun gear of the planetary gear mechanism to the drive source is regulated, thereby preventing excessive load from being applied to the drive source. As a result, it becomes possible to use a small, lightweight, and low output drive source.

【0037】また本発明の第4の特徴によれば、駆動源
をサンギヤの回転軸と同軸に配置したので、トルク分配
機構の半径方向寸法を小型化することができる。
According to the fourth feature of the present invention, since the drive source is arranged coaxially with the rotation axis of the sun gear, the radial dimension of the torque distribution mechanism can be reduced in size.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】本発明の第1実施例による差動装置のトルク分
配機構を示す図
FIG. 1 is a diagram showing a torque distribution mechanism of a differential gear according to a first embodiment of the present invention.

【図2】本発明の第2実施例による差動装置のトルク分
配機構を示す図
FIG. 2 is a diagram showing a torque distribution mechanism of a differential gear according to a second embodiment of the present invention.

【図3】本発明の第3実施例による差動装置のトルク分
配機構を示す図
FIG. 3 is a diagram showing a torque distribution mechanism of a differential gear according to a third embodiment of the present invention.

【図4】本発明の第4実施例による差動装置のトルク分
配機構を示す図
FIG. 4 is a diagram showing a torque distribution mechanism of a differential gear according to a fourth embodiment of the present invention.

【図5】本発明の第5実施例による差動装置のトルク分
配機構を示す図
FIG. 5 is a diagram showing a torque distribution mechanism of a differential gear according to a fifth embodiment of the present invention.

【図6】本発明の第6実施例による差動装置のトルク分
配機構を示す図
FIG. 6 is a diagram showing a torque distribution mechanism of a differential gear according to a sixth embodiment of the present invention.

【図7】従来の差動装置のトルク分配機構を示す図[Figure 7] Diagram showing the torque distribution mechanism of a conventional differential gear

【符号の説明】[Explanation of symbols]

4・・・・リングギヤ(入力要素) 5・・・・サンギヤ(出力要素) 6・・・・アウタプラネタリギヤ(プラネタリギヤ)7
・・・・インナプラネタリギヤ(プラネタリギヤ)8・
・・・プラネタリキャリヤ(出力要素)12・・・プラ
ネタリキャリヤ 13・・・プラネタリギヤ 14・・・サンギヤ 15・・・リングギヤ 18・・・ピニオン(スパーギヤ) 19・・・ピニオン(スパーギヤ) 20・・・モータ(駆動源) 25・・・ウオームホイール(伝動機構)26・・・ウ
オームギヤ(伝動機構) D・・・・差動装置 P・・・・遊星歯車機構
4...Ring gear (input element) 5...Sun gear (output element) 6...Outer planetary gear (planetary gear) 7
...Inner planetary gear (planetary gear) 8.
... Planetary carrier (output element) 12 ... Planetary carrier 13 ... Planetary gear 14 ... Sun gear 15 ... Ring gear 18 ... Pinion (spur gear) 19 ... Pinion (spur gear) 20 ... Motor (drive source) 25... Worm wheel (transmission mechanism) 26... Worm gear (transmission mechanism) D... Differential device P... Planetary gear mechanism

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】  1つの入力要素(4)と2つの出力要
素(5,8)を備えた差動装置(D)において、その差
動装置(D)の入力要素(4)に加えられるトルクを2
つの出力要素(5,8)に所定の比率で分配する差動装
置のトルク分配機構であって、リングギヤ(15)と、
サンギヤ(14)と、前記リングギヤ(15)およびサ
ンギヤ(14)に噛合するプラネタリギヤ(13)を支
持するプラネタリキャリヤ(12)よりなる遊星歯車機
構(P)を備え、前記プラネタリキャリヤ(12)を前
記一方の出力要素(5)に結合するとともに、前記リン
グギヤ(15)を前記他方の出力要素(8)にスパーギ
ヤ(18,19)を介して連結し、かつ前記サンギヤ(
14)を駆動源(20)に接続したことを特徴とする、
差動装置のトルク分配機構。
1. In a differential (D) with one input element (4) and two output elements (5, 8), the torque applied to the input element (4) of the differential (D) 2
A torque distribution mechanism of a differential device that distributes the torque to two output elements (5, 8) at a predetermined ratio, the torque distribution mechanism including a ring gear (15);
A planetary gear mechanism (P) includes a sun gear (14), and a planetary carrier (12) that supports a planetary gear (13) that meshes with the ring gear (15) and the sun gear (14). coupled to one output element (5), the ring gear (15) is coupled to the other output element (8) via spur gears (18, 19), and the sun gear (
14) is connected to the drive source (20),
Differential torque distribution mechanism.
【請求項2】前記差動装置(D)が、リングギヤ(4)
、サンギヤ(5)、および前記リングギヤ(4)とサン
ギヤ(5)に噛合するプラネタリギヤ(6,7)を支持
するプラネタリキャリヤ(8)よりなることを特徴とす
る、請求項1記載の差動装置のトルク分配機構。
2. The differential device (D) is a ring gear (4).
, a sun gear (5), and a planetary carrier (8) that supports planetary gears (6, 7) meshing with the ring gear (4) and the sun gear (5). Torque distribution mechanism.
【請求項3】前記駆動源(20)とサンギヤ(14)を
、サンギヤ(14)から駆動源(20)へ動力が伝達さ
れる時に該サンギヤ(14)の回転を規制する伝動手段
(25,26)を介して接続したことを特徴とする、請
求項1記載の差動装置のトルク分配機構。
3. Transmission means (25) for controlling rotation of the sun gear (14) when power is transmitted from the sun gear (14) to the drive source (20). 26). The torque distribution mechanism for a differential gear according to claim 1, wherein the torque distribution mechanism is connected via a.
【請求項4】前記駆動源(20)をサンギヤ(14)の
回転軸と同軸に配置したことを特徴とする、請求項1記
載の差動装置のトルク分配機構。
4. The torque distribution mechanism for a differential gear according to claim 1, wherein the drive source (20) is arranged coaxially with the rotation axis of the sun gear (14).
JP3088174A 1991-04-19 1991-04-19 Torque distribution mechanism of differential gear Expired - Fee Related JP2687052B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP3088174A JP2687052B2 (en) 1991-04-19 1991-04-19 Torque distribution mechanism of differential gear
US07/832,847 US5387161A (en) 1991-04-19 1992-02-10 Torque distributing mechanism in differential

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3088174A JP2687052B2 (en) 1991-04-19 1991-04-19 Torque distribution mechanism of differential gear

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP8990993A Division JP2876376B2 (en) 1993-04-16 1993-04-16 Differential torque distribution mechanism

Publications (2)

Publication Number Publication Date
JPH04321435A true JPH04321435A (en) 1992-11-11
JP2687052B2 JP2687052B2 (en) 1997-12-08

Family

ID=13935546

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3088174A Expired - Fee Related JP2687052B2 (en) 1991-04-19 1991-04-19 Torque distribution mechanism of differential gear

Country Status (2)

Country Link
US (1) US5387161A (en)
JP (1) JP2687052B2 (en)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05131855A (en) * 1991-09-18 1993-05-28 Mitsubishi Motors Corp Lateral driving force regulating device for vehicle
DE4408587A1 (en) * 1993-04-16 1994-10-20 Honda Motor Co Ltd Torque distributor mechanism for a differential
JP2001246953A (en) * 1999-12-27 2001-09-11 Aisin Aw Co Ltd Hybrid drive device
JP2002160540A (en) * 2000-11-28 2002-06-04 Aisin Seiki Co Ltd Drive unit for hybrid vehicle
JP2005090648A (en) * 2003-09-18 2005-04-07 Fuji Heavy Ind Ltd Torque distribution device in center differential
JP2006341849A (en) * 1999-12-27 2006-12-21 Aisin Aw Co Ltd Hybrid drive apparatus
JP2007008470A (en) * 1999-12-27 2007-01-18 Aisin Aw Co Ltd Hybrid drive apparatus
JP2007232197A (en) * 2006-03-03 2007-09-13 Toyota Motor Corp Driving force distributing device
JP2007276760A (en) * 2006-03-10 2007-10-25 Nissan Motor Co Ltd Drive force distribution device
JP2009014091A (en) * 2007-07-04 2009-01-22 Jtekt Corp Driving force distributing device
JP2010530044A (en) * 2007-04-12 2010-09-02 エフツェット ゲーエムベーハー Power split gear train assembly for automobile
JP2011031794A (en) * 2009-08-04 2011-02-17 Toyota Motor Corp Coaxial two wheeler
JP2012519812A (en) * 2009-03-05 2012-08-30 ボルグワーナー トルクトランスファー システムズ エービー Torque vectoring device
CN107923509A (en) * 2015-09-09 2018-04-17 爱信精机株式会社 Torque vector control device
JP2018515721A (en) * 2015-03-20 2018-06-14 ドクター エンジニール ハー ツェー エフ ポルシェ アクチエンゲゼルシャフトDr. Ing. h.c. F. Porsche Aktiengesellschaft Electric axle drive for automobile
CN109414989A (en) * 2016-05-18 2019-03-01 秦内蒂克有限公司 Differential mechanism
US11047453B2 (en) 2018-04-12 2021-06-29 Kabushiki Kaisha Toyota Chuo Kenkyusho Power distribution device
WO2023166680A1 (en) * 2022-03-03 2023-09-07 株式会社ユニバンス Torque distribution device

Families Citing this family (49)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE505993C2 (en) * 1994-06-29 1997-10-27 Volvo Ab Power unit for a motor vehicle
US6554085B2 (en) 1998-03-12 2003-04-29 Kanzaki Kokyukoki Mfg. Co., Ltd. Multi-wheel vehicle with transmission for driving-steering
US5989142A (en) * 1998-04-27 1999-11-23 Caterpillar Inc. Planetary steering differential
US6629577B1 (en) * 1998-07-02 2003-10-07 Tuff Torq Corporation Driving apparatus for speed changing and steering of a vehicle
US6126564A (en) * 1998-07-08 2000-10-03 Kanzaki Kokyukoki Mfg. Co., Ltd. Axle driving apparatus
US6540633B1 (en) 1998-09-25 2003-04-01 Tuff Torq Corporation Transmission for speed changing and steering of a vehicle
US6951259B2 (en) * 1998-12-03 2005-10-04 Koji Irikura Multi-wheel vehicle
US6397966B1 (en) * 1999-01-22 2002-06-04 Kanzaki Kokyukoki, Mfg. Co., Ltd. Vehicle improved in steering
US6547685B2 (en) 1999-01-22 2003-04-15 Kanzaki Kokyukoki Mfg. Co., Ltd. Transaxle apparatus
US6387004B1 (en) * 1999-04-30 2002-05-14 Trw Inc. Continuously variable transmission
US6835154B2 (en) * 1999-10-15 2004-12-28 New Venture Gear, Inc. On-demand transfer case
US6645112B1 (en) * 1999-10-15 2003-11-11 New Venture Gear, Inc. On-demand transfer case
JP3553436B2 (en) * 1999-10-19 2004-08-11 ジヤトコ株式会社 Electric torque converter
JP2001121983A (en) 1999-10-22 2001-05-08 Kanzaki Kokyukoki Mfg Co Ltd Steering driving device of traveling vehicle
JP3950358B2 (en) * 2002-04-24 2007-08-01 株式会社 神崎高級工機製作所 Steering device for work vehicle
US7731614B2 (en) 2002-04-29 2010-06-08 Caterpillar Inc. Method and apparatus for an electric drive differential system
AU2003240571A1 (en) * 2002-05-20 2004-01-23 Folsom Technologies, Inc. Hydraulic torque vectoring differential
FR2844858B1 (en) * 2002-09-25 2006-12-29 Peugeot Citroen Automobiles Sa ASYMMETRIC DIFFERENTIAL WITH ACTIVE CHARACTER FOR MOTOR VEHICLE
DE10345356A1 (en) * 2003-09-30 2005-04-28 Zahnradfabrik Friedrichshafen Transmission for distributing a drive torque to two output shafts
WO2006010186A1 (en) * 2004-07-26 2006-02-02 Magna Steyr Fahrzeugtechnik Ag & Co Kg Differential transmission unit with a controllable torque and speed distribution
US7588511B2 (en) * 2004-09-15 2009-09-15 Magna Steyr Fährzeugtechnik AG & Co. KG Differential gear unit with controllable torque and rotational speed distribution
DE102005007650A1 (en) * 2005-02-19 2006-08-31 Zf Friedrichshafen Ag Differential gear for vehicle, has output shafts connected by gear unit which is connected with drive source such that predefined distribution degree of torque between output shafts is changed based on torque generated by drive source
DE102006022175A1 (en) * 2006-05-12 2007-11-15 Zf Friedrichshafen Ag Gear DEvice for distributing drive moments of two drive shafts, has two planetary sets arranged coaxially, where electric motor is arranged axially at siDE of gear DEvice adjacent to latter planetary set
US7618340B2 (en) * 2006-08-30 2009-11-17 Tai-Her Yang Electric damp controlled three-end shaft differential transmission
WO2008038020A2 (en) * 2006-09-28 2008-04-03 Ricardo Uk Ltd. Axle differential and methods of controlling a wheeled multi axle vehicle
DE102006050599B4 (en) * 2006-10-26 2017-11-02 Rudolf Glassner differential gear
DE102007023462A1 (en) * 2007-05-19 2008-11-27 Zf Friedrichshafen Ag Superposition gear for distributing a drive torque to at least two output shafts
DE102007055883A1 (en) * 2007-12-20 2009-06-25 Forschungsgesellschaft für Zahnräder und Getriebe mbH Transmission device with at least two output shafts
US7957870B2 (en) * 2008-01-16 2011-06-07 GM Global Technology Operations LLC Torque distribution system for a vehicle
US7951035B2 (en) * 2008-02-07 2011-05-31 American Axle & Manufacturing, Inc. Continuously variable torque vectoring axle assembly
US8663051B2 (en) * 2010-07-14 2014-03-04 E-Aam Driveline Systems Ab Axle assembly with torque distribution drive mechanism
KR101878849B1 (en) * 2010-12-15 2018-07-16 보그워너 스웨덴 아베 A torque vectoring device
DE102011005615A1 (en) * 2011-03-16 2012-09-20 Zf Friedrichshafen Ag Driving device for driving driven vehicle axle, has two planetary gear sets comprising webs connected to wheel of driven vehicle axle, for providing output of drive device
DE102012220971B4 (en) * 2012-11-16 2017-12-21 Schaeffler Technologies AG & Co. KG Drive device for generating a drive torque for a vehicle
KR101428220B1 (en) * 2012-11-23 2014-08-07 현대자동차주식회사 Automated manual transmission
US9109687B1 (en) * 2012-12-26 2015-08-18 Shaun J. Chu Differential system with a differential rate governed by an auxiliary electric motor and its associated method of operation
EP2851227B1 (en) * 2013-09-24 2017-05-17 Volvo Car Corporation A rear drive unit for a hybrid electric motor vehicle
DE102014207484A1 (en) * 2014-04-17 2015-10-22 Franz Tiani Specification device for a differential gear, differential gear and motor vehicle
DE102015205102B4 (en) 2014-06-03 2022-01-13 Magna powertrain gmbh & co kg GEARS FOR DISTRIBUTING A DRIVE TORQUE AS REQUIRED
DE102014015793A1 (en) 2014-10-24 2016-04-28 Audi Ag Drive device for a motor vehicle, motor vehicle and method for operating a motor vehicle
CN104670010B (en) * 2015-02-11 2018-04-03 吉林大学 A kind of electronic active spur gear differential mechanism for possessing torque fixed direction allocation function
US10697528B2 (en) * 2016-03-23 2020-06-30 Shaun Chu Regenerative differential for differentially steered and front-wheel steered vehicles
US9709148B1 (en) 2016-04-20 2017-07-18 Shaun Chu Differential system with differential rate governed by variable speed motor and associated method of operation
EP3452323B1 (en) 2016-05-06 2021-08-18 Allison Transmission, Inc. Axle assembly with electric motor
EP3679276A4 (en) 2017-09-08 2021-03-24 Chu, Shaun Differential system including stepped planetary gears with differential rate governed by variable speed motor and associated method of operation
CN109723792A (en) * 2017-10-31 2019-05-07 罗灿 Non- bevel differential
CN108266512B (en) * 2018-03-19 2023-03-28 吉林大学 Centralized full-time electric four-wheel drive system
USD927578S1 (en) 2018-09-27 2021-08-10 Allison Transmission, Inc. Axle assembly
US10814721B2 (en) * 2018-12-05 2020-10-27 Hyundai Motor Company Apparatus for torque vectoring

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01269745A (en) * 1988-04-22 1989-10-27 Tochigi Fuji Ind Co Ltd Power transmission

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT386661B (en) * 1986-02-11 1988-09-26 Steyr Daimler Puch Ag LOCKING DEVICE FOR A DIFFERENTIAL GEARBOX BETWEEN THE TWO DRIVE WHEELS OF A MOTOR VEHICLE
EP0247820B1 (en) * 1986-05-26 1992-08-05 Toyota Jidosha Kabushiki Kaisha Differential gear
JPS6490821A (en) * 1987-09-30 1989-04-07 Aisin Seiki Differential mechanism of four-wheel-drive vehicle
JP2651929B2 (en) * 1988-06-20 1997-09-10 岡本化学工業株式会社 Photosensitive layer for printing plate
DE3837862C2 (en) * 1988-11-08 1993-09-30 Gkn Automotive Ag Device for controlling limited slip differentials

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01269745A (en) * 1988-04-22 1989-10-27 Tochigi Fuji Ind Co Ltd Power transmission

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05131855A (en) * 1991-09-18 1993-05-28 Mitsubishi Motors Corp Lateral driving force regulating device for vehicle
DE4408587A1 (en) * 1993-04-16 1994-10-20 Honda Motor Co Ltd Torque distributor mechanism for a differential
DE4408587C2 (en) * 1993-04-16 1998-05-20 Honda Motor Co Ltd Torque distribution device for a differential
JP2006341849A (en) * 1999-12-27 2006-12-21 Aisin Aw Co Ltd Hybrid drive apparatus
JP2001246953A (en) * 1999-12-27 2001-09-11 Aisin Aw Co Ltd Hybrid drive device
JP2007008470A (en) * 1999-12-27 2007-01-18 Aisin Aw Co Ltd Hybrid drive apparatus
JP2002160540A (en) * 2000-11-28 2002-06-04 Aisin Seiki Co Ltd Drive unit for hybrid vehicle
JP2005090648A (en) * 2003-09-18 2005-04-07 Fuji Heavy Ind Ltd Torque distribution device in center differential
JP2007232197A (en) * 2006-03-03 2007-09-13 Toyota Motor Corp Driving force distributing device
JP2007276760A (en) * 2006-03-10 2007-10-25 Nissan Motor Co Ltd Drive force distribution device
JP2010530044A (en) * 2007-04-12 2010-09-02 エフツェット ゲーエムベーハー Power split gear train assembly for automobile
JP2009014091A (en) * 2007-07-04 2009-01-22 Jtekt Corp Driving force distributing device
US9365207B2 (en) 2009-03-05 2016-06-14 Borgwarner Torqtransfer Systems Ab Torque vectoring device with planetary gear set for connection to balancing shaft
JP2012519812A (en) * 2009-03-05 2012-08-30 ボルグワーナー トルクトランスファー システムズ エービー Torque vectoring device
US8672790B2 (en) 2009-03-05 2014-03-18 Borgwarner Torqtransfer Systems Ab Device for torque vectoring
JP2014194280A (en) * 2009-03-05 2014-10-09 Borgwarner Torqtransfer Systems Ab Torque vectoring device
JP2011031794A (en) * 2009-08-04 2011-02-17 Toyota Motor Corp Coaxial two wheeler
JP2018515721A (en) * 2015-03-20 2018-06-14 ドクター エンジニール ハー ツェー エフ ポルシェ アクチエンゲゼルシャフトDr. Ing. h.c. F. Porsche Aktiengesellschaft Electric axle drive for automobile
US10344829B2 (en) 2015-03-20 2019-07-09 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Electric axle drive for a motor vehicle
CN107923509A (en) * 2015-09-09 2018-04-17 爱信精机株式会社 Torque vector control device
US10596895B2 (en) 2015-09-09 2020-03-24 Aisin Seiki Kabushiki Kaisha Torque vectoring device
CN109414989A (en) * 2016-05-18 2019-03-01 秦内蒂克有限公司 Differential mechanism
US11047453B2 (en) 2018-04-12 2021-06-29 Kabushiki Kaisha Toyota Chuo Kenkyusho Power distribution device
WO2023166680A1 (en) * 2022-03-03 2023-09-07 株式会社ユニバンス Torque distribution device

Also Published As

Publication number Publication date
US5387161A (en) 1995-02-07
JP2687052B2 (en) 1997-12-08

Similar Documents

Publication Publication Date Title
JPH04321435A (en) Torque distribution mechanism of differential device
US5409425A (en) Torque distributing mechanism in differential
US5518463A (en) Torque distributing mechanism for differential
JP3784845B2 (en) Reducer with differential mechanism for electric vehicles
US9527382B2 (en) Electric axle for a vehicle
US3492890A (en) Four-wheel-drive motor vehicles
EP0189172B1 (en) Steering system for automotive vehicle or the like
US5176589A (en) Differential gear
US5004060A (en) Tracked vehicle with an epicyclic steering differential
US20080300080A1 (en) Compound Planet Steer Differential
JP2008501920A (en) Planetary differential transmission
JPH0747850A (en) Power transmitting device for vehicle
EP2125492B1 (en) Drive configuration for a skid steered vehicle
JP3247484B2 (en) Differential torque distribution mechanism
US20220082163A1 (en) Differential assembly
US7357747B2 (en) Apparatus for differential power distribution
JP2876376B2 (en) Differential torque distribution mechanism
JP3247483B2 (en) Differential torque distribution mechanism
EP0442437A1 (en) Improved differential with reduced overall dimensions
JP2010144762A (en) Driving force distributing device
JP2003034154A (en) Drive unit
JPH08114255A (en) Power transmitting apparatus for vehicle
JPH06297977A (en) Torque dividing mechanism for differential gear
US11613301B2 (en) Motor-assisted steering gearbox
JP2008069812A (en) Driving-power transfer system

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees