JPH04320965A - Method for measuring small amount of constituent - Google Patents

Method for measuring small amount of constituent

Info

Publication number
JPH04320965A
JPH04320965A JP3090968A JP9096891A JPH04320965A JP H04320965 A JPH04320965 A JP H04320965A JP 3090968 A JP3090968 A JP 3090968A JP 9096891 A JP9096891 A JP 9096891A JP H04320965 A JPH04320965 A JP H04320965A
Authority
JP
Japan
Prior art keywords
substance
measured
labeled
complex
binding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP3090968A
Other languages
Japanese (ja)
Inventor
Kenji Nakamura
賢治 中村
Shinji Satomura
慎二 里村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Wako Pure Chemical Corp
Original Assignee
Wako Pure Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wako Pure Chemical Industries Ltd filed Critical Wako Pure Chemical Industries Ltd
Priority to JP3090968A priority Critical patent/JPH04320965A/en
Publication of JPH04320965A publication Critical patent/JPH04320965A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

PURPOSE:To achieve a highly sensitive measurement in an extremely short time without interfering with an activity of beta-galactoxidase even under a high salt concentration by performing a hydrophobic chromatography using a traveling phase which is constituted by adding a salt between sulfuric acid ion and alkali metal. CONSTITUTION:In a method for measuring a small amount of constituent within a living body sample utilizing mutual operation of a substance to be measured and substances (connectable substances) with a connection capability for it, beta-galactoxidase is used as a labeled substance, separation of a complex (containing the labeled substance) between the substance to be measured and the connectable substance and a liberated connectable substance (containing the labeled substance) or the substance to be measured (containing the labeled substance) is performed by hydrophobic chromatography using a traveling phase which is made by adding a salt between sulfuric acid ion and alkali metal, and then analysis is made by the post column method.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、例えば血清,血液,血
漿,尿等の生体体液、リンパ球、血球、各種細胞類等の
生体由来の試料中の微量成分を、迅速に、容易に且つ精
度良く測定する方法に関する。
[Industrial Application Field] The present invention is capable of quickly, easily and easily extracting trace components from living body fluids such as serum, blood, plasma, urine, lymphocytes, blood cells, various types of cells, etc. Concerning how to measure with high accuracy.

【0002】0002

【従来技術及びその問題点】ある特定の物質同士、例え
ば抗原と抗体,プロテアーゼとその蛋白性プロテアーゼ
インヒビター,糖鎖とレクチン,酵素とそれに対する基
質や補酵素,ホルモン等の生理活性物質とそれに対する
リセプターや輸送蛋白,2本鎖DNAの1対のポリヌク
レオチド鎖等は、互いに強い相互作用を及ぼしあい、強
固な複合体を形成することが知られている。
[Prior art and its problems] Specific substances, such as antigens and antibodies, proteases and their proteinaceous protease inhibitors, sugar chains and lectins, enzymes and their substrates and coenzymes, physiologically active substances such as hormones, and their reactions It is known that receptors, transport proteins, a pair of polynucleotide chains of double-stranded DNA, and the like interact strongly with each other to form a strong complex.

【0003】このような相互作用を利用した試料中の微
量成分の測定方法の1つとして、本発明者らが先に開発
した特開平2−28557号公報に記載の方法がある。 上記公報に記載された方法は大略以下の通りである。
One of the methods for measuring trace components in a sample that utilizes such interactions is a method described in Japanese Patent Application Laid-Open No. 2-28557, which was previously developed by the present inventors. The method described in the above publication is roughly as follows.

【0004】(1)測定対象物質を含有する生体由来の
試料を、標識物質で標識された或はされない、測定対象
物質に対する結合能を有する物質(以下、結合能物質と
略記する。)と混合して反応させた後、測定対象物質と
結合能物質との複合体(以下、単に複合体と略記する。 )と、遊離型の結合能物質とを高速液体クロマトグラフ
ィにより分離し、複合体中の標識物質の量又は結合能物
質の量を測定することにより試料中の測定対象物質量を
測定することを特徴とする測定方法。
(1) Mixing a biological sample containing a substance to be measured with a substance that has the ability to bind to the substance to be measured (hereinafter abbreviated as a binding substance), which may or may not be labeled with a labeling substance. After the reaction, the complex of the target substance and the binding substance (hereinafter simply referred to as the complex) and the free binding substance are separated by high-performance liquid chromatography, and the components in the complex are separated. A measurement method characterized by measuring the amount of a substance to be measured in a sample by measuring the amount of a labeling substance or the amount of a binding substance.

【0005】(2)測定対象物質を含有する生体由来の
試料を、標識物質で標識された測定対象物質(以下、標
識測定物質と略記する。)、及び結合能物質と混合して
反応させた後、標識測定物質と結合能物質との複合体(
以下、標識複合体と略記する。)と、遊離型の標識測定
物質とを高速液体クロマトグラフィにより分離し、標識
複合体中の標識物質の量又は遊離型の標識測定物質中の
標識物質の量を測定することにより試料中の測定対象物
質量を測定することを特徴とする測定方法。
(2) A biological sample containing a substance to be measured is mixed with a substance to be measured labeled with a labeling substance (hereinafter abbreviated as labeled substance to be measured) and a binding substance and reacted. After that, the complex of the labeled measurement substance and the binding substance (
Hereinafter, it will be abbreviated as a labeled complex. ) and the free labeled analyte by high-performance liquid chromatography, and the amount of the labeled substance in the labeled complex or the amount of the labeled analyte in the free labeled analyte is determined. A measurement method characterized by measuring the amount of a substance.

【0006】即ち、上記公報に記載の方法は、測定対象
物質と結合能物質との相互作用の結果生じる複合体(又
は標識複合体)と遊離の結合能物質(又は標識測定物質
)との分離を高速液体クロマトグラフィを用いて行なう
点に特徴を有するもので、該方法によれば、微量成分の
定量を従来のEIA(酵素免疫測定法)、RIA(放射
免疫測定法)或はFIA(蛍光免疫測定法)等の測定法
と比べて容易に且つ短時間で極めて精度よく行なうこと
ができるので、今後の展開が大いに期待される測定法で
あると考えられる。
That is, the method described in the above publication involves separating the complex (or labeled complex) resulting from the interaction between the substance to be measured and the binding substance and the free binding substance (or labeled substance to be measured). This method is characterized in that it is carried out using high-performance liquid chromatography, and according to this method, trace components can be quantified using conventional EIA (enzyme immunoassay), RIA (radioimmunoassay) or FIA (fluorescence immunoassay). Since it can be performed easily, in a short time, and with high accuracy compared to other measurement methods such as 2012-2013, it is considered that this measurement method has great expectations for future development.

【0007】上記方法の実施に際し用いられる各種標識
物の中で、酵素は取り扱いが容易で且つ装置的にも特殊
なものを必要としないと言う点で最も一般的であり好ま
しく用いられるが、中でもβ−ガラクトシダーゼは他の
酵素類と比べて感度が高いのでより好ましい標識物質と
考えられている。
Among the various labels used in carrying out the above method, enzymes are the most common and preferably used because they are easy to handle and do not require special equipment. β-galactosidase is considered to be a more preferable labeling substance because it has higher sensitivity than other enzymes.

【0008】上記公報に記載の方法を酵素を標識物質と
して用いて実施する場合に、高速液体クロマトグラフィ
のカラムと検出部との間で酵素活性測定用の試薬を流出
液に添加して反応させるポストカラム法を採用すれば、
分析時間がより短縮されるのでより好ましい。ポストカ
ラム法で酵素活性を測定する場合、主としてカラム溶出
液中の塩濃度条件下で酵素と反応をさせることになる。
When the method described in the above publication is carried out using an enzyme as a labeling substance, there is a post in which a reagent for enzyme activity measurement is added to the effluent and reacted between the high performance liquid chromatography column and the detection section. If you use the column method,
This is more preferable because the analysis time is further reduced. When measuring enzyme activity using the post-column method, the reaction with the enzyme is mainly carried out under conditions of salt concentration in the column eluate.

【0009】一方、分離用カラムに使用する充填剤とし
て疎水クロマトグラフィ用の充填剤を用いれば分離能が
より高いのでより好ましい。疎水クロマトグラフィで用
いられる塩としては硫酸アンモニウムが最も一般的であ
り、通常、0.1〜2Mの塩濃度で使用される。ところ
が、β−ガラクトシダーゼを標識物質として用い、ポス
トカラム法で、疎水クロマトグラフィにより上記方法を
実施しようとした場合、塩濃度0.1〜2Mの硫酸アン
モニウム中ではβ−ガラクトシダーゼの酵素活性が著し
く阻害され、高感度測定ができないことが判明した。
On the other hand, it is more preferable to use a packing material for hydrophobic chromatography as the packing material used in the separation column because the separation ability is higher. Ammonium sulfate is the most common salt used in hydrophobic chromatography, and is usually used at a salt concentration of 0.1 to 2M. However, when attempting to carry out the above method using hydrophobic chromatography in a post-column method using β-galactosidase as a labeling substance, the enzymatic activity of β-galactosidase was significantly inhibited in ammonium sulfate at a salt concentration of 0.1 to 2M. It turned out that high-sensitivity measurements were not possible.

【0010】β−ガラクトシダーゼの精製には一般に硫
酸アンモニウム塩析法が採用されており、この場合には
酵素活性の低下は殆ど認められない。従って、疎水クロ
マトグラフィに於て硫酸アンモニウムによりβ−ガラク
トシダーゼの活性が低下するということは、恐らくその
濃度の違いによるものと考えられるが、何れにしても全
く意外なことであり、その解決法が待たれていた。
[0010] Ammonium sulfate salting out method is generally employed for the purification of β-galactosidase, and in this case, almost no decrease in enzyme activity is observed. Therefore, the fact that the activity of β-galactosidase is reduced by ammonium sulfate in hydrophobic chromatography is probably due to the difference in its concentration, but in any case, this is completely unexpected and a solution is awaited. was.

【0011】[0011]

【発明の目的】本発明は上記した如き状況に鑑みなされ
たもので、特開平2−28557号公報に記載の方法を
β−ガラクトシダーゼを標識物質として用いて、ポスト
カラム法で、疎水クロマトグラフィにより効果的に実施
する方法を提供することを目的とする。
OBJECTS OF THE INVENTION The present invention has been made in view of the above-mentioned circumstances, and it is possible to apply the method described in JP-A-2-28557 using β-galactosidase as a labeling substance, by a post-column method, and by hydrophobic chromatography. The purpose is to provide a method for implementing this method.

【0012】 [発明の構成]本発明は、測定対象物質を含有する生体
由来の試料を、標識物質で標識された、測定対象物質に
対する結合能を有する物質(以下、標識結合能物質と略
記する。)と混合して反応させた後、測定対象物質と標
識結合能物質との複合体(以下、標識複合体Aと略記す
る。)と、遊離型の標識結合能物質とを高速液体クロマ
トグラフィにより分離し、標識複合体A中の標識物質の
量又は標識結合能物質中の標識物質の量を測定すること
により試料中の測定対象物質量を測定する方法に於いて
、標識物質としてβ−ガラクトシダーゼを用い、硫酸イ
オンとアルカリ金属との塩を添加して成る移動相(溶離
液)を用いて、疎水クロマトグラフィ用充填剤を充填し
たカラムを装着した高速液体クロマトグラフィにより標
識複合体Aと遊離型の標識結合能物質とを分離すること
を特徴とする該測定方法の発明である。
[Configuration of the Invention] The present invention provides a method for converting a biological sample containing a substance to be measured into a substance that is labeled with a labeling substance and has the ability to bind to the substance to be measured (hereinafter abbreviated as a labeled binding substance). ), and then the complex of the substance to be measured and the label-binding substance (hereinafter abbreviated as label complex A) and the free label-binding substance are separated by high-performance liquid chromatography. In a method for measuring the amount of a substance to be measured in a sample by separating and measuring the amount of a labeling substance in a labeled complex A or the amount of a labeling substance in a label-binding substance, β-galactosidase is used as a labeling substance. Using a mobile phase (eluent) containing a salt of sulfate ions and an alkali metal, the labeled complex A and the free form were separated by high-performance liquid chromatography equipped with a column packed with a hydrophobic chromatography packing material. The present invention is directed to the measurement method, which is characterized in that it separates a substance capable of binding to a label.

【0013】また、本発明は、測定対象物質を含有する
生体由来の試料を、標識物質で標識された測定対象物質
(以下、標識測定対象物質と略記する。)及び結合能物
質と混合して反応させた後、標識測定対象物質と結合能
物質との複合体(以下、標識複合体Bと略記する。)と
、遊離型の標識測定対象物質とを高速液体クロマトグラ
フィにより分離し、標識複合体B中の標識物質の量又は
遊離型の標識測定対象物質中の標識物質の量を測定する
ことにより試料中の測定対象物質量を測定する方法に於
いて、標識物質としてβ−ガラクトシダーゼを用い、硫
酸イオンとアルカリ金属との塩を添加して成る移動相(
溶離液)を用いて、疎水クロマトグラフィ用充填剤を充
填したカラムを装着した高速液体クロマトグラフィによ
り標識複合体Bと遊離型の標識測定対象物質とを分離す
ることを特徴とする該測定方法の発明である。
[0013] The present invention also provides a method in which a biological sample containing a substance to be measured is mixed with a substance to be measured labeled with a labeling substance (hereinafter abbreviated as a labeled substance to be measured) and a binding substance. After the reaction, the complex of the labeled analyte and the binding substance (hereinafter abbreviated as labeled complex B) and the free labeled analyte are separated by high performance liquid chromatography, and the labeled complex is separated. In a method for measuring the amount of a target substance in a sample by measuring the amount of a label substance in B or the amount of a label substance in a free labeled target substance, using β-galactosidase as a label substance, A mobile phase made by adding a salt of sulfate ions and an alkali metal (
An invention of the measuring method characterized in that the labeled complex B and the free labeled substance to be measured are separated by high-performance liquid chromatography equipped with a column packed with a hydrophobic chromatography packing material. be.

【0014】即ち、本発明者らは、特開平2−2855
7号公報に記載の方法をβ−ガラクトシダーゼを標識物
質として用いて、ポストカラム法で、疎水クロマトグラ
フィにより効果的に実施する方法を求めて鋭意研究を重
ねた結果、疎水クロマトグラフィの移動相(溶離液)に
添加する塩として硫酸アンモニウムの代りに硫酸イオン
とアルカリ金属との塩を用いることにより上記目的を達
成し得ることを見出し、本発明を完成するに至った。
[0014] That is, the present inventors have
As a result of extensive research in search of a method that effectively implements the method described in Publication No. 7 using β-galactosidase as a labeling substance, post-column method, and hydrophobic chromatography, we have found that the mobile phase (eluent ) They have found that the above object can be achieved by using a salt of sulfate ion and an alkali metal instead of ammonium sulfate as the salt added to the solution, and have completed the present invention.

【0015】本発明の測定方法を実施するには、例えば
以下のようにして行なえばよい。即ち、所謂非競合反応
の原理に基づく本発明の測定方法を実施する場合には、
先ず測定対象物質を含む生体由来の試料と、β−ガラク
トシダーゼで標識された結合能物質(標識結合能物質)
とを、要すれば適当な緩衝液中に添加、混合して反応さ
せ、複合体(標識複合体A)を形成させた後、該複合体
と該結合能物質とを硫酸イオンとアルカリ金属との塩を
添加した移動相(溶離液)を用いた疎水クロマトグラフ
ィにより分離する。次いで、分離された標識複合体A中
のβ−ガラクトシダーゼの量或は遊離の標識結合能物質
中のβ−ガラクトシダーゼの量を測定する。別に、測定
対象物質濃度既知の試料を用いて同様の方法により測定
を行い、測定対象物質量と標識複合体A中のβ−ガラク
トシダーゼの量或は標識結合能物質中のβ−ガラクトシ
ダーゼの量との関係を表わす検量線を作成し、これを用
いて、標識複合体A中のβ−ガラクトシダーゼの量或は
遊離の標識結合能物質中のβ−ガラクトシダーゼの量に
対応する測定対象物質量を求めれば、試料中の測定対象
物質量が求められる。
The measuring method of the present invention may be carried out, for example, as follows. That is, when carrying out the measurement method of the present invention based on the principle of so-called non-competitive reaction,
First, a biological sample containing the substance to be measured and a binding substance labeled with β-galactosidase (labeled binding substance)
If necessary, add and mix in an appropriate buffer solution and react to form a complex (labeled complex A), and then combine the complex and the binding substance with sulfate ion and an alkali metal. Separate by hydrophobic chromatography using a mobile phase (eluent) containing a salt of Next, the amount of β-galactosidase in the separated labeled complex A or the amount of β-galactosidase in the free label-binding substance is measured. Separately, measurements are performed using a similar method using a sample with a known concentration of the target substance to be measured, and the amount of the target substance to be measured is compared with the amount of β-galactosidase in the label complex A or the amount of β-galactosidase in the label-binding substance. Create a calibration curve that represents the relationship between For example, the amount of the substance to be measured in the sample is determined.

【0016】また、所謂競合反応の原理による本発明の
測定方法を実施する場合には、先ず測定対象物質を含む
生体由来の試料、β−ガラクトシダーゼ標識測定対象物
質及び結合能物質を、要すれば適当な緩衝液中に添加、
混合して反応させ、複合体及びβ−ガラクトシダーゼ標
識複合体(標識複合体B)を形成させた後、標識複合体
Aと標識測定対象物質とを硫酸イオンとアルカリ金属と
の塩を添加した移動相(溶離液)を用いた疎水クロマト
グラフィにより分離する。次いで、分離された標識複合
体B中のβ−ガラクトシダーゼの量或は遊離の標識測定
対象物質中のβ−ガラクトシダーゼの量を測定する。別
に、測定対象物質濃度既知の試料を用いて同様の方法に
より測定を行い、測定対象物質量と標識複合体B中のβ
−ガラクトシダーゼの量或は標識測定対象物質中のβ−
ガラクトシダーゼの量との関係を表わす検量線を作成し
、これを用いて、標識複合体中のβ−ガラクトシダーゼ
の量或は標識測定対象物質中のβ−ガラクトシダーゼの
量に対応する測定対象物質量を求めれば、試料中の測定
対象物質量が求められる。
[0016] Furthermore, when carrying out the measurement method of the present invention based on the so-called competitive reaction principle, first, a biological sample containing the substance to be measured, a β-galactosidase-labeled substance to be measured, and a binding substance are, if necessary, Added to a suitable buffer,
After mixing and reacting to form a complex and a β-galactosidase labeled complex (labeled complex B), the labeled complex A and the labeled analyte are transferred by adding a salt of sulfate ion and an alkali metal. Separate by hydrophobic chromatography using the phase (eluent). Next, the amount of β-galactosidase in the separated labeled complex B or the amount of β-galactosidase in the free labeled substance to be measured is measured. Separately, measurements were performed using a similar method using a sample with a known concentration of the target substance, and the amount of the target substance and β in labeled complex B were determined.
-The amount of galactosidase or β in the labeled substance to be measured-
A calibration curve representing the relationship with the amount of galactosidase is created, and using this, the amount of the target substance to be measured corresponding to the amount of β-galactosidase in the labeled complex or the amount of β-galactosidase in the labeled target substance to be measured is determined. Once determined, the amount of the substance to be measured in the sample can be determined.

【0017】本発明の測定方法に於て疎水クロマトグラ
フィによりB/F分離を行なう際に用いられる移動相(
溶離液)に添加する硫酸イオンとアルカリ金属との塩と
しては例えば、Na2SO4、K2SO4、Li2SO
4、Rb2SO4等が挙げられ、特に好ましくはNa2
SO4、Li2SO4が挙げられる。これ等硫酸イオン
とアルカリ金属との塩は通常単独で或は2種以上適宜混
合して用いられるが、要すれば塩素イオンとアルカリ金
属との塩を併用することも可能である。 即ち、塩素イオンとアルカリ金属との塩も又硫酸イオン
とアルカリ金属イオンとの塩類と同様、疎水クロマトグ
ラフィに用いられる濃度に於てβ−ガラクトシダーゼの
活性を低下させないからである。但し、塩素イオンとア
ルカリ金属との塩の場合には、これを硫酸イオンとアル
カリ金属との塩と併用せずに、単独で疎水クロマトグラ
フィ用の移動相(溶離液)に添加した場合には測定対象
物質や結合能物質がカラムに吸着されずに素通りしてし
まうので、本目的には使用し得ない。
In the measurement method of the present invention, the mobile phase (
Examples of salts of sulfate ions and alkali metals added to the eluent include Na2SO4, K2SO4, Li2SO
4, Rb2SO4, etc., particularly preferably Na2
Examples include SO4 and Li2SO4. These salts of sulfate ions and alkali metals are usually used alone or in an appropriate mixture of two or more, but if necessary, salts of chlorine ions and alkali metals can also be used in combination. That is, like salts of sulfate ions and alkali metal ions, salts of chloride ions and alkali metals do not reduce the activity of β-galactosidase at the concentrations used in hydrophobic chromatography. However, in the case of a salt of chlorine ion and an alkali metal, if it is added alone to the mobile phase (eluent) for hydrophobic chromatography without using it together with a salt of sulfate ion and an alkali metal, measurement will not be possible. It cannot be used for this purpose because target substances and binding substances pass through without being adsorbed to the column.

【0018】各塩を溶解する溶解液としては、リン酸塩
、酢酸塩、クエン酸塩、グッドの緩衝剤、トリス(ヒド
ロキシエチル)アミノメタン等の緩衝物質を含有するp
H2〜10好ましくはpH4〜9の溶液が好ましく挙げ
られる。
[0018] The dissolving solution for dissolving each salt is a p-containing solution containing a buffer substance such as phosphate, acetate, citrate, Good's buffer, or tris(hydroxyethyl)aminomethane.
Preferred examples include solutions having a pH of 2 to 10, preferably 4 to 9.

【0019】本発明の測定方法に於いて、B/F分離に
用いられるHPLCとしては、装置自体は通常分析の分
野に於いて用いられているもので定流速のものであれば
特に問題なく用いられ、これに疎水クロマトグラフィ用
充填剤を充填したカラム、例えば、TSKgel Bu
tyl−NPR(東ソー社製),MCI GEL CQ
H3BS(三菱化成工業株式会社製),MCI GEL
 CQH3ES(三菱化成工業株式会社製),プロテイ
ンパック G−Butyl(ウォーターズ社製),CY
PRESS PolyLC Poly Propyl(
CYPRESS社製),CYPRESSPolyLC 
Poly Ethyl(CYPRESS社製),CYP
RESS PolyLC Poly Methyl(C
YPRESS社製),YMC−Pack HIS−Pr
opyl(YMC社製)等を装着して用いればよい。
In the measurement method of the present invention, the HPLC used for B/F separation is one that is normally used in the field of analysis and can be used without any problems as long as it has a constant flow rate. column packed with a hydrophobic chromatography packing material, such as TSKgel Bu
tyl-NPR (manufactured by Tosoh Corporation), MCI GEL CQ
H3BS (manufactured by Mitsubishi Chemical Industries, Ltd.), MCI GEL
CQH3ES (manufactured by Mitsubishi Chemical Industries, Ltd.), Protein Pack G-Butyl (manufactured by Waters Corporation), CY
PRESS PolyLC Poly Propyl (
(manufactured by CYPRESS), CYPRESS PolyLC
Poly Ethyl (manufactured by CYPRESS), CYP
RESS PolyLC Poly Methyl(C
YPRESS), YMC-Pack HIS-Pr
It may be used by attaching opyl (manufactured by YMC) or the like.

【0020】本発明の測定方法により測定可能な測定対
象物質としては、i)測定対象物質と互いに強い相互作
用(affinity:親和力或は親和性)を及ぼしあ
い、強固な複合体を形成し得る結合能物質が存在し、該
結合能物質がβ−ガラクトシダーゼにより標識可能なも
のであるか、若しくはii)測定対象物質自体がβ−ガ
ラクトシダーゼにより標識可能なものであって、測定対
象物質と互いに強い相互作用(affinity:親和
力或は親和性)を及ぼしあい、強固な標識複合体を形成
し得る結合能物質が存在するもの、であれば、特に限定
することなく挙げられるが、例えば血清,血液,血漿,
尿等の生体体液、リンパ球、血球、各種細胞類等の生体
由来の試料中に含まれる蛋白質、ペプチド、核酸、糖鎖
、脂質、ホルモン、薬物等が代表的なものとして挙げら
れる。更に具体的には、例えばα−フェトプロテイン(
AFP),CA19−9,前立腺特異抗原(PSA),
癌胎児性抗原(CEA),癌細胞の産生する特殊な糖鎖
を有する物質等の癌マーカー、例えば免疫グロブリンA
(IgA),免疫グロブリンE(IgE),免疫グロブ
リンG(IgG),β2−ミクログロブリン,アルブミ
ン,フェリチン等の血清蛋白質、例えばC−ペプチド,
アンジオテンシンI等のペプチド、例えばアミラーゼ,
アルカリホスファターゼ,γ−グルタミルトランスフェ
ラーゼ(γ−GTP)等の酵素蛋白、例えばルベラウイ
ルス,ヘルペスウイルス,肝炎ウイルス,ATLウイル
ス,AIDSウイルス等臨床的に注目されているウイル
スに対する抗ウイルス抗体、ウイルス等の病原体のデオ
キシリボ核酸(DNA)やリボ核酸(RNA)或はこれ
ら核酸を構成する1本鎖ポリヌクレオチド、ウイルス等
の病原体に由来する抗原性物質、例えばスギその他の草
木の花粉や室内塵等のアレルゲンに反応する抗体、例え
ばリポ蛋白質等の脂質、例えばトリプシン,プラスミン
,エラスターゼI,セリンプロテアーゼ等のプロテアー
ゼ、例えばインシュリン,ヒト 絨毛性ゴナドトロピン
(hCG),サイロキシン(T4),トリヨードサイロ
ニン(T3),プロラクチン,甲状線刺激ホルモン(T
SH)等のホルモン、例えばジゴキシン,フェニトイン
,モルヒネ,ニコチン等の薬物等が挙げられる。
The substance to be measured that can be measured by the measurement method of the present invention includes: i) a bond that can have a strong interaction (affinity) with the substance to be measured and form a strong complex; or ii) the substance to be measured is itself labelable by β-galactosidase and has a strong interaction with the substance to be measured. Examples include serum, blood, plasma, etc., but are not particularly limited to those in which there is a binding substance that can interact with each other and form a strong labeling complex. ,
Typical examples include proteins, peptides, nucleic acids, sugar chains, lipids, hormones, drugs, etc. contained in biological body fluids such as urine, lymphocytes, blood cells, various types of cells, and other biological samples. More specifically, for example, α-fetoprotein (
AFP), CA19-9, prostate specific antigen (PSA),
Cancer markers such as carcinoembryonic antigen (CEA), substances with special sugar chains produced by cancer cells, such as immunoglobulin A
Serum proteins such as (IgA), immunoglobulin E (IgE), immunoglobulin G (IgG), β2-microglobulin, albumin, ferritin, e.g. C-peptide,
Peptides such as angiotensin I, e.g. amylase,
Enzyme proteins such as alkaline phosphatase and γ-glutamyltransferase (γ-GTP), antiviral antibodies against viruses that have received clinical attention such as rubella virus, herpes virus, hepatitis virus, ATL virus, and AIDS virus; Deoxyribonucleic acid (DNA) and ribonucleic acid (RNA) of pathogens, single-stranded polynucleotides that constitute these nucleic acids, antigenic substances derived from pathogens such as viruses, and allergens such as pollen from cedar and other plants and indoor dust. Antibodies that react with lipids such as lipoproteins, proteases such as trypsin, plasmin, elastase I, serine proteases, such as insulin, human chorionic gonadotropin (hCG), thyroxine (T4), triiodothyronine (T3), Prolactin, thyrotropin (T)
Examples include hormones such as SH), drugs such as digoxin, phenytoin, morphine, and nicotine.

【0021】本発明に係るこれら測定対象物質に対する
結合能物質としては、これら測定対象物質と互いに強い
相互作用(affinity:親和力或は親和性)を及
ぼしあい、強固な複合体を形成する物質で、β−ガラク
トシダーゼにより標識可能なもの(測定対象物質自体が
β−ガラクトシダーゼにより標識可能な物である場合に
はこの限りではない。)であれば特に限定することなく
挙げられるが、例えば抗原性を有する物質(ハプテンを
含む。)に対する抗体、抗体に対する抗原、特定構造の
糖鎖に対して結合能を有する例えばコンカナバリンA,
レンズマメレクチン,インゲンマメレクチン,ダツラレ
クチン,小麦胚芽レクチン等のレクチン類、例えばトリ
プシンに対するα1アンチトリプシン,プラスミンに対
するα2マクログロブリン,セリンプロテアーゼに対す
るα2マクログロブリン等の特定の酵素に対するインヒ
ビター類、測定対象物質である1本鎖ポリヌクレオチド
に相補的なポリヌクレオチド鎖等が挙げられる。
[0021] The substances capable of binding to these analyte substances according to the present invention include substances that have a strong interaction (affinity) with these analyte substances and form a strong complex, Any substance that can be labeled with β-galactosidase (this does not apply if the substance to be measured itself can be labeled with β-galactosidase) may be mentioned without particular limitation, but for example, it has antigenicity. Antibodies to substances (including haptens), antigens to antibodies, concanavalin A, etc. that have the ability to bind to sugar chains with specific structures,
Lectins such as lentil lectin, kidney bean lectin, Datura lectin, and wheat germ lectin, inhibitors for specific enzymes such as α1 antitrypsin for trypsin, α2 macroglobulin for plasmin, and α2 macroglobulin for serine protease, and substances to be measured. Examples include polynucleotide chains complementary to single-stranded polynucleotides.

【0022】本発明の測定方法に於いて用いられるβ−
ガラクトシダーゼは、いずれの由来の物でも良いが、比
活性の高い大腸菌由来のβ−ガラクトシダーゼがより好
ましく用いられる。また、β−ガラクトシダーゼの基質
としては、特に限定されないが、構造の明確な合成基質
例えば4−メチルウンベリフェリル−β−D−ガラクト
ピラノシド,2−ニトロフェニル−β−D−ガラクトシ
ド等が好ましく用いられる。
β- used in the measurement method of the present invention
Galactosidase may be derived from any source, but β-galactosidase derived from Escherichia coli, which has a high specific activity, is more preferably used. Substrates for β-galactosidase include, but are not particularly limited to, synthetic substrates with clear structures, such as 4-methylumbelliferyl-β-D-galactopyranoside, 2-nitrophenyl-β-D-galactoside, etc. Preferably used.

【0023】β−ガラクトシダーゼを結合能物質又は測
定対象物質に結合させる方法としては、自体公知のEI
A等に於いて一般に行われている自体公知の標識方法(
例えば、医化学実験講座、第8巻、山村雄一監修、第1
版、中山書店、1971;酵素免疫測定法、石川栄治、
河合忠、宮井潔編、第2版、医学書院、1982等)が
何れも例外なく挙げられ、これらに準じて行えばよい。
[0023] As a method for binding β-galactosidase to a binding substance or a substance to be measured, the known EI method can be used.
Labeling methods commonly used in A, etc. (
For example, Medical Chemistry Experiment Course, Volume 8, supervised by Yuichi Yamamura, Volume 1.
Edition, Nakayama Shoten, 1971; Enzyme immunoassay, Eiji Ishikawa,
(edited by Tadashi Kawai and Kiyoshi Miyai, 2nd edition, Igaku Shoin, 1982, etc.) are mentioned without exception, and it is sufficient to follow these guidelines.

【0024】また、標識物質を結合能物質又は測定対象
物質に結合させる方法として、アビジン(又はストレプ
トアビジン)とビオチンの反応を利用した常法で行なっ
ても良いことは言うまでもない。
[0024] It goes without saying that the labeling substance may be bound to the binding substance or the substance to be measured by a conventional method utilizing a reaction between avidin (or streptavidin) and biotin.

【0025】本発明の測定方法に於て、測定対象物質と
標識された結合能物質とを反応させて、複合体を形成す
る際の反応条件、或は測定対象物質と標識測定対象物質
及び結合能物質とを反応させて、標識複合体を形成する
際の反応条件(使用する緩衝液の種類、結合能物質の使
用濃度、標識測定対象物質の使用濃度、反応時のpH,
温度,時間等)等は特開平2−28557号公報に記載
のそれに準じて行なうことで足りる。
In the measurement method of the present invention, the reaction conditions for forming a complex by reacting the substance to be measured with a labeled substance capable of binding, or the reaction conditions for forming a complex between the substance to be measured and the labeled substance to be measured and the bond Reaction conditions for forming a labeled complex by reacting with a binding substance (type of buffer used, concentration of the binding substance used, concentration of the labeled substance to be measured, pH during the reaction,
Temperature, time, etc.) may be carried out in accordance with those described in JP-A No. 2-28557.

【0026】本発明に於ては、測定が迅速に行えるポス
トカラム法によることが必須要件であるが、ポストカラ
ム法を実施するには、例えば以下のようにして行なえば
よい。即ち、HPLCにより分離された標識複合体A(
又は標識複合体B)中に含まれる標識物質或は遊離の標
識結合能物質中に含まれる標識物質(或は遊離の標識測
定対象物質中に含まれる標識物質)の測定を行なう際に
、例えば「最新液体クロマトグラフィ、原昭二・辻章夫
編、第1版、92〜104頁、南山堂、1978年2月
1日発行」等に記載されているように、HPLCのカラ
ムと検出部との間に、ポストカラム法の反応部を設け、
酵素活性測定用の試薬を流出液に添加して反応させた後
、これを検出部に導き、流出液中の標識複合体A(又は
標識複合体B)中に含まれる標識物質の量或は遊離の標
識結合能物質中の標識物質の量(又は遊離の標識測定物
質中の標識物質の量)を直接測定すればよい。該反応部
に於て行なわれる酵素活性の測定は、常法、例えば、「
酵素免疫測定法、蛋白質  核酸  酵素  別冊No
.31、北川常廣・南原利夫・辻章夫・石川榮治編集、
51〜63頁、共立出版株式会社、1987年9月10
日発行」等に記載された方法に準じて測定を行なっても
よいし、市販されている臨床検査用キットの試薬を適宜
選択使用して測定を行ってもよい。
In the present invention, it is essential to use a post-column method that allows rapid measurement, and the post-column method may be carried out, for example, as follows. That is, labeled complex A (
Or, when measuring the labeling substance contained in the labeling complex B) or the labeling substance contained in the free label-binding ability substance (or the labeling substance contained in the free labeled substance to be measured), for example, As described in "Latest Liquid Chromatography, edited by Shoji Hara and Akio Tsuji, 1st edition, pp. 92-104, published by Nanzando, February 1, 1978," A reaction section for the post-column method is installed in the
After a reagent for enzyme activity measurement is added to the effluent and reacted, it is introduced into the detection section and the amount of labeling substance contained in labeled complex A (or labeled complex B) in the effluent is measured. The amount of the labeling substance in the free label-binding ability substance (or the amount of the labeling substance in the free labeled substance to be measured) may be directly measured. Measurement of enzyme activity in the reaction zone can be carried out using conventional methods, for example,
Enzyme immunoassay, protein, nucleic acid, enzyme separate volume No.
.. 31, edited by Tsunehiro Kitagawa, Toshio Minamibara, Akio Tsuji, and Eiji Ishikawa,
pp. 51-63, Kyoritsu Shuppan Co., Ltd., September 10, 1987
The measurement may be carried out according to the method described in the Japanese publication, etc., or may be carried out by appropriately selecting and using reagents from commercially available clinical test kits.

【0027】本発明の非競合反応の原理に基づく測定方
法或は競合反応の原理に基づく測定方法、何れの場合に
於ても、結合能物質として抗体を用いる場合には、目的
に応じて使用する抗体を適宜ペプシン、パパイン等の酵
素を用いて消化してF(ab’)2、Fab’或はFa
bとして使用することが望ましい。
[0027] In either case of the measurement method based on the principle of non-competitive reaction or the measurement method based on the principle of competitive reaction of the present invention, when an antibody is used as the binding substance, it can be used depending on the purpose. F(ab')2, Fab' or Fab is digested with appropriate enzymes such as pepsin and papain.
It is desirable to use it as b.

【0028】本発明に於て用いられる結合能物質として
の抗体は、ポリクローナル抗体でも、モノクローナル抗
体でも何れにてもよく、これらを単独で或は適宜組み合
わせて用いる等は任意である。
[0028] The antibody used as the binding substance used in the present invention may be either a polyclonal antibody or a monoclonal antibody, and these may be used alone or in an appropriate combination.

【0029】本発明の方法に於いて、複合体(又は標識
複合体)を形成させる際に、要すれば2種類以上の結合
能物質(具体的には、測定対象物質上の異なる部位に各
々結合する性質を有する2種類以上の結合能物質)を用
いれば、結果的に標識複合体A(又は標識複合体B)の
疎水性も変動し、また分子量が大きくなる等から、複合
体(又は標識複合体)と結合能物質(又は標識測定対象
物質)との分離がより容易となり、測定精度の向上を計
ることができる。更に、この場合に、各々の結合能物質
に標識物質を結合させておけば、測定感度を上昇させる
ことができることは言うまでもない。
In the method of the present invention, when forming a complex (or labeled complex), if necessary, two or more types of binding substances (specifically, each substance is added to a different site on the substance to be measured). If two or more types of binding substances with binding properties are used, the hydrophobicity of labeled complex A (or labeled complex B) will change as a result, and the molecular weight will increase. The labeling complex) and the binding substance (or the labeled substance to be measured) can be more easily separated, and measurement accuracy can be improved. Furthermore, in this case, it goes without saying that if a labeling substance is bound to each binding substance, the measurement sensitivity can be increased.

【0030】また、非競合反応の原理に基づく測定方法
に於いて、標識結合能物質と、単なる結合能物質を併用
して、測定感度の調節を行ってもよいことは特開平2−
28557号公報に記載の通りである。
[0030] Furthermore, in a measurement method based on the principle of non-competitive reaction, it is disclosed in Japanese Patent Application Laid-Open No. 2002-11991 that the measurement sensitivity may be adjusted by using a labeled binding substance and a simple binding substance in combination.
As described in Japanese Patent No. 28557.

【0031】以下に実施例を挙げて、本発明を更に具体
的に説明するが、本発明はこれらにより何ら限定される
ものではない。
The present invention will be explained in more detail with reference to Examples below, but the present invention is not limited thereto.

【0032】[0032]

【実施例】【Example】

実験例1.β−ガラクトシダーゼ活性に及ぼす各塩の影
響 (反応用緩衝液1)リン酸1ナトリウム 4.2g、リ
ン酸2ナトリウム 80.0gを精製水に溶解して全量
5 lとし、反応用緩衝液1とした。 (反応用緩衝液2)(NH4)2SO4を反応用緩衝液
に溶解して、(NH4)2SO4濃度 0.11,0.
22,0.33,0.44,0.55,0.66,0.
77,0.88,0.99,1.10 Mの溶液を調製
し、pH7.5になるように4N NaOHで調整した
。同様に、Li2SO4,Na2SO4,K2SO4,
Rb2SO4,NaCl,CH3COONH4,K3P
O4を各々反応用緩衝液1に溶解して、反応用緩衝液2
とした。尚、K2SO4は0.55M以上は溶解しなか
った。 (酵素溶液)β−ガラクトシダーゼ(大腸菌由来、オリ
エンタル酵母株式会社製)を反応用緩衝液1に溶解して
、20nMになるように調製し、酵素溶液とした。 (基質液)4−メチルウンベリフェリル−β−D−ガラ
クトピラノシド 1mgをDMF 30mlに溶解し、
反応用緩衝液1を加え、全量100mlとして基質液と
した。 (HPLCの使用条件)システムの概略を図5に示す。 カラム:使用せず。 流速:反応用緩衝液2  1ml/min、基質液  
0.1ml/min。 検出:励起波長  350nm、蛍光波長  460n
mで蛍光を測定した。
Experimental example 1. Effect of each salt on β-galactosidase activity (Reaction buffer 1) Dissolve 4.2 g of monosodium phosphate and 80.0 g of disodium phosphate in purified water to make a total volume of 5 liters, and mix with reaction buffer 1. did. (Reaction buffer 2) (NH4)2SO4 was dissolved in the reaction buffer to give a concentration of (NH4)2SO4 of 0.11,0.
22, 0.33, 0.44, 0.55, 0.66, 0.
Solutions of 77, 0.88, 0.99, and 1.10 M were prepared and adjusted to pH 7.5 with 4N NaOH. Similarly, Li2SO4, Na2SO4, K2SO4,
Rb2SO4, NaCl, CH3COONH4, K3P
Dissolve each O4 in reaction buffer 1 and add reaction buffer 2.
And so. Incidentally, K2SO4 was not dissolved above 0.55M. (Enzyme solution) β-galactosidase (derived from Escherichia coli, manufactured by Oriental Yeast Co., Ltd.) was dissolved in reaction buffer 1 to a concentration of 20 nM to obtain an enzyme solution. (Substrate solution) 1 mg of 4-methylumbelliferyl-β-D-galactopyranoside was dissolved in 30 ml of DMF,
Reaction buffer 1 was added to make the total volume 100 ml, which was used as a substrate solution. (Conditions for use of HPLC) An outline of the system is shown in FIG. Column: Not used. Flow rate: reaction buffer 2 1ml/min, substrate solution
0.1ml/min. Detection: Excitation wavelength 350nm, fluorescence wavelength 460n
Fluorescence was measured at m.

【0033】(測定操作)各塩を含む反応用緩衝液2で
、酵素10μlをインジェクションし、各反応用緩衝液
でのβ−ガラクトシダーゼ活性ピークの高さより活性を
求めた。 (結果)各塩濃度とβ−ガラクトシダーゼ活性との関係
を図6に示す。図6に示すように(NH4)2SO4の
場合は、0.4Mの濃度でほぼ100%失活するが、N
a2SO4及びNaClでは、1Mの濃度でも約15%
の失活しか見られない。また、硫酸イオンとアルカリ金
属との塩は他の塩類(NaClを除く)と比べて濃度ア
ップに伴う酵素活性の低下が少ないことが判る。
(Measurement procedure) 10 μl of the enzyme was injected into reaction buffer 2 containing each salt, and the activity was determined from the height of the β-galactosidase activity peak in each reaction buffer. (Results) The relationship between each salt concentration and β-galactosidase activity is shown in FIG. 6. As shown in Figure 6, in the case of (NH4)2SO4, it is almost 100% deactivated at a concentration of 0.4M, but N
For a2SO4 and NaCl, even at a concentration of 1M, it is about 15%
All I can see is the deactivation of . It is also seen that the enzyme activity of salts of sulfate ions and alkali metals decreases less with increasing concentration than other salts (excluding NaCl).

【0034】実験例2.β−ガラクトシダーゼの検量線
(反応用緩衝液1)リン酸1ナトリウム 4.2g、リ
ン酸2ナトリウム 80.0gを精製水に溶解して全量
5 lとし、反応用緩衝液1とした。 (反応用緩衝液2)(NH4)2SO4を反応用緩衝液
に溶解して、(NH4)2SO4濃度 1.10Mの溶
液を調製し、pH7.5になるように4N NaOHで
調整した。同様に、Na2SO4,NaClを各々反応
用緩衝液1に溶解して、反応用緩衝液2とした。 (抗体溶液)抗ヒトα−フェトプロテイン(マウス)モ
ノクローナル抗体(和光純薬工業株式会社製)を常法に
より処理してFab’とし、これに常法によりβ−ガラ
クトシダーゼを標識して得たβ−ガラクトシダーゼ標識
抗ヒトα−フェトプロテイン−Fab’を反応用緩衝液
1に溶解して、20,16,12,8,4,2 nMに
なるように調製し、抗体溶液とした。 (基質液)4−メチルウンベリフェリル−β−D−ガラ
クトピラノシド 1mgをDMF 30mlに溶解し、
反応用緩衝液1を加え、全量100mlとして基質液と
した。 (HPLCの使用条件)システムの概略を図1に示す。 カラム:TSKgel Butyl−NPR(4.6m
m×3.5cm,東ソー社製) 流速:反応用緩衝液2  1ml/min、基質液  
0.1ml/min。 グラジエントパターン:各塩を含む反応用緩衝液2から
反応用緩衝液1へのリニアグラジエント(10分)(図
7)。 検出:励起波長  350nm、蛍光波長  460n
mで蛍光を測定した。
Experimental example 2. Calibration curve for β-galactosidase (reaction buffer 1) 4.2 g of monosodium phosphate and 80.0 g of disodium phosphate were dissolved in purified water to make a total volume of 5 liters, and reaction buffer 1 was prepared. (Reaction Buffer 2) (NH4)2SO4 was dissolved in a reaction buffer to prepare a solution with a (NH4)2SO4 concentration of 1.10M, and the pH was adjusted to 7.5 with 4N NaOH. Similarly, Na2SO4 and NaCl were each dissolved in reaction buffer 1 to prepare reaction buffer 2. (Antibody solution) Anti-human α-fetoprotein (mouse) monoclonal antibody (manufactured by Wako Pure Chemical Industries, Ltd.) was treated with a conventional method to obtain Fab', which was then labeled with β-galactosidase using a conventional method to obtain β- Galactosidase-labeled anti-human α-fetoprotein-Fab' was dissolved in reaction buffer 1 to prepare an antibody solution of 20, 16, 12, 8, 4, 2 nM. (Substrate solution) 1 mg of 4-methylumbelliferyl-β-D-galactopyranoside was dissolved in 30 ml of DMF,
Reaction buffer 1 was added to make the total volume 100 ml, which was used as a substrate solution. (Conditions for use of HPLC) An outline of the system is shown in Fig. 1. Column: TSKgel Butyl-NPR (4.6m
m x 3.5 cm, Tosoh Corporation) Flow rate: Reaction buffer 2 1 ml/min, substrate solution
0.1ml/min. Gradient pattern: linear gradient from reaction buffer 2 containing each salt to reaction buffer 1 (10 minutes) (FIG. 7). Detection: Excitation wavelength 350nm, fluorescence wavelength 460n
Fluorescence was measured at m.

【0035】(測定操作)各塩を含む反応用緩衝液2で
、各濃度の抗体溶液10μlをインジェクションし、溶
出したβ−ガラクトシダーゼ活性ピークの高さより活性
を求めた。 (結果)NaClを用いた場合には、β−ガラクトシダ
ーゼ標識抗ヒトα−フェトプロテイン−Fab’はカラ
ムに吸着されず素通りした。Na2SO4を用いた場合
は9.5分後に、(NH4)2SO4を用いた場合は9
.8分後に溶出した。各酵素濃度と活性との関係を図8
に示す。図8より明らかなように検量関係は、どの塩を
用いても原点を通る直線となった。但し、測定感度は、
Na2SO4とNaClの場合は(NH4)2SO4の
20倍以上高感度であった。
(Measurement procedure) 10 μl of antibody solution of each concentration was injected using reaction buffer 2 containing each salt, and the activity was determined from the height of the eluted β-galactosidase activity peak. (Results) When NaCl was used, β-galactosidase-labeled anti-human α-fetoprotein-Fab' was not adsorbed to the column and passed through. After 9.5 minutes when using Na2SO4, after 9.5 minutes when using (NH4)2SO4
.. It eluted after 8 minutes. Figure 8 shows the relationship between each enzyme concentration and activity.
Shown below. As is clear from FIG. 8, the calibration relationship was a straight line passing through the origin no matter which salt was used. However, the measurement sensitivity is
In the case of Na2SO4 and NaCl, the sensitivity was more than 20 times higher than that of (NH4)2SO4.

【0036】実施例1.α−フェトプロテイン(AFP
)の測定 (反応用緩衝液1)リン酸1ナトリウム 4.2g、リ
ン酸2ナトリウム 80.0gを精製水に溶解して全量
5 lとし、反応用緩衝液1とした。 (反応用緩衝液2)反応用緩衝液1にNa2SO4を溶
解して、Na2SO4濃度 1.10Mの溶液を調製し
、4NNaOHでpH7.5とし、反応用緩衝液2Aと
した。同様に、Li2SO4を反応用緩衝液1に溶解し
て、1.10M(pH7.5)とし、反応用緩衝液2B
とした。 (反応用緩衝液3)反応用緩衝液1に牛血清アルブミン
を0.2%溶解して、反応用緩衝液3とした。 (抗体溶液1)抗ヒトα−フェトプロテイン(マウス)
モノクローナル抗体1(クローンNo.10−1)(和
光純薬工業株式会社製)を常法により処理してFab’
とし、これに常法によりβ−ガラクトシダーゼを標識し
て得たβ−ガラクトシダーゼ標識抗ヒトα−フェトプロ
テイン−Fab’を反応用緩衝液3に溶解して、100
nMになるように調製し、抗体溶液1とした。 (抗体溶液2)常法により、上記抗ヒトα−フェトプロ
テイン抗体(クローンNo.10−1)とエピトープが
違うことが確認された、抗ヒトα−フェトプロテイン(
マウス)モノクローナル抗体2(クローンNo.2−1
)(和光純薬工業株式会社製)を抗体溶液1の場合と同
様に処理し、β−ガラクトシダーゼ標識抗ヒトα−フェ
トプロテイン−Fab’を得た。標識抗体を反応用緩衝
液3に溶解して、100nMになるように調製し、抗体
溶液2とした。 (基質液)4−メチルウンベリフェリル−β−D−ガラ
クトピラノシド 1mgをDMF 30mlに溶解し、
反応用緩衝液1を加え、全量100mlとして基質液と
した。 (試料)ヒト胎盤製α−フェトプロテイン(和光純薬工
業株式会社製)を反応用緩衝液3で10,20,40,
60,80,100ng/mlに調製した。 (HPLCの使用条件) システムの概略を図1に示す。カラム:TSKgel 
Butyl−NPR(4.6mm×3.5cm,東ソー
社製)流速:反応用緩衝液1+反応用緩衝液2  1m
l/min、基質液  0.1ml/min。 グラジエントパターン:反応用緩衝液1と反応用緩衝液
2の割合が3:7で5分間、9:1の割合で5分間溶出
した(図2)。 検出:励起波長  350nm、蛍光波長  460n
mで蛍光を測定した。
Example 1. α-fetoprotein (AFP)
) Measurement (Reaction Buffer 1) 4.2 g of monosodium phosphate and 80.0 g of disodium phosphate were dissolved in purified water to make a total volume of 5 liters, and reaction buffer 1 was prepared. (Reaction Buffer 2) Na2SO4 was dissolved in Reaction Buffer 1 to prepare a solution with a Na2SO4 concentration of 1.10M, and the pH was adjusted to 7.5 with 4N NaOH to obtain Reaction Buffer 2A. Similarly, Li2SO4 was dissolved in reaction buffer 1 to make it 1.10M (pH 7.5), and Li2SO4 was dissolved in reaction buffer 2B.
And so. (Reaction Buffer 3) 0.2% bovine serum albumin was dissolved in Reaction Buffer 1 to obtain Reaction Buffer 3. (Antibody solution 1) Anti-human α-fetoprotein (mouse)
Monoclonal antibody 1 (clone No. 10-1) (manufactured by Wako Pure Chemical Industries, Ltd.) was treated with a conventional method to obtain Fab'
Then, β-galactosidase-labeled anti-human α-fetoprotein-Fab′ obtained by labeling β-galactosidase by a conventional method was dissolved in reaction buffer 3 to give 100%
Antibody solution 1 was prepared to have a concentration of nM. (Antibody solution 2) Anti-human α-fetoprotein (anti-human α-fetoprotein), which was confirmed to have a different epitope from the above-mentioned anti-human α-fetoprotein antibody (clone No. 10-1) by a conventional method.
Mouse) Monoclonal Antibody 2 (Clone No. 2-1
) (manufactured by Wako Pure Chemical Industries, Ltd.) in the same manner as in the case of antibody solution 1 to obtain β-galactosidase-labeled anti-human α-fetoprotein-Fab'. The labeled antibody was dissolved in reaction buffer 3 to a concentration of 100 nM, which was used as antibody solution 2. (Substrate solution) 1 mg of 4-methylumbelliferyl-β-D-galactopyranoside was dissolved in 30 ml of DMF,
Reaction buffer 1 was added to make the total volume 100 ml, which was used as a substrate solution. (Sample) Human placenta α-fetoprotein (manufactured by Wako Pure Chemical Industries, Ltd.) was mixed with reaction buffer 3 at 10, 20, 40,
The concentrations were adjusted to 60, 80, and 100 ng/ml. (Conditions for use of HPLC) An outline of the system is shown in Figure 1. Column: TSKgel
Butyl-NPR (4.6 mm x 3.5 cm, manufactured by Tosoh Corporation) Flow rate: Reaction buffer 1 + reaction buffer 2 1 m
l/min, substrate solution 0.1ml/min. Gradient pattern: Elution was performed for 5 minutes at a ratio of reaction buffer 1 and reaction buffer 2 of 3:7, and for 5 minutes at a ratio of 9:1 (Figure 2). Detection: Excitation wavelength 350nm, fluorescence wavelength 460n
Fluorescence was measured at m.

【0037】(測定操作)抗体溶液1 50μlと抗体
溶液2 50μlを混合して、37℃,30分間反応さ
せ、この反応液の50μlをカラムにインジェクション
した。 (結果)α−フェトプロテインと結合していない標識抗
体は2.5分後に、免疫複合体(抗体1と抗体2とα−
フェトプロテイン)は7.7分後に溶出した。各α−フ
ェトプロテイン濃度と7.7分のピークの高さとの関係
を図3に示す。図3より明らかなように何れの場合も良
好な検量関係が得られた。尚、Na2SO4の場合、L
i2SO4の約1.8倍の感度であった。
(Measurement procedure) 50 μl of antibody solution 1 and 50 μl of antibody solution 2 were mixed and reacted at 37° C. for 30 minutes, and 50 μl of this reaction solution was injected into a column. (Results) After 2.5 minutes, the labeled antibody that is not bound to α-fetoprotein forms an immune complex (antibody 1, antibody 2 and α-fetoprotein).
Fetoprotein) eluted after 7.7 minutes. The relationship between each α-fetoprotein concentration and the peak height at 7.7 minutes is shown in FIG. As is clear from FIG. 3, good calibration relationships were obtained in all cases. In addition, in the case of Na2SO4, L
The sensitivity was approximately 1.8 times that of i2SO4.

【0038】実施例  2.ヒト絨毛性ゴナドトロピン
(hCG)の測定 (反応用緩衝液1)リン酸1ナトリウム 4.2g、リ
ン酸2ナトリウム 80.0gを精製水に溶解して全量
5 lとし、反応用緩衝液1とした。 (反応用緩衝液2)反応用緩衝液1にNa2SO4を溶
解して、Na2SO4濃度 1.10Mの溶液を調製し
、4NNaOHでpH7.5とし、反応用緩衝液2とし
た。 (反応用緩衝液3)反応用緩衝液1に牛血清アルブミン
を0.2%溶解して、反応用緩衝液3とした。 (抗体溶液1)抗hCG α鎖(マウス)モノクローナ
ル抗体(和光純薬工業株式会社製)を常法により処理し
てFab’とし、これに常法によりβ−ガラクトシダー
ゼを標識して得たβ−ガラクトシダーゼ標識抗hCG−
Fab’を反応用緩衝液3に溶解して、50nMになる
ように調製し、抗体溶液1とした。 (抗体溶液2)抗hCG β鎖(マウス)モノクローナ
ル抗体(和光純薬工業株式会社製)を抗体溶液1の場合
と同様に処理し、β−ガラクトシダーゼ標識抗hCG−
Fab’を得た。標識抗体を反応用緩衝液3に溶解して
、150nMになるように調製し、抗体溶液2とした。 (基質液)4−メチルウンベリフェリル−β−D−ガラ
クトピラノシド 1mgをDMF 30mlに溶解し、
反応用緩衝液1を加え、全量100mlとして基質液と
した。 (試料)市販のhCG(シグマ社製)を反応用緩衝液3
で10,20,40,60,80,100mIU/ml
に調製した。 (HPLCの使用条件) システムの概略を図1に示す。カラム:TSKgel 
Butyl−NPR(4.6mm×3.5cm,東ソー
社製)流速:反応用緩衝液1+反応用緩衝液2  1m
l/min、基質液  0.1ml/min。 グラジエントパターン:反応用緩衝液1と反応用緩衝液
2の割合が3:7で5分間、9:1の割合で5分間溶出
した(図2)。 検出:励起波長  350nm、蛍光波長  460n
mで蛍光を測定した。
Example 2. Measurement of human chorionic gonadotropin (hCG) (Reaction buffer 1) 4.2 g of monosodium phosphate and 80.0 g of disodium phosphate were dissolved in purified water to a total volume of 5 liters, which was used as reaction buffer 1. . (Reaction Buffer 2) Na2SO4 was dissolved in Reaction Buffer 1 to prepare a solution with a Na2SO4 concentration of 1.10M, and the pH was adjusted to 7.5 with 4N NaOH to obtain Reaction Buffer 2. (Reaction Buffer 3) 0.2% bovine serum albumin was dissolved in Reaction Buffer 1 to obtain Reaction Buffer 3. (Antibody solution 1) Anti-hCG α chain (mouse) monoclonal antibody (manufactured by Wako Pure Chemical Industries, Ltd.) was treated with a conventional method to obtain Fab', which was then labeled with β-galactosidase using a conventional method to obtain β- Galactosidase-labeled anti-hCG-
Fab' was dissolved in reaction buffer 3 to give a concentration of 50 nM, which was used as antibody solution 1. (Antibody solution 2) Anti-hCG β chain (mouse) monoclonal antibody (manufactured by Wako Pure Chemical Industries, Ltd.) was treated in the same manner as in antibody solution 1, and β-galactosidase-labeled anti-hCG-
Fab' was obtained. The labeled antibody was dissolved in reaction buffer 3 to a concentration of 150 nM, which was used as antibody solution 2. (Substrate solution) 1 mg of 4-methylumbelliferyl-β-D-galactopyranoside was dissolved in 30 ml of DMF,
Reaction buffer 1 was added to make the total volume 100 ml, which was used as a substrate solution. (Sample) Commercially available hCG (manufactured by Sigma) was added to reaction buffer 3
10, 20, 40, 60, 80, 100 mIU/ml
It was prepared as follows. (Conditions for use of HPLC) An outline of the system is shown in Figure 1. Column: TSKgel
Butyl-NPR (4.6 mm x 3.5 cm, manufactured by Tosoh Corporation) Flow rate: Reaction buffer 1 + reaction buffer 2 1 m
l/min, substrate solution 0.1ml/min. Gradient pattern: Elution was performed for 5 minutes at a ratio of reaction buffer 1 and reaction buffer 2 of 3:7, and for 5 minutes at a ratio of 9:1 (Figure 2). Detection: Excitation wavelength 350nm, fluorescence wavelength 460n
Fluorescence was measured at m.

【0039】(測定操作)抗体溶液1 50μlと抗体
溶液2 50μlと試料 50μlを混合して、37℃
,30分間反応させ、この反応液の100μlをカラム
にインジェクションした。 (結果)hCGと結合していない標識抗体は2.5分後
に、免疫複合体(抗体1と抗体2とhCG)は7.8分
後に溶出した。 各hCG濃度と7.8分のピークの高さとの関係を図4
に示す。図4より明らかなように、この場合も良好な検
量関係が得られた。
(Measurement procedure) Mix 50 μl of antibody solution 1, 50 μl of antibody solution 2, and 50 μl of sample, and heat at 37°C.
, for 30 minutes, and 100 μl of this reaction solution was injected into the column. (Results) The labeled antibody not bound to hCG was eluted after 2.5 minutes, and the immune complex (antibody 1, antibody 2, and hCG) was eluted after 7.8 minutes. Figure 4 shows the relationship between each hCG concentration and the peak height at 7.8 minutes.
Shown below. As is clear from FIG. 4, a good calibration relationship was obtained in this case as well.

【0040】[0040]

【発明の効果】以上述べた如く、本発明は、測定対象物
質とこれに対する結合能物質との相互作用を利用して試
料中の微量成分を測定する方法に於いて、標識物質とし
てβ−ガラクトシダーゼを用い、該相互作用の結果生じ
る標識複合体A(又は標識複合体B)と遊離の標識結合
能物質(又は標識測定対象物質)との分離を硫酸イオン
とアルカリ金属との塩を添加して成る移動相(溶離液)
を用いて、ポストカラム法で疎水クロマトグラフィ用充
填剤を充填したカラムを装着した高速液体クロマトグラ
フィにより行う方法を提供するものであり、本発明に係
る塩を添加して成る移動相(溶離液)を用いれば高塩濃
度下でもβ−ガラクトシダーゼの活性が阻害されること
なく、高感度の測定が行える点に顕著な効果を有し、従
来のEIAやRIA等の測定法に比較して容易に且つ極
めて短時間で高精度の測定が行えることから、斯業に貢
献するところ大なる発明である。
As described above, the present invention provides a method for measuring trace components in a sample by utilizing the interaction between a target substance and a substance capable of binding thereto, in which β-galactosidase is used as a labeling substance. The label complex A (or label complex B) produced as a result of the interaction and the free label-binding substance (or the target substance to be measured) are separated by adding a salt of sulfate ion and an alkali metal. Mobile phase (eluent) consisting of
The present invention provides a method for performing high-performance liquid chromatography using a post-column method using a column packed with a hydrophobic chromatography packing material, in which a mobile phase (eluent) containing the salt according to the present invention is used. When used, β-galactosidase activity is not inhibited even under high salt concentrations, and it has a remarkable effect in that highly sensitive measurements can be performed, and it is easier and more effective than conventional measurement methods such as EIA and RIA. This is a great invention that will contribute to this industry because highly accurate measurements can be made in an extremely short period of time.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】図1は、実験例2、実施例1及び実施例2で使
用したHPLCのシステムの概略図を示したものである
FIG. 1 shows a schematic diagram of the HPLC system used in Experimental Example 2, Example 1, and Example 2.

【図2】図2は、実施例1及び実施例2に於けるHPL
Cのグラジエントパターンを示したもので、縦軸は、溶
出液(反応用緩衝液1+反応用緩衝液2)中の反応用緩
衝液1の濃度(w/w%)を、横軸は時間(分)を夫々
表わす。
[Figure 2] Figure 2 shows HPL in Example 1 and Example 2.
This shows the gradient pattern of C. The vertical axis represents the concentration (w/w%) of reaction buffer 1 in the eluate (reaction buffer 1 + reaction buffer 2), and the horizontal axis represents time ( minutes) respectively.

【図3】図3は、実施例1に於いて得られたα−フェト
プロテインの検量線を示し、横軸の各試料のα−フェト
プロテイン濃度(ng/ml)に対して得られた免疫複
合体のピークの高さ(μV)を縦軸に沿ってプロットし
た点を結んだものである。但し、−□−は反応用緩衝液
2A(Na2SO4)を、−○−は反応用緩衝液2B(
Li2SO4)を夫々使用した時に得られた結果を示す
[Fig. 3] Fig. 3 shows the calibration curve of α-fetoprotein obtained in Example 1, and the immune complex obtained for the α-fetoprotein concentration (ng/ml) of each sample on the horizontal axis. It connects the points where the peak height (μV) of is plotted along the vertical axis. However, -□- uses reaction buffer 2A (Na2SO4), and -○- uses reaction buffer 2B (Na2SO4).
The results obtained when using Li2SO4) are shown.

【図4】図4は、実施例2に於いて得られたヒト絨毛性
ゴナドトロピンの検量線を示し、横軸の各試料のヒト絨
毛性ゴナドトロピン濃度(mIU/ml)に対して得ら
れた免疫複合体のピークの高さ(μV)を縦軸に沿って
プロットした点を結んだものである。
FIG. 4 shows the calibration curve of human chorionic gonadotropin obtained in Example 2, and the immunity obtained against the human chorionic gonadotropin concentration (mIU/ml) of each sample on the horizontal axis. The peak height (μV) of the complex is plotted along the vertical axis and the points are connected.

【図5】図5は、実験例1で使用したHPLCのシステ
ムの概略図を示したものである。
FIG. 5 shows a schematic diagram of the HPLC system used in Experimental Example 1.

【図6】図6は、実験例1に於ける反応用緩衝液2中の
各塩の塩濃度とβ−ガラクトシダーゼの活性の関係を示
し、横軸の各塩の塩濃度(M)に対するβ−ガラクトシ
ダーゼ活性ピークの高さ(μV)を縦軸に沿ってプロッ
トしたものである。但し、−●−は(NH4)2SO4
、−×−はLi2SO4、−○−はNa2SO4、−+
−はK2SO4、−□−はRb2SO4、−◇−はNa
Cl、−▽−はCH3COONH4、−△−はK3PO
4を夫々示す。
FIG. 6 shows the relationship between the salt concentration of each salt in the reaction buffer 2 and the activity of β-galactosidase in Experimental Example 1, and shows the relationship between the salt concentration (M) of each salt on the horizontal axis - Galactosidase activity peak height (μV) plotted along the vertical axis. However, -●- is (NH4)2SO4
, -x- is Li2SO4, -○- is Na2SO4, -+
- is K2SO4, -□- is Rb2SO4, -◇- is Na
Cl, -▽- is CH3COONH4, -△- is K3PO
4 are shown respectively.

【図7】図7は、実験例2に於けるHPLCのグラジエ
ントパターンを示したもので、縦軸は、溶出液(反応用
緩衝液1+反応用緩衝液2)中の反応用緩衝液1の濃度
(w/w%)を、横軸は時間(分)を夫々表わす。
[Fig. 7] Fig. 7 shows the HPLC gradient pattern in Experimental Example 2, and the vertical axis indicates the concentration of reaction buffer 1 in the eluate (reaction buffer 1 + reaction buffer 2). The concentration (w/w%) and the horizontal axis represent time (minutes), respectively.

【図8】図8は、実験例2に於いて得られたβ−ガラク
トシダーゼの検量線を示し、横軸の各抗体溶液中のβ−
ガラクトシダーゼ濃度(nM)に対して得られたβ−ガ
ラクトシダーゼ活性ピークの高さ(μV)を縦軸に沿っ
てプロットした点を結んだものである。但し、−○−は
反応用緩衝液1に(NH4)2SO4を、−□−は反応
用緩衝液1にNa2SO4を−△−は反応用緩衝液1に
NaClを夫々溶解して使用した時に得られた結果を夫
々示す。
[Fig. 8] Fig. 8 shows a calibration curve of β-galactosidase obtained in Experimental Example 2, in which β-galactosidase in each antibody solution on the horizontal axis is shown.
The height (μV) of the β-galactosidase activity peak obtained against the galactosidase concentration (nM) is plotted along the vertical axis, and the points are connected. However, -○- is obtained when (NH4)2SO4 is dissolved in reaction buffer 1, -□- is obtained by dissolving Na2SO4 in reaction buffer 1, and -△- is used by dissolving NaCl in reaction buffer 1. The results are shown below.

Claims (13)

【特許請求の範囲】[Claims] 【請求項1】  測定対象物質を含有する生体由来の試
料を、標識物質で標識された、測定対象物質に対する結
合能を有する物質(以下、標識結合能物質と略記する。 )と混合して反応させた後、測定対象物質と標識結合能
物質との複合体(以下、標識複合体Aと略記する。)と
、遊離型の標識結合能物質とを高速液体クロマトグラフ
ィにより分離し、標識複合体A中の標識物質の量又は標
識結合能物質中の標識物質の量を測定することにより試
料中の測定対象物質量を測定する方法に於いて、標識物
質としてβ−ガラクトシダーゼを用い、硫酸イオンとア
ルカリ金属との塩を添加して成る移動相(溶離液)を用
いて、疎水クロマトグラフィ用充填剤を充填したカラム
を装着した高速液体クロマトグラフィにより標識複合体
Aと遊離型の標識結合能物質とを分離することを特徴と
する該測定方法。
Claim 1: A biological sample containing a substance to be measured is mixed with a substance labeled with a labeling substance and has the ability to bind to the substance to be measured (hereinafter abbreviated as labeled binding substance) and reacted. After that, the complex of the substance to be measured and the label-binding substance (hereinafter abbreviated as label complex A) and the free label-binding substance are separated by high performance liquid chromatography, and the label complex A In the method of measuring the amount of a target substance in a sample by measuring the amount of a labeling substance in a sample or the amount of a labeling substance in a substance with label binding ability, β-galactosidase is used as a labeling substance, and sulfate ion and alkali are used. Using a mobile phase (eluent) containing a salt with a metal, the label complex A and the free label-binding substance are separated by high-performance liquid chromatography equipped with a column packed with a hydrophobic chromatography packing material. The measuring method is characterized in that:
【請求項2】  測定対象物質が、蛋白質、ペプチド、
核酸、糖鎖、脂質、薬物又はホルモンである請求項1に
記載の測定方法。
[Claim 2] The substance to be measured is a protein, a peptide,
The measuring method according to claim 1, which is a nucleic acid, a sugar chain, a lipid, a drug, or a hormone.
【請求項3】  測定対象物質が抗原又は抗体であり、
結合能物質が、測定対象物質に対する抗体又は抗原であ
る請求項1に記載の測定方法。
[Claim 3] The substance to be measured is an antigen or an antibody,
2. The measuring method according to claim 1, wherein the binding substance is an antibody or an antigen against the substance to be measured.
【請求項4】  測定対象物質に対する抗体が、標識さ
れたモノクローナル抗体である請求項3に記載の測定方
法。
4. The measurement method according to claim 3, wherein the antibody against the substance to be measured is a labeled monoclonal antibody.
【請求項5】  測定対象物質に対する抗体が、標識さ
れた、モノクローナル抗体由来のFab又はFab’で
ある請求項3に記載の測定方法。
5. The measurement method according to claim 3, wherein the antibody against the substance to be measured is a labeled Fab or Fab' derived from a monoclonal antibody.
【請求項6】  測定対象物質が糖鎖であり、結合能物
質がレクチンである請求項1に記載の測定方法。
6. The measurement method according to claim 1, wherein the substance to be measured is a sugar chain and the binding substance is a lectin.
【請求項7】  レクチンが、コンカナバリンA、レン
ズマメレクチン、インゲンマメレクチン、ダツラレクチ
ン又は小麦胚芽レクチンである請求項6に記載の測定方
法。
7. The measuring method according to claim 6, wherein the lectin is concanavalin A, lentil lectin, kidney bean lectin, Datura lectin, or wheat germ lectin.
【請求項8】  測定対象物質がデオキシリボ核酸を構
成する1本鎖ポリヌクレオチドであり、結合能物質が該
ポリヌクレオチド鎖に対して相補的なポリヌクレオチド
鎖である請求項1に記載の測定方法。
8. The measuring method according to claim 1, wherein the substance to be measured is a single-stranded polynucleotide constituting deoxyribonucleic acid, and the binding substance is a polynucleotide chain complementary to the polynucleotide chain.
【請求項9】  測定対象物質を含有する生体由来の試
料を、標識物質で標識された測定対象物質(以下、標識
測定対象物質と略記する。)及び結合能物質と混合して
反応させた後、標識測定対象物質と結合能物質との複合
体(以下、標識複合体Bと略記する。)と、遊離型の標
識測定対象物質とを高速液体クロマトグラフィにより分
離し、標識複合体B中の標識物質の量又は遊離型の標識
測定対象物質中の標識物質の量を測定することにより試
料中の測定対象物質量を測定する方法に於いて、標識物
質としてβ−ガラクトシダーゼを用い、硫酸イオンとア
ルカリ金属との塩を添加して成る移動相(溶離液)を用
いて、疎水クロマトグラフィ用充填剤を充填したカラム
を装着した高速液体クロマトグラフィにより標識複合体
Bと遊離型の標識測定対象物質とを分離することを特徴
とする該測定方法。
9. After mixing and reacting a biological sample containing a substance to be measured with a substance to be measured labeled with a labeling substance (hereinafter abbreviated as a labeled substance to be measured) and a binding substance; The complex of the labeled target substance to be measured and the binding substance (hereinafter abbreviated as labeled complex B) and the free labeled target substance to be measured are separated by high-performance liquid chromatography, and the label in the labeled complex B is separated. In a method for measuring the amount of a target substance in a sample by measuring the amount of a substance or the amount of a labeling substance in a free labeled target substance, β-galactosidase is used as a labeling substance, and sulfate ion and alkali are used. Using a mobile phase (eluent) containing a salt with a metal, the labeled complex B and the free labeled analyte are separated by high performance liquid chromatography equipped with a column packed with a hydrophobic chromatography packing material. The measuring method is characterized in that:
【請求項10】  測定対象物質が、蛋白質、ペプチド
、核酸、糖鎖、脂質、薬物又はホルモンである請求項9
に記載の測定方法。
Claim 10: Claim 9 wherein the substance to be measured is a protein, peptide, nucleic acid, sugar chain, lipid, drug, or hormone.
Measurement method described in.
【請求項11】  測定対象物質が抗原又は抗体であり
、結合能物質が、測定対象物質に対する抗体又は抗原で
ある請求項9に記載の測定方法。
11. The measurement method according to claim 9, wherein the substance to be measured is an antigen or an antibody, and the binding substance is an antibody or antigen to the substance to be measured.
【請求項12】  測定対象物質に対する抗体が、モノ
クローナル抗体である請求項11に記載の測定方法。
12. The measurement method according to claim 11, wherein the antibody against the substance to be measured is a monoclonal antibody.
【請求項13】  測定対象物質に対する抗体が、モノ
クローナル抗体由来のFab又はFab’である請求項
11に記載の測定方法。
13. The measurement method according to claim 11, wherein the antibody against the substance to be measured is Fab or Fab' derived from a monoclonal antibody.
JP3090968A 1991-03-30 1991-03-30 Method for measuring small amount of constituent Withdrawn JPH04320965A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3090968A JPH04320965A (en) 1991-03-30 1991-03-30 Method for measuring small amount of constituent

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3090968A JPH04320965A (en) 1991-03-30 1991-03-30 Method for measuring small amount of constituent

Publications (1)

Publication Number Publication Date
JPH04320965A true JPH04320965A (en) 1992-11-11

Family

ID=14013301

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3090968A Withdrawn JPH04320965A (en) 1991-03-30 1991-03-30 Method for measuring small amount of constituent

Country Status (1)

Country Link
JP (1) JPH04320965A (en)

Similar Documents

Publication Publication Date Title
EP0357869B1 (en) Affinity substance assay with HPLC step
CA1237967A (en) Specific binding assay employing anti-g6pdh as label
US4350760A (en) Method for the separation of a protein substance from a solution containing the same by affinity filtration and application of said method to enzymatic assays
JP2832083B2 (en) Acylated protein aggregates and their use for suppressing interference in immunoassays
CA1177750A (en) Quantitative determination of adenosine
US5792606A (en) Nucleic acid hybridization based assay for determining a substance of interest
CA1194415A (en) Immunoglobulin half-molecules and process for producing hybrid antibodies
JP3070418B2 (en) Differential measurement of glycoproteins
JPS59206762A (en) Cascade-amplified zymogen invigorated immunity measuring method
US5017559A (en) Agent for blocking nonspecific adsorption, process for preparing thereof and method of blocking nonspecific adsorption
JPH04320965A (en) Method for measuring small amount of constituent
EP0441470B1 (en) Process for separating and measuring trace components
US5571729A (en) Process for separating complex
JP2781873B2 (en) Analysis method
JP2994739B2 (en) Rapid measurement of trace components
JPH0666800A (en) Separating method for complex
FR2519764A1 (en) METHOD FOR IMMUNODETERMINATION OF SOLID PHASE ENZYMES BY APPLICATION OF CHROMATOGRAPHY TO A SINGLE COLUMN
EP0253270B1 (en) Method for diagnostic immunoassay by solid phase separation
JP3376955B2 (en) Complex separation method
JP2768079B2 (en) High precision analysis method
JP2001183375A (en) Enzyme marker antibody
JPH0740031B2 (en) Immunological measurement method
JPS60135763A (en) Specific bonding analysis method and reagent group
JP3501381B2 (en) Rheumatoid factor measurement reagent
EP0228810A1 (en) Enzyme immunoassay method for epidermal growth factor

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19980514