JPH04320676A - Production of fungus of mycorhiza of vesicular-arbuscular - Google Patents

Production of fungus of mycorhiza of vesicular-arbuscular

Info

Publication number
JPH04320676A
JPH04320676A JP11699991A JP11699991A JPH04320676A JP H04320676 A JPH04320676 A JP H04320676A JP 11699991 A JP11699991 A JP 11699991A JP 11699991 A JP11699991 A JP 11699991A JP H04320676 A JPH04320676 A JP H04320676A
Authority
JP
Japan
Prior art keywords
mycorrhizal fungi
medium
plants
culture
oligosaccharides
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11699991A
Other languages
Japanese (ja)
Inventor
Haruo Sumiya
治夫 角谷
Hidehiko Ishimaru
英彦 石丸
Sonoko Ishikawa
石川 園子
Rika Matsuno
松野 里香
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Lion Corp
Original Assignee
Lion Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lion Corp filed Critical Lion Corp
Priority to JP11699991A priority Critical patent/JPH04320676A/en
Publication of JPH04320676A publication Critical patent/JPH04320676A/en
Pending legal-status Critical Current

Links

Landscapes

  • Cultivation Of Plants (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

PURPOSE:To multiply the title fungus efficiently by adding an oligosaccharide to a medium in proliferation of a fungus of mycorrhiza of vesicular-arbuscular in association with a plant cultured under a condition of in vitro. CONSTITUTION:A fungus of mycorrhiza of vesicular-arbuscular (fungus of mycorrhiza of VA), a fungus of endotropic mycorrhiza having a cystidium and a dendrophysis is multiplied in an oligosaccharide-containing medium in association with a plant cultured under a condition of in vitro. Root tissue, hair root or adventitious root is preferable as the plant cultured under a condition of in vitro. Multiplication of the fungus of mycorrhiza of VA is preferably carried out at pH4-7 at 20-30 deg.C.

Description

【発明の詳細な説明】 【0001】 【産業上の利用分野】本発明は、VA菌根菌と植物とを
共生させ、VA菌根菌を大量に生産する方法に関する。 【0002】 【従来の技術】VA菌根菌は、植物と共生することによ
って、その共生植物の養分吸収(特にリン)を促したり
、共生植物を土壌の病原菌から保護する等、好ましい影
響を与えることが現在までに多数報告されている。そこ
で、工業的にVA菌根菌を生産し共生させることができ
れば、作物への施肥量軽減、悪い栽培環境に対する抵抗
性の向上、農産物の品質の向上が期待できる。 【0003】しかし、VA菌根菌は植物と共生していな
ければ増殖しない絶対共生菌で純粋培養できないことか
ら、効率良く大量に生産する技術の開発が大変困難とな
っている。 【0004】現在までに提案されたVA菌根菌の培養方
法には、大きく分けて次の2つの方法がある。1つは、
以下のように圃場、鉢、水耕栽培等の無菌化しない条件
下で、VA菌根菌を植物と共生させ培養する方法である
。 【0005】(1) 鉢培養において、培養基体として
多孔性構造を有する物質などを用い植物体を栽培し、V
A菌根菌を共生させ増殖させる方法(特開昭60−23
7987号公報)。 (2) 水耕栽培において、培養液を薄膜状にし常時培
地の供給を行なって植物体の栽培を行ない、VA菌根菌
を増殖させる方法(特開昭55−118390号公報)
。 (3) 小容量の鉢培養において、短日植物を栽培しそ
れにVA菌根菌を感染させ、さらに短日処理を行なうこ
とによりVA菌根菌の増殖を促進する方法(特開平2−
227068号公報)。 【0006】2つめの方法は、無菌的な容器内、すなわ
ちインビトロ条件下でVA菌根菌と植物とを共生させ、
VA菌根菌を増殖する方法であり、以下のような報告が
ある。 【0007】(1) 根の器官培養物とVA菌根菌を共
生させ増殖させる方法(特開昭62−19028号公報
)。 (2) 毛状根とVA菌根菌を共生させ増殖させる方法
(特公昭62−49037号公報)。 (3) 毛状根とVA菌根菌を共生させ増殖させる方法
(G. Becard ら、New Phytol. 
108,211 (1988))。 【0008】ここで毛状根とは、毛根病菌アグロバクテ
リウム・リゾジェネス(Agrobacterium 
rhizogenes)を植物の茎、葉、根等に接種す
ると感染部位から発生する根で、アグロバクテリウム・
リゾジェネス中に存在する巨大プラスミド(Riプラス
ミド)の遺伝子の一部が植物の遺伝子に組み込まれるこ
とにより発生する。 【0009】しかし1つめの方法で作られたVA菌根菌
は、他の微生物(特に植物病原菌)による汚染の危険が
あり、作物苗等への感染源として利用するには適してい
ない。さらに、VA菌根菌の生産量が未だ十分でなかっ
た。 【0010】また、2つめの方法では、他の微生物によ
る汚染の危険は無いが、やはりVA菌根菌の生産量が未
だ十分でなかった。 【0011】一方、炭水化物がVA菌根菌に及ぼす影響
については、デンプン(多糖類)が影響を及ぼさず、デ
ンプン加水分解物であるブトウ糖(単糖類)、麦芽糖(
2糖類)、またショ糖(2糖類)、セルロース(多糖類
)がVA菌根菌の発芽管生長を抑制したことが報告され
ている(B. Mosse, Trans. Brit
. mycol.  Soc.,  42(3),27
3 (1959)。 【0012】しかし、植物とVA菌根菌との共生培養に
おいてこれらの炭水化物の効果を確認しておらず、VA
菌根菌増殖効果のある物質を炭水化物の中から見い出す
ことには成功していなかった。 【0013】また、オリゴ糖を植物の栽培に応用した報
告が、下記の通りいくつか行なわれている。(1) ア
ルギン酸オリゴ糖を用いる有用植物の栽培法(特開昭6
3−101302号公報)。 【0014】(2) アルギン酸オリゴ糖を施用する果
物の品質改良法 (特開昭63−226220号公報)
。 (3) 植物の生長を促進するオリゴ糖を用いる植物の
栽培法(特開昭63−215606号公報)。 【0015】(4) 微生物の生産する多糖体の分解物
またはその主成分であるオリゴ糖を用いる植物の栽培法
(特開昭64−79101号公報)。 (5) オリゴ糖を含有させた植物生育促進剤(特開平
1−319406号公報)。しかし、未だオリゴ糖をV
A菌根菌の製造方法に応用した例は知られていない。 【0016】 【発明が解決しようとする課題】本発明は、植物とVA
菌根菌との共生、増殖を効率的に行ない、大量供給が可
能な工業的なVA菌根菌の生産方法を提供することを目
的とする。 【0017】 【課題を解決するための手段】本発明のVA菌根菌の製
造方法は、インビトロ条件下で培養した植物とVA菌根
菌とを共生させ増殖させるに際し、培地にオリゴ糖を含
有せしめることを特徴とする。 【0018】 【発明の実施態様】本発明において用いられる植物は、
インビトロ条件下で培養されたものであり、組織、器官
培養物も含む。例えば、無菌播種して育てられた植物体
、カルスなどの組織や、毛状根、不定根、不定芽といっ
た器官培養物である。 【0019】VA菌根菌は通常植物の根に感染し増殖す
るので、上記のうち根組織、器官を有する無菌植物体、
毛状根、不定根が好ましい。 【0020】本発明で、植物のインビトロ条件下の培養
には、例えば従来から植物の組織培養に用いられている
培地、つまり、無機成分および炭素源を必須成分とし、
これに植物ホルモン類、ビタミン類およびアミノ酸類か
ら選ばれる少なくとも1種以上の成分を添加し、必要に
応じてその他の成分も添加されている培地を用いること
ができる。 【0021】上記培地中の無機成分としては、窒素、亜
鉛、鉄、銅、モリブデン、ホウ素、リン、コバルト、カ
リウム、カルシウム、マグネシウム、イオウ、マンガン
、塩素、ナトリウム、ヨウ素等があり、具体的には、硝
酸アンモニウム、リン酸2水素アンモニウム、硫酸アン
モニウム、塩化アンモニウム、硝酸ナトリウム、硝酸カ
ルシウム、硝酸カリウム、硫酸亜鉛、硫酸第1鉄、硫酸
第2鉄、エチレンジアミン4酢酸鉄、硫酸銅、モリブデ
ン酸、モリブデン酸ナトリウム、ホウ酸、リン酸、リン
酸1ナトリウム、リン酸カリウム、リン酸2ナトリウム
、リン酸3ナトリウム、塩化コバルト、塩化カリウム、
塩化カルシウム、硫酸マグネシウム、硫酸ナトリウム、
硫酸マンガン、ヨウ化カリウム等が例示される。 【0022】また炭素源には、ショ糖および他の炭水化
物、その誘導体、脂肪酸等の有機酸、エタノール等の1
級アルコール等が例示される。 【0023】植物ホルモン類には、インドール酢酸(I
AA)、ナフタレン酢酸(NAA)、p−クロロフェノ
キシイソ酪酸、2,4−ジクロロフェノキシ酢酸(2,
4−D)等のオーキシン類、カイネチン、ベンジルアデ
ニン、ゼアチン、ジヒドロゼアチン等のサイトカイニン
類が例示される。 【0024】ビタミン類には、ビオチン、チアミン(ビ
タミンB1)、ピリドキシン(ビタミンB6)、パント
テン酸、アスコルビン酸(ビタミンC)、イノシトール
、ニコチン酸等が例示される。 【0025】アミノ酸類には、グリシン、アラニン、グ
ルタミン、システイン等が例示される。この他に、ビタ
ミン、ホルモン等が含まれると言われている天然物、例
えばココナッツミルク、酵母エキス等も用いることがで
きる。 【0026】本発明で培地中の成分の濃度は、広い範囲
で変えることができる。通常は、無機成分を約0.1μ
M〜約100mM程度、炭素源を約1g/l〜120g
/l程度、さらに植物ホルモン類を約0.01μM〜約
10μM程度、ビタミン類およびアミノ酸類を、それぞ
れ約0.1mg/l〜約100mg/l程度とすること
ができる。 【0027】培地のpHは4〜7の弱酸性が好ましい。 本発明において、培地は固体でも液体でもよく、固体培
地を用いる場合の培地固化剤としては、寒天、ゲランガ
ムなどが例示される。また培養担体(多孔性物質、人工
土壌など)に液体培地を含浸させたもので培養すること
もできる。 【0028】本発明において、培養温度は約10℃〜約
40℃、特に約20℃〜約30℃が好適である。約10
℃未満では増殖速度が小さく、約40℃を越えても同様
に増殖速度が小さくなるからである。 【0029】本発明において用いられるVA菌根菌とし
ては、ギガスポラ属(Gigaspora)、グロマス
属(Glomus)、スクレロシスチス属(Scler
ocystis)、アカウロスポラ属(Accaulo
spora)、エントロホスポラ属(Entropho
spora)、スクテリスポラ属(Scutellis
pora)などが挙げられる。 【0030】VA菌根菌の胞子は、野生の植物や栽培植
物の根の付近の土壌、水耕栽培物の根、毛状根などの容
器内培養物より採集することができる。これらのうち、
土壌からギガスポラ・マルガリータの胞子を分離する方
法を以下に示す。 【0031】まず圃場または植物の鉢植えの土壌を採取
し、水に懸濁する。これを1〜2mmメッシュの篩で大
きなごみ、石等を除き、さらに通過液を 0.1mmメ
ッシュの篩に通す。 0.1mmメッシュの篩に残った
ものを流水で洗浄後集め、少量の水に懸濁しシャーレに
移す。これを実体顕微鏡下でごみと胞子とに選別し、胞
子のみをピペットで吸い取り別のシャーレに移す。この
操作を3回繰り返し、遠沈管に移した後、水を加えて超
音波を数秒当ててごみを分散させ、水を捨てることによ
り胞子を洗浄する。これを数回繰り返す。洗浄した胞子
の無菌化は、滅菌水で20〜30回洗浄するか、ストレ
プトマイシン等の抗生物質、種々の殺菌剤等を用いるこ
とによって行なう。 無菌培養下で得られた胞子についてはもちろんその必要
は無い。 【0032】以上のようにして単離した胞子を、無菌化
の確認や予備発芽のために、植物に接種する前に適当な
固体培地上で培養してもよい。 【0033】このVA菌根菌と前述のようにして得られ
たインビトロ植物とを共生させ、増殖を行なう。共生さ
せる接種源としてのVA菌根菌は、上記の方法で得た胞
子または予備発芽した胞子が通常用いられるが、他の物
質との混合物の状態や、根または毛状根と共生している
ものをそのまま分離せずに接種源として用いることも可
能である。 【0034】VA菌根菌の接種は、VA菌根菌接種源を
水、緩衝液等の液体、またはケイソウ土等の粉体、粒状
体に懸濁し、植物体と接触させることにより、あるいは
植物の付近に置くことにより行なうことができる。 【0035】本発明においては、VA菌根菌とインビト
ロ条件下で培養した植物(組織、器官培養物を含む)と
を共生させて培養を行なう際に、培地にオリゴ糖を含有
させる。 【0036】オリゴ糖は、単糖類分子が3個〜10個程
度結合したもので、多糖を酵素または酸で分解すること
によって得ることができる。オリゴ糖は、単糖の種類、
原料多糖の種類、結合した数、結合の仕方などで分類、
命名されている。本発明において用いられるオリゴ糖と
しては、フラクトオリゴ糖、イソマルトオリゴ糖、ゲン
チオオリゴ糖、ガラクトオリゴ糖、キシロオリゴ糖、ア
ルギン酸オリゴ糖、大豆オリゴ糖、ポリガラクチュロン
酸オリゴ糖、ペクチンオリゴ糖、マンナンオリゴ糖、グ
ルコマンナンオリゴ糖、アガロオリゴ糖、セロオリゴ糖
、フコイジンオリゴ糖、アラビアガムオリゴ糖、カラギ
ーナンオリゴ糖などが挙げられる。 【0037】これらのうち、VA菌根菌の増殖に特に適
しているフラクトオリゴ糖、イソマルトオリゴ糖、大豆
オリゴ糖、ゲンチオオリゴ糖が好ましい。なおオリゴ糖
は、VA菌根菌と共生させる前から、植物またはVA菌
根菌単独の培養用培地の一方または両方に加えても良い
。 【0038】本発明において用いられるオリゴの濃度は
、広い範囲で変えることができるがその1種類または2
種類以上を、0.01〜20重量%の濃度で培地に含有
させるのが好ましく、さらに好ましくは0.1〜10重
量%である。他の炭素源、例えばショ糖は含まれていて
も、いなくてもよい。 【0039】オリゴ糖以外の培地成分については、前述
の植物培養用培地と同様か、または改変して用いること
ができる。また培地のpH、培養温度、その他の培養条
件も、植物の培養に用いた条件をそのまま、または改変
して用いることができる。 【0040】本発明におけるオリゴ糖は、従来知られて
いた植物生育促進効果のみにより、共生しているVA菌
根菌の生産向上を実現したのではない。実際に、オリゴ
糖を含有した培地を用いた場合と、含有しない培地を用
いた場合で、炭素源の量を調節することによって植物の
生育量がほぼ同一になるようにして培養を行なった実験
において、VA菌根菌の増殖量はオリゴ糖を含有した培
地を用いた方が極めて高いという結果を得ている。 【0041】よって、オリゴ糖がVA菌根菌の増殖を促
進することは、従来知られていた植物生育促進効果では
説明できない。またVA菌根菌の胞子発芽、初期の菌糸
生長など、植物との共生培養でない段階でのオリゴ糖の
効果も見い出すことはできない。 【0042】今回、インビトロ条件下の植物とVA菌根
菌の共生培養に用いることによって、初めてオリゴ糖の
有用性を見い出すことができたのである。本発明では、
様々な培養方法により植物とVA菌根菌の共生培養を行
なうことができ、例えば以下のようにして共生培養を行
なう。 【0043】無菌播種によって得られた植物体を用いて
、固体培地によって共生培養を行なう方法としては、滅
菌された容器(棒びん、フラスコ、カラムなど)内で、
寒天培地などのゲル化培地または培養担体(多孔性物質
、人工土壌など)に液体培地を含浸させたものに無菌播
種を行ない、それと同時または前後に菌根菌を接種し共
生させて菌根菌の増殖を行なう方法がある。この時適宜
、オリゴ糖を含む培地の更新または新鮮培地への移植を
行なう。 【0044】根の器官培養物(不定根、毛状根)を用い
ても同様に無菌条件下で固体培地で培養し、適宜オリゴ
糖を含む培地の更新を行なうことによりVA菌根菌を増
殖させることできる。 【0045】液体培地によって培養を行なう場合に用い
られる培養容器、装置には、以下のものが考えられる。 ここで注意しなければならないことは、液体中ではVA
菌根菌が増殖、胞子生産し難く、気相を必要とすること
である。 【0046】第1の例は、液体培地の水位をコントロー
ルしながら培養する装置である。すなわち、常に植物全
体が培地中に入ったままにならないように、培地の水位
を低くできる装置である。この場合、装置の高さを低く
し、底面積を広くする。ただし、装置を何段階か重ねる
か、装置内を水平に仕切ることによって培養槽を複数持
つ装置とすることが可能である。水位の調節は、適宜予
備タンクやパイプを設置することによって行なう。 【0047】第2の例は、植物を支持する支持体を用い
た装置である。第1の装置とは逆に植物の方を液体中か
ら引き上げておくものである。植物を支持できてかつ液
体を通す網などの支持体を用いて、植物を液体中から引
き上げて気相に接触させる。支持体は上下運動または水
面に垂直方向に回転運動させるようにしてもよい。この
場合において、上述の如く培地の水位をコントロールす
ることも可能な装置を用いてもよい。 【0048】第3の例は、多孔性構造を有し内部に気相
、液相を保持できるバーミキュライト等の物質を充填し
た装置である。これらの多孔性物質は、その中で増殖さ
せる植物に気相と液相(液体培地)を供給することがで
きる。 【0049】第4の例は、液体培地を水滴または霧状に
して与える装置である。必要に応じてノズル等を設置で
きる。また、上述のそれぞれ装置、方法と組み合わせる
こともできる。その他の、気相を導入することを実現し
ている培養装置を用いることができる。 【0050】 【発明の効果】本発明方法に従うと、インビトロ条件下
において植物とVA菌根菌との共生、増殖が効果的に行
なえ、工業的なVA菌根菌の生産が可能となる。さらに
今までの欠点であった、他の微生物(特に植物病原菌な
ど)の汚染のないVA菌根菌が得られるので、本発明は
VA菌根菌の生産方法として極めて好適である。 【0051】 【実施例】実施例1:無菌植物体を用いたVA菌根菌の
大量増殖 シロクローバー、ナス、タマネギ、アスパラガスの種子
を表面殺菌し、ショ糖3%を含むMS(ムラシゲ・スク
ーグ)の寒天培地上に播種した。発芽した種子のうち雑
菌による汚染の無いものを選び、培地に含浸させた人工
土壌(パーライト5号)が80ml入った棒びん(直径
40mm、高さ130mm)に移植すると同時に、表面
殺菌したギガスポラ・マルガリータ胞子を棒びんあたり
5個接種した。この時の培養条件は、培地としてはフラ
クトオリゴ糖1%を含むRC改変培地で、25℃、明期
16時間・暗期8時間で3ケ月間培養した。培養期間中
は、適宜、培地の更新を行った。 【0052】比較例としては、培養培地をショ糖1%を
含むRC改変培地とした以外は上記と同様に培養を行な
った。実施例、比較例とも各3本の棒びんを用い、繰り
返し培養を行なった。 【0053】その結果、どの植物においても実施例では
新たに大量の胞子が生産された。比較例においても新た
に胞子は生産されたがその数が多くなかった。新たに生
産された胞子の数を表1に示す(実施例、比較例とも平
均値)。 【0054】 【表1】   表1:胞子の生産数                   新たに生産され
た胞子の数(個/棒びん)             
         シロクローバー  ナ  ス  タ
マネギ  アスパラガス      実施例1    
     923         816     
 738         711   比較例   
        261         285  
    227         236      
    【0055】実施例2:毛状根を用いたVA菌根菌の大
量生産(1) 4種類のオリゴをそれぞれ単独で、または、ショ糖と同
時に表2に示す濃度で添加した培地(RC改変培地:5
0ml)で、トマトまたはヒヨスチアムス・アルブスの
毛状根を 100mlのフラスコ中で2〜3週間、液体
旋回培養した。生長した毛状根を、あらかじめ前記殺菌
したギガスポラ・マルガリータ胞子をフラスコ当たり5
個接種した。さらに適宜、培地更新を行ないながら3ケ
月間培養を行ないVA菌根菌の生産を試みた。 【0056】比較例では、ショ糖(3%)のみを添加し
たRC改変培地を用いて培養を行なった。実施例、比較
例とも各5本のフラスコを用い、繰り返し培養を行なっ
た。 【0057】 【表2】       【0058】その結果、実施例ではオリゴ
糖の種類を問わず、トマト、ヒヨスチアムス・アルブス
とも新たに胞子が生産された。実施例において新たに生
産された胞子数を表3および表4に示す(各フラスコ5
本の平均数)。一方、比較例ではトマトの毛状根でしか
胞子生産が確認されず、その数はフラスコ当り19個と
少なかった。 【0059】 【表3】   表3:胞子の生産数              
                         
                         
                  実験1    
                実験2      
                         
   トマト      ヒヨス        トマ
ト      ヒヨス      フラクトオリゴ糖 
     102個        76個     
    160個        74個   イソマ
ルトオリゴ糖    115個        52個
          89個        71個 
  ダイズオリゴ糖        113個    
    67個         138個     
   98個   ゲンチオオリゴ糖      12
8個        39個         121
個       103個      【0060】 【表4】   表4:胞子の生産数              
                         
                         
                  実験3    
                実験4      
                         
   トマト      ヒヨス        トマ
ト      ヒヨス      フラクトオリゴ糖 
     144個        69個     
    129個        70個   イソマ
ルトオリゴ糖    132個        40個
         154個        56個 
  ダイズオリゴ糖        118個    
    41個         134個     
   43個   ゲンチオオリゴ糖      10
9個        56個         117
個        87個      【0061】実施例3:毛状根を用いたVA菌根菌の大
量生産(2) トマトの毛状根を用いて、VA菌根菌の生産を行なう場
合に、4種類のオリゴ糖のうち、2種類を併用すること
による影響を調べた。使用したオリゴ糖の組合せと濃度
は、表5に示す通りで、培養方法は実施例2に準じて行
なった。また、比較例では、ショ糖(2%)のみを添加
したRC改変培地を用いて培養を行なった(繰返し:各
3本)。 【0062】 【表5】   表5:培地のオリゴ糖の組合せおよび濃度    
                         
             フラクトオリゴ  イソマ
ルトオリゴ  ダイズオリゴ  ゲンチオオリゴ  実
験1       1%             1
%             −          
   −  実験2       1%       
       −             1%  
          −  実験3       1%
              −          
    −            1%   実験4
        −              1%
            1%           
 −  実験5        −         
     1%             −    
        1%   実験6        −
               −         
    1%           1%      【0063】その結果以下表6のようにどの組合せでも
、比較例(20個/フラスコ)の約4〜5倍の胞子生産
が確認された(各3フラスコの平均)。 【0064】 【表6】       【0065】実施例4:毛状根を用いたV
A菌根菌の大量生産(3) 3 lタンクにおいて、オリゴ糖を添加したRC改変培
地でトマトの毛状根を培養し、VA菌根菌の大量生産を
試みた。 【0066】あらかじめRC改変培地(フラクトオリゴ
糖1%)の入った100mlフラスコで前培養しVA菌
根菌(スクテリスポラ・グレガリア)と共生させたトマ
トの毛状根を、パーライト(1500ml)の入ったエ
アリフトタイプの3 lタンクに移植し、タンクに連結
したRC改変培地(フラスコオリゴ糖)の入った4 l
メディウムびんから、ペリスターポンプを利用し適宜培
地の供給を行ない、3ケ月間培養した。その結果、36
18個の胞子が生産された。 【0067】実施例5:不定根を用いたVA菌根菌の大
量生産 トマトの種子を表面殺菌し、ショ糖3%を含むMSの寒
天培地上に播種した。発芽した種子のうち雑菌による汚
染の無いものを選び、根部を切り出して、フラクトオリ
ゴ糖1%を含む1/10濃度のMSの寒天培地上でシャ
ーレを用いて3週間、静置培養した。生長した不定根に
、あらかじめ前記殺菌したギガスポラ・マルガリータ胞
子をシャーム当り10個接種した。 【0068】比較例では、培養培地をショ糖1%を含む
1/10濃度のMSの寒天培地とした以外は上記と同様
に培養を行なった。実施例、比較例とも各5枚のシャー
レを用い、繰り返し培養を行なった。 【0069】その結果、胞子接種後5週間で実施例では
新たにシャーレ当り24個の胞子が生産された(各シャ
ーレ5枚の平均数)。一方、比較例ではその数は5個と
少なかった。
Description: [0001] The present invention relates to a method for producing a large amount of VA mycorrhizal fungi by coexisting with plants and VA mycorrhizal fungi. [0002] By coexisting with plants, VA mycorrhizal fungi have favorable effects such as promoting the absorption of nutrients (particularly phosphorus) by the symbiotic plants and protecting the symbiotic plants from pathogenic bacteria in the soil. Many things have been reported so far. Therefore, if VA mycorrhizal fungi can be produced industrially and allowed to coexist, it can be expected to reduce the amount of fertilizer applied to crops, improve resistance to poor cultivation environments, and improve the quality of agricultural products. [0003] However, VA mycorrhizal fungi are obligate symbiotic bacteria that do not proliferate unless they coexist with plants, and cannot be cultured in pure form, making it extremely difficult to develop techniques for efficient mass production. [0004] Methods for culturing VA mycorrhizal fungi that have been proposed to date can be broadly divided into the following two methods. One is
This is a method in which VA mycorrhizal fungi are allowed to coexist with plants and cultured under conditions that are not sterilized, such as in fields, in pots, or in hydroponic cultivation, as described below. (1) In pot culture, plants are cultivated using a material having a porous structure as a culture substrate, and V.
A method for coexisting and multiplying mycorrhizal fungi (Unexamined Japanese Patent Publication No. 60-23
Publication No. 7987). (2) In hydroponic cultivation, a method of growing VA mycorrhizal fungi by making the culture solution into a thin film and constantly supplying the culture medium (Japanese Patent Laid-Open Publication No. 118390/1983)
. (3) A method for promoting the proliferation of VA mycorrhizal fungi by cultivating short-day plants, infecting them with VA mycorrhizal fungi, and further performing short-day treatment in small-capacity pot culture (Japanese Patent Application Laid-open No. 2002-100102-1).
227068). [0006] The second method is to allow VA mycorrhizal fungi and plants to coexist in a sterile container, that is, under in vitro conditions.
This is a method for propagating VA mycorrhizal fungi, and the following reports have been made. (1) A method for coexisting and propagating a root organ culture and VA mycorrhizal fungi (Japanese Patent Application Laid-open No. 19028/1983). (2) A method of coexisting and propagating hairy roots and VA mycorrhizal fungi (Japanese Patent Publication No. 62-49037). (3) A method for coexisting and propagating hairy roots and VA mycorrhizal fungi (G. Becard et al., New Phytol.
108, 211 (1988)). [0008] The term hairy root refers to the hairy root disease fungus Agrobacterium rhizogenes (Agrobacterium rhizogenes).
When Agrobacterium rhizogenes) is inoculated into the stems, leaves, roots, etc. of plants, the roots that grow from the infected area are infected with Agrobacterium.
It is generated when part of the gene of a giant plasmid (Ri plasmid) present in Rhizogenes is integrated into the plant's genes. However, the VA mycorrhizal fungi produced by the first method have the risk of being contaminated by other microorganisms (particularly plant pathogens), and are not suitable for use as a source of infection for crop seedlings. Furthermore, the production amount of VA mycorrhizal fungi was still insufficient. [0010] In addition, in the second method, although there is no risk of contamination by other microorganisms, the production amount of VA mycorrhizal fungi is still insufficient. On the other hand, regarding the effect of carbohydrates on VA mycorrhizal fungi, starch (polysaccharide) has no effect, and starch hydrolyzates such as glucose (monosaccharide) and maltose (
It has been reported that sucrose (disaccharide), and cellulose (polysaccharide) suppressed germ tube growth of VA mycorrhizal fungi (B. Mosse, Trans. Brit
.. mycol. Soc. , 42(3), 27
3 (1959). [0012] However, the effects of these carbohydrates in the symbiotic culture of plants and VA mycorrhizal fungi have not been confirmed;
It has not been possible to find a substance among carbohydrates that has an effect on the growth of mycorrhizal fungi. [0013] Furthermore, there have been several reports on the application of oligosaccharides to the cultivation of plants, as described below. (1) Cultivation method of useful plants using alginate oligosaccharide (Unexamined Japanese Patent Publication No. 6
3-101302). (2) Fruit quality improvement method using alginic acid oligosaccharide (Japanese Patent Application Laid-Open No. 1983-226220)
. (3) A method for cultivating plants using oligosaccharides that promote plant growth (Japanese Patent Application Laid-Open No. 63-215606). (4) A method for cultivating plants using a decomposed product of a polysaccharide produced by a microorganism or an oligosaccharide which is its main component (Japanese Patent Laid-Open Publication No. 79101/1982). (5) Plant growth promoter containing oligosaccharide (JP-A-1-319406). However, it is still difficult to use oligosaccharides.
There are no known examples of its application to methods for producing A mycorrhizal fungi. [0016] Problems to be Solved by the Invention The present invention relates to plants and VA.
The purpose of the present invention is to provide an industrial method for producing VA mycorrhizal fungi that can coexist with mycorrhizal fungi and multiply efficiently and can be supplied in large quantities. [Means for Solving the Problems] The method for producing VA mycorrhizal fungi of the present invention provides a method for coexisting and propagating VA mycorrhizal fungi with plants cultured under in vitro conditions, in which the medium contains oligosaccharides. Characterized by urging. Embodiments of the invention The plants used in the present invention are
Cultured under in vitro conditions, including tissue and organ cultures. Examples include tissues such as plants and calluses grown by aseptic seeding, and organ cultures such as hairy roots, adventitious roots, and adventitious buds. Since VA mycorrhizal fungi usually infect and proliferate in the roots of plants, among the above, sterile plants having root tissues and organs,
Hairy roots and adventitious roots are preferred. In the present invention, for culturing plants under in vitro conditions, for example, a medium conventionally used for plant tissue culture, that is, an inorganic component and a carbon source are essential components,
A medium can be used in which at least one component selected from plant hormones, vitamins, and amino acids is added, and other components are also added as necessary. [0021] Inorganic components in the above medium include nitrogen, zinc, iron, copper, molybdenum, boron, phosphorus, cobalt, potassium, calcium, magnesium, sulfur, manganese, chlorine, sodium, iodine, etc. Ammonium nitrate, ammonium dihydrogen phosphate, ammonium sulfate, ammonium chloride, sodium nitrate, calcium nitrate, potassium nitrate, zinc sulfate, ferrous sulfate, ferric sulfate, ethylenediaminetetraacetate, copper sulfate, molybdic acid, sodium molybdate , boric acid, phosphoric acid, monosodium phosphate, potassium phosphate, disodium phosphate, trisodium phosphate, cobalt chloride, potassium chloride,
Calcium chloride, magnesium sulfate, sodium sulfate,
Examples include manganese sulfate and potassium iodide. Carbon sources include sucrose and other carbohydrates, their derivatives, organic acids such as fatty acids, and monomers such as ethanol.
Examples include alcohols such as alcohol. Plant hormones include indole acetic acid (I
AA), naphthaleneacetic acid (NAA), p-chlorophenoxyisobutyric acid, 2,4-dichlorophenoxyacetic acid (2,
Examples include auxins such as 4-D), and cytokinins such as kinetin, benzyladenine, zeatin, and dihydrozeatin. Examples of vitamins include biotin, thiamine (vitamin B1), pyridoxine (vitamin B6), pantothenic acid, ascorbic acid (vitamin C), inositol, and nicotinic acid. Examples of amino acids include glycine, alanine, glutamine, and cysteine. In addition, natural products said to contain vitamins, hormones, etc., such as coconut milk and yeast extract, can also be used. [0026] In the present invention, the concentrations of the components in the medium can be varied within a wide range. Usually, the inorganic component is about 0.1μ
M ~ about 100mM, carbon source about 1g/l ~ 120g
The amount of plant hormones can be about 0.01 μM to about 10 μM, and the amount of vitamins and amino acids can be about 0.1 mg/l to about 100 mg/l. [0027] The pH of the medium is preferably weakly acidic, with a pH of 4 to 7. In the present invention, the medium may be solid or liquid, and when a solid medium is used, examples of medium solidifying agents include agar, gellan gum, and the like. It is also possible to culture using a culture carrier (porous material, artificial soil, etc.) impregnated with a liquid medium. [0028] In the present invention, the culture temperature is preferably about 10°C to about 40°C, particularly about 20°C to about 30°C. about 10
This is because the growth rate is low at temperatures below 40°C, and the growth rate is similarly low at temperatures above about 40°C. [0029] VA mycorrhizal fungi used in the present invention include Gigaspora, Glomus, and Sclerocystis.
ocystis), Acaulospora (Accaulo
spora), Entrophospora sp.
spora), Scutellis
pora), etc. [0030] Spores of VA mycorrhizal fungi can be collected from wild plants, soil near the roots of cultivated plants, roots of hydroponic plants, and container cultures such as hairy roots. Of these,
The method for isolating Gigaspora margarita spores from soil is shown below. First, soil from a field or a potted plant is collected and suspended in water. This is passed through a 1-2 mm mesh sieve to remove large debris, stones, etc., and the passed liquid is passed through a 0.1 mm mesh sieve. What remains on the 0.1 mm mesh sieve is collected after washing with running water, suspended in a small amount of water, and transferred to a petri dish. This is separated into dirt and spores under a stereomicroscope, and only the spores are sucked up with a pipette and transferred to another petri dish. After repeating this operation three times and transferring it to a centrifuge tube, add water and apply ultrasonic waves for several seconds to disperse the debris, and then discard the water to wash the spores. Repeat this several times. The washed spores are sterilized by washing them 20 to 30 times with sterile water, or by using antibiotics such as streptomycin, various disinfectants, and the like. Of course, this is not necessary for spores obtained under sterile culture. [0032] The spores isolated as described above may be cultured on a suitable solid medium before being inoculated into plants for confirmation of sterilization and preliminary germination. [0033] This VA mycorrhizal fungus and the in vitro plant obtained as described above are allowed to coexist and propagate. VA mycorrhizal fungi as a symbiotic inoculum are usually spores obtained by the above method or pregerminated spores, but they can also be used as a mixture with other substances or in symbiosis with roots or hairy roots. It is also possible to use the product as it is as an inoculum without separating it. [0034] VA mycorrhizal fungi can be inoculated by suspending the VA mycorrhizal fungi inoculum in a liquid such as water or a buffer solution, or in a powder or granular material such as diatomaceous earth, and bringing it into contact with the plant. This can be done by placing it near the [0035] In the present invention, oligosaccharides are contained in the medium when VA mycorrhizal fungi and plants (including tissue and organ cultures) cultured under in vitro conditions are cultured in symbiosis. Oligosaccharides are composed of about 3 to 10 monosaccharide molecules linked together, and can be obtained by decomposing polysaccharides with enzymes or acids. Oligosaccharides are a type of monosaccharide,
Classified by type of raw polysaccharide, number of bonds, method of bonding, etc.
It is named. The oligosaccharides used in the present invention include fructooligosaccharides, isomalto-oligosaccharides, gentio-oligosaccharides, galactooligosaccharides, xylooligosaccharides, alginate oligosaccharides, soybean oligosaccharides, polygalacturonic acid oligosaccharides, pectin oligosaccharides, mannan oligosaccharides, Examples include glucomannan oligosaccharides, agarooligosaccharides, cellooligosaccharides, fucoidin oligosaccharides, gum arabic oligosaccharides, and carrageenan oligosaccharides. Among these, fructooligosaccharides, isomalto-oligosaccharides, soybean oligosaccharides, and gentio-oligosaccharides, which are particularly suitable for the growth of VA mycorrhizal fungi, are preferred. Note that the oligosaccharide may be added to either or both of the plant or the culture medium for VA mycorrhizal fungi alone before coexistence with VA mycorrhizal fungi. The concentration of oligos used in the present invention can vary within a wide range;
It is preferable that the medium contains at least one of these types at a concentration of 0.01 to 20% by weight, more preferably 0.1 to 10% by weight. Other carbon sources, such as sucrose, may or may not be included. [0039] Medium components other than oligosaccharides can be used in the same manner as the above-mentioned plant culture medium, or may be modified. Furthermore, the pH of the medium, culture temperature, and other culture conditions can be the same as those used for culturing the plants, or can be used after modification. [0040] The oligosaccharide of the present invention does not realize an improvement in the production of symbiotic VA mycorrhizal fungi only by its hitherto known effect of promoting plant growth. In fact, an experiment was conducted in which the amount of plant growth was made almost the same by adjusting the amount of carbon source when using a medium containing oligosaccharides and when using a medium containing no oligosaccharides. The results showed that the growth rate of VA mycorrhizal fungi was significantly higher when using a medium containing oligosaccharides. [0041] Therefore, the fact that oligosaccharides promote the proliferation of VA mycorrhizal fungi cannot be explained by the previously known plant growth promoting effect. Furthermore, the effects of oligosaccharides at stages other than symbiotic culture with plants, such as spore germination and early mycelial growth of VA mycorrhizal fungi, cannot be found. [0042] This time, the usefulness of oligosaccharides was discovered for the first time by using them for symbiotic culture of plants and VA mycorrhizal fungi under in vitro conditions. In the present invention,
The symbiotic culture of plants and VA mycorrhizal fungi can be carried out using various culture methods. For example, the symbiotic culture is carried out as follows. [0043] As a method of co-cultivating plants obtained by aseptic seeding on a solid medium, in a sterilized container (bottle, flask, column, etc.),
Aseptically inoculate a gel medium such as agar medium or a culture carrier (porous material, artificial soil, etc.) impregnated with a liquid medium, and inoculate mycorrhizal fungi at the same time or before or after, allowing them to coexist and grow mycorrhizal fungi. There is a method for propagating. At this time, the oligosaccharide-containing medium is renewed or transplanted to a fresh medium as appropriate. [0044] Even if a root organ culture (adventitious root, hairy root) is used, VA mycorrhizal fungi can be grown by culturing it on a solid medium under sterile conditions and renewing the medium containing oligosaccharides as appropriate. I can do that. [0045] The following types of culture containers and devices can be considered when culturing is carried out using a liquid medium. What must be noted here is that in liquid, VA
Mycorrhizal fungi have difficulty multiplying and producing spores, and require a gas phase. The first example is an apparatus for culturing while controlling the water level of a liquid medium. In other words, it is a device that can lower the water level of the culture medium so that the entire plant does not remain in the culture medium at all times. In this case, the height of the device is reduced and the bottom area is increased. However, it is possible to create a device with multiple culture tanks by stacking the devices in several stages or by partitioning the inside of the device horizontally. Adjustment of water level is done by installing backup tanks and pipes as appropriate. A second example is a device using a support for supporting plants. In contrast to the first device, the plant is lifted out of the liquid. Using a support such as a net capable of supporting the plants and through which the liquid passes, the plants are lifted out of the liquid and brought into contact with the gas phase. The support may be moved up and down or rotated in a direction perpendicular to the water surface. In this case, a device capable of controlling the water level of the medium as described above may be used. The third example is a device having a porous structure and filled with a substance such as vermiculite that can hold a gas phase and a liquid phase inside. These porous materials can supply a gas phase and a liquid phase (liquid medium) to the plants grown therein. The fourth example is a device that provides a liquid medium in the form of water droplets or mist. Nozzles etc. can be installed as needed. Moreover, it can also be combined with each of the above-mentioned devices and methods. Other culture devices that are capable of introducing a gas phase can be used. Effects of the Invention According to the method of the present invention, symbiosis and proliferation of VA mycorrhizal fungi with plants can be effectively carried out under in vitro conditions, making it possible to produce VA mycorrhizal fungi on an industrial scale. Furthermore, the present invention is extremely suitable as a method for producing VA mycorrhizal fungi since it is possible to obtain VA mycorrhizal fungi that are free from contamination with other microorganisms (particularly plant pathogenic bacteria), which has been a drawback up to now. [Example] Example 1: Mass propagation of VA mycorrhizal fungi using sterile plants [0051] Seeds of white clover, eggplant, onion, and asparagus were surface sterilized and treated with MS containing 3% sucrose (Murashige). Skoog) agar medium. Among the germinated seeds, those free from bacterial contamination were selected and transplanted into a rod bottle (diameter 40 mm, height 130 mm) containing 80 ml of artificial soil (Perlite No. 5) impregnated with a medium, and at the same time, surface sterilized Gigaspora Five margarita spores were inoculated per bottle. The culture conditions at this time were a modified RC medium containing 1% fructooligosaccharide at 25° C. and a 16-hour light period and an 8-hour dark period for 3 months. During the culture period, the medium was renewed as appropriate. As a comparative example, culturing was carried out in the same manner as above except that the culture medium was an RC modified medium containing 1% sucrose. In both Examples and Comparative Examples, three rod bottles were used and cultured repeatedly. [0053] As a result, a large amount of new spores were produced in all of the plants in the examples. In the comparative example, new spores were also produced, but the number was not large. The number of newly produced spores is shown in Table 1 (average value for both Examples and Comparative Examples). [Table 1] Table 1: Number of spores produced Number of newly produced spores (pcs/bottle)
White clover Eggplant Onion Asparagus Example 1
923 816
738 711 Comparative example
261 285
227 236
Example 2: Mass production of VA mycorrhizal fungi using hairy roots (1) A medium (RC modified Medium: 5
Tomato or Hyostiamus albus hairy roots were cultured in liquid swirl for 2-3 weeks in 100 ml flasks. The grown hairy roots were treated with the previously sterilized Gigaspora margarita spores per flask.
Individually inoculated. Furthermore, the culture was carried out for 3 months while updating the medium as needed, and an attempt was made to produce VA mycorrhizal fungi. [0056] In a comparative example, culture was carried out using an RC modified medium to which only sucrose (3%) was added. In both Examples and Comparative Examples, five flasks were used and culture was repeated. [0057] [Table 2] [0058] As a result, new spores were produced in both tomatoes and Hyostiamus albus in Examples, regardless of the type of oligosaccharide. The numbers of newly produced spores in the examples are shown in Tables 3 and 4 (each flask 5
average number of books). On the other hand, in the comparative example, spore production was confirmed only in the hairy roots of tomatoes, and the number of spores was as low as 19 per flask. [Table 3] Table 3: Number of spores produced


Experiment 1
Experiment 2

Tomato Hiyos Tomato Hiyos Fructooligosaccharide
102 pieces 76 pieces
160 pieces 74 pieces Isomaltooligosaccharide 115 pieces 52 pieces 89 pieces 71 pieces
Soybean oligosaccharide 113 pieces
67 pieces 138 pieces
98 gentiooligosaccharides 12
8 pieces 39 pieces 121
[Table 4] Table 4: Number of spores produced


Experiment 3
Experiment 4

Tomato Hiyos Tomato Hiyos Fructooligosaccharide
144 pieces 69 pieces
129 70 Isomaltooligosaccharides 132 40 154 56
Soybean oligosaccharide 118 pieces
41 pieces 134 pieces
43 gentiooligosaccharides 10
9 pieces 56 pieces 117
Example 3: Mass production of VA mycorrhizal fungi using hairy roots (2) When producing VA mycorrhizal fungi using tomato hairy roots, four types of oligo The effects of using two types of sugar together were investigated. The combinations and concentrations of oligosaccharides used were as shown in Table 5, and the culture method was carried out according to Example 2. Furthermore, in a comparative example, culture was performed using an RC modified medium to which only sucrose (2%) was added (repetition: 3 bottles each). [Table 5] Table 5: Combinations and concentrations of oligosaccharides in the medium

Fructooligo Isomaltooligo Soybean oligo Genthiooligo Experiment 1 1% 1
% −
- Experiment 2 1%
-1%
- Experiment 3 1%

- 1% Experiment 4
-1%
1%
- Experiment 5 -
1% -
1% Experiment 6 -

1% 1% As a result, as shown in Table 6 below, in all combinations, it was confirmed that spore production was about 4 to 5 times that of the comparative example (20 spores/flask) (average of 3 flasks each). [Table 6] Example 4: V using hairy roots
Mass production of A mycorrhizal fungi (3) Tomato hairy roots were cultured in an RC modified medium supplemented with oligosaccharides in a 3 liter tank to attempt mass production of VA mycorrhizal fungi. Tomato hairy roots, which had been precultured in a 100 ml flask containing RC modified medium (1% fructooligosaccharide) and allowed to coexist with VA mycorrhizal fungi (Scuterispora gregaria), were placed in an air lift containing perlite (1500 ml). A 4 liter container containing RC modified medium (flask oligosaccharide) was transferred to a 3 liter tank of the type and connected to the tank.
The medium was supplied from the medium bottle using a perister pump, and cultured for 3 months. As a result, 36
18 spores were produced. Example 5: Mass production of VA mycorrhizal fungi using adventitious roots Tomato seeds were surface sterilized and sown on an MS agar medium containing 3% sucrose. Among the germinated seeds, those free from bacterial contamination were selected, the roots were cut out, and the seeds were statically cultured for 3 weeks on a 1/10 concentration MS agar medium containing 1% fructooligosaccharide using a petri dish. The grown adventitious roots were inoculated with the previously sterilized Gigaspora margarita spores, 10 per charm. In a comparative example, the culture was carried out in the same manner as described above, except that the culture medium was a 1/10 concentration MS agar medium containing 1% sucrose. In both Examples and Comparative Examples, 5 Petri dishes were used and culture was repeated repeatedly. As a result, 24 new spores were newly produced per petri dish in Example 5 weeks after spore inoculation (average number of each 5 petri dishes). On the other hand, in the comparative example, the number was as small as 5.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  ベシキュラー・アービュスキュラー菌
根菌(のう状体と樹枝状体を有する内生菌根菌類:以下
VA菌根菌と称す)を、インビトロ条件下で培養した植
物と共生させ増殖させるに際し、培地にオリゴ糖を含有
せしめることを特徴とするVA菌根菌の製造方法。
Claim 1: Vesicular and arbuscular mycorrhizal fungi (endophytic mycorrhizal fungi having a sac-like body and an arbuscular body: hereinafter referred to as VA mycorrhizal fungi) coexist with plants cultured under in vitro conditions. 1. A method for producing VA mycorrhizal fungi, which comprises containing an oligosaccharide in a medium during the propagation.
JP11699991A 1991-04-19 1991-04-19 Production of fungus of mycorhiza of vesicular-arbuscular Pending JPH04320676A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11699991A JPH04320676A (en) 1991-04-19 1991-04-19 Production of fungus of mycorhiza of vesicular-arbuscular

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11699991A JPH04320676A (en) 1991-04-19 1991-04-19 Production of fungus of mycorhiza of vesicular-arbuscular

Publications (1)

Publication Number Publication Date
JPH04320676A true JPH04320676A (en) 1992-11-11

Family

ID=14700962

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11699991A Pending JPH04320676A (en) 1991-04-19 1991-04-19 Production of fungus of mycorhiza of vesicular-arbuscular

Country Status (1)

Country Link
JP (1) JPH04320676A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2856553A1 (en) * 2003-06-24 2004-12-31 Univ Angers PROCESS FOR THE IN VITRO PRODUCTION OF MYCORHIZE MUSHROOMS, MYCOCAL AND BIOLOGICAL SUPPORT MYCORHIZE OBTAINED
CN104718856A (en) * 2015-03-02 2015-06-24 新疆汇翔激光科技有限公司 Tomato vine turning machine

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2856553A1 (en) * 2003-06-24 2004-12-31 Univ Angers PROCESS FOR THE IN VITRO PRODUCTION OF MYCORHIZE MUSHROOMS, MYCOCAL AND BIOLOGICAL SUPPORT MYCORHIZE OBTAINED
WO2005000008A3 (en) * 2003-06-24 2005-03-17 Univ Angers Method for in vitro production of mycorrhizal fungi mycocallus and mycorrhized biological support obtained thus
CN104718856A (en) * 2015-03-02 2015-06-24 新疆汇翔激光科技有限公司 Tomato vine turning machine

Similar Documents

Publication Publication Date Title
CN107711290B (en) Culture medium for mycorrhizal edible fungus symbiotic seedling and synchronous culture method thereof
CN111149704B (en) Proliferation and one-step seedling culture method for single-bud stem of pachyrhizua angulatus
EP2231854A1 (en) Method and system for in vitro mass production of arbuscular mycorrhizal fungi
CN110367102A (en) A kind of method of chinquapin regeneration plant and Applying Ectomycorrhizal Fungi symbiosis
US5554530A (en) Aseptic in vitro endomycorrhizal spore mass production
JPS5995883A (en) Obtaining of branched endomycorrhiza having air cell in vitro
US6576457B1 (en) Fungal media and methods for continuous propagation of vesicular-arbuscular mycorrhizal (VAM) fungi in root organ culture
JPH04320676A (en) Production of fungus of mycorhiza of vesicular-arbuscular
CN106069787A (en) A kind of tissue culture propagation of Rhizoma Et Radix Notopterygii
US20220174902A1 (en) In-Vitro Photoautotrophic Propagation of Cannabis
CN105602857A (en) Optimized wild Isaria cicadae Miquel strain liquid artificially-culturing method
CN110511956A (en) The pimento genetic transforming method of mediated by agriculture bacillus
Slade et al. Artificial seeds: a method for the encapsulation of somatic embryos
Akhtar et al. New Formulations, Product Development, and Commercialization of Arbuscular Mycorrhizal Fungi
CN107058458B (en) Method for detecting colonization of plant rhizosphere growth-promoting bacteria in root system
US7598073B2 (en) Methods for producing high yields of zygotic-like cotyledonary pine embryos utilizing media that include a disaccharide and glucose
CN110050699A (en) A kind of production method of scale fast-propagation Chinese yam tissue-cultured seedling
JPH0383522A (en) Mass-production of mycorrhiza bacterium vesicular arbuscula
CN108967201A (en) A kind of universal proliferated culture medium of plant and method for tissue culture
JPH05176636A (en) Proliferation of va mycorrhiza bacteria
CN113278530A (en) Method for promoting spore germination and hypha growth of arbuscular mycorrhizal fungi
KR19990074043A (en) Manufacturing method of excellent seedlings of palenopsis by bioreactor
JPH0698633A (en) Preparation of vesicular arbuscular mycorrhizae
JP3080784B2 (en) Mass propagation method of Fuerosou
JP2745179B2 (en) Method of raising dwarfed plants in containers