JPH04320308A - Circular plate coil winding - Google Patents

Circular plate coil winding

Info

Publication number
JPH04320308A
JPH04320308A JP8711091A JP8711091A JPH04320308A JP H04320308 A JPH04320308 A JP H04320308A JP 8711091 A JP8711091 A JP 8711091A JP 8711091 A JP8711091 A JP 8711091A JP H04320308 A JPH04320308 A JP H04320308A
Authority
JP
Japan
Prior art keywords
disc
conductor
winding
reinforcing
coils
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8711091A
Other languages
Japanese (ja)
Other versions
JP3522290B2 (en
Inventor
Masayoshi Ito
伊藤 政芳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP08711091A priority Critical patent/JP3522290B2/en
Publication of JPH04320308A publication Critical patent/JPH04320308A/en
Application granted granted Critical
Publication of JP3522290B2 publication Critical patent/JP3522290B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Coils Of Transformers For General Uses (AREA)

Abstract

PURPOSE:To enable an insulation resistance to be maintained and an occupation area to be increased by placing a conductor of an edge portion in one radius direction at an inner-diameter side and an outer-diameter side of a plurality of circular plate coils at a line terminal side at a position which is away in axial direction for the adjacent circular plate coil which is not interlocked at the edge portion. CONSTITUTION:A surface of a side of an oil gap 41A of a reinforced insulator 31 is allowed to match a surface of an edge portion conductor 113 of a winding number 4 of a coil 11A and that of a middle conductor 112 of winding numbers 2 and 3. Then, since an insulation distance between an edge portion conductor 111 and an edge portion conductor 121 is not large from a point of insulation resistance, the middle conductor 112 approaches a circular plate coil 12A by at least a thickness dimension of the reinforced insulator 31, thus enabling the dimension of the oil gap 41A to be reduced by the thickness dimension of the reinforced insulator 31. In this manner, a position in axial direction of the conductor 2 is placed at a position which is shifted to a side of a line terminal 91 by the thickness dimension of the reinforced insulator 31.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】この発明は、容量が数100MV
Aの大容量変圧器の154kV又は275kVなどの超
高圧電力系統に接続される巻線、特に円板コイルを軸方
向に積み重ねその内径側端部又は外形側端部の導体同士
を交互に接続することによって全体が直列接続されてな
る双成線輪形の円板巻線に関する。
[Industrial Application Field] This invention has a capacity of several hundred MV.
Windings connected to ultra-high voltage power systems such as 154 kV or 275 kV of the large capacity transformer A, especially disc coils, are stacked in the axial direction, and the conductors at the inner diameter end or outer diameter end are alternately connected to each other. This invention relates to twin ring-shaped disc windings which are entirely connected in series.

【0002】0002

【従来の技術】図5は従来の円板巻線の模式的な断面図
であり、図の左側が内径側、右側が外径側である。大容
量変圧器の多くは高圧巻線、中圧巻線及び低圧巻線から
なる3巻線変圧器で、図示のような円板巻線100は前
述のように154kV又は275kV系統に接続される
高圧巻線又は中圧巻線に使用されることが多い。
2. Description of the Related Art FIG. 5 is a schematic cross-sectional view of a conventional disc winding wire, with the left side of the figure being the inner diameter side and the right side being the outer diameter side. Most large-capacity transformers are three-winding transformers consisting of a high-voltage winding, a medium-voltage winding, and a low-voltage winding, and the disk winding 100 shown in the figure is a high-voltage transformer connected to a 154 kV or 275 kV system as described above. Often used for high voltage or medium voltage windings.

【0003】円板巻線100の端子91、92は上端と
下端から引き出され、3相の巻線が星形結線される。上
端の端子91は超高圧系統に接続される線路端子であり
、端子92は他の相の端子と接続されて中性点を形成す
る中性点端子である。この図では大容量変圧器の通例で
ある三相変圧器のU相の低圧巻線として図示してあり、
したがって線路端子91の相記号をU、中性点端子92
の記号をOとしてある。
Terminals 91 and 92 of the disk winding 100 are drawn out from the upper and lower ends, and the three-phase windings are connected in a star shape. A terminal 91 at the upper end is a line terminal connected to an ultra-high voltage system, and a terminal 92 is a neutral point terminal connected to terminals of other phases to form a neutral point. In this figure, the U-phase low-voltage winding of a three-phase transformer, which is a typical large-capacity transformer, is shown.
Therefore, the phase symbol of the line terminal 91 is U, and the neutral point terminal 92 is
The symbol for this is O.

【0004】円板巻線100は数十個の円板コイル11
〜19からなっており、これらの円板コイル11〜19
は導体2が半径方向に積み重ねられて螺旋状に巻回され
てなるもので、円板コイル11は図の右側の外径側の端
部導体111、内径側の端部導体113及びこれらの端
部導体の間の中部導体112とからなり端部導体111
には補強絶縁物31が取付けられており、巻回番号2と
3の中部導体112の間には冷媒としての絶縁油が下か
ら上に向かって流れる冷却ダクト5が設けられ、内径、
外径の違いはあっても円板コイル12,13,14及び
図示を省略した更に下に位置する円板コイルも同様であ
り、中性点端子96に近い側の円板コイル18,19は
補強絶縁物は取付けらてはいない。補強絶縁物31〜3
4が取付けられる円板コイルの数は円板巻線100の円
板コイルの数の4分の1程度である。
[0004] The disk winding 100 includes several dozen disk coils 11.
~19, and these disc coils 11~19
is formed by stacking conductors 2 in the radial direction and winding them in a spiral shape, and the disc coil 11 has an end conductor 111 on the outer diameter side, an end conductor 113 on the inner diameter side, and these ends on the right side of the figure. It consists of a middle conductor 112 between the lower conductors and an end conductor 111.
A reinforcing insulator 31 is attached to the middle conductor 112 of winding numbers 2 and 3, and a cooling duct 5 is provided between the middle conductors 112 of winding numbers 2 and 3, through which insulating oil as a refrigerant flows from bottom to top.
Although the outer diameters are different, the disc coils 12, 13, 14 and the disc coils located further below (not shown) are the same, and the disc coils 18, 19 on the side closer to the neutral point terminal 96 are the same. Reinforcement insulation is not installed. Reinforcement insulator 31-3
The number of disk coils to which 4 is attached is about one-fourth of the number of disk coils in the disk winding 100.

【0005】円板コイル11と12との間は図示しない
間隔片によって寸法が保持される油間隙41が、同じく
円板コイル12と13との間は油間隙42が設けられて
おり、中性点端子96に近い円板コイル18,19まで
類似の構成になっている。油間隙41は冷却のための冷
却ダクトの役目と同時に隣接する円板コイル11と12
との間に誘起される電圧に耐える絶縁耐力を確保するた
めのものであり、油間隙42,43,49及び図示しな
い他の円板コイル間の油間隙も同様である。
An oil gap 41 whose dimensions are maintained by a spacing piece (not shown) is provided between the disc coils 11 and 12, and an oil gap 42 is provided between the disc coils 12 and 13. Even the disc coils 18 and 19 near the point terminal 96 have similar configurations. The oil gap 41 serves as a cooling duct for cooling the adjacent disc coils 11 and 12.
The purpose is to ensure dielectric strength to withstand the voltage induced between the oil gaps 42, 43, and 49, and the oil gaps between other disc coils (not shown).

【0006】周知のように電力系統に接続されて運転さ
れる変圧器の巻線は雷サージに対する絶縁耐力が要求さ
れる。雷サージが侵入したきたときには円板巻線100
のように巻数の大きな巻線では雷サージ波頭部での巻線
内の電位分布が極端に不平衡になる。雷サージが侵入し
てくる端子である線路端子91に最も近い円板コイル1
1と12の間に発生する電圧は巻数に比例して分布する
平等分布に対して数十倍の不平衡分布にもなることがあ
る。この円板コイル11,12間の発生電圧の倍率は線
路端子91に近い程大きいという特徴があるので、図示
のように図の上部の円板コイル11〜14では内径側又
は外径側のそれぞれの端部の導体2にL字断面をした補
強絶縁物31、32、33、34が取付けられている。 これに対して図では円板コイル18,19の2つだけを
示した中性点端子96側の円板コイルは補強絶縁物を取
付けない構成になっている。
As is well known, the windings of a transformer connected to a power system and operated are required to have dielectric strength against lightning surges. When a lightning surge invades, the disk winding 100
In a winding with a large number of turns, the potential distribution within the winding at the head of a lightning surge wave becomes extremely unbalanced. Disc coil 1 closest to the line terminal 91, which is the terminal through which lightning surges enter
The voltage generated between 1 and 12 may have an unbalanced distribution that is several tens of times larger than an even distribution that is proportional to the number of turns. Since the magnification of the voltage generated between the disc coils 11 and 12 is larger the closer to the line terminal 91, as shown in the figure, in the disc coils 11 to 14 at the top of the figure, each of the inner diameter side and the outer diameter side Reinforcement insulators 31, 32, 33, and 34 each having an L-shaped cross section are attached to the conductor 2 at the end of the conductor 2. On the other hand, in the figure, only two of the disc coils 18 and 19 are shown, and the disc coils on the neutral point terminal 96 side are not provided with reinforcing insulators.

【0007】導体2には線路端子91からの巻回順序に
従って1から順に番号を付けてあるが、この図では円板
コイル11〜19はそれぞれ4ターンずつの巻数でなっ
ているものとして図示してある。前述のように数百MV
Aの大容量変圧器の巻線はたとえ電圧が154kVなど
の超高圧であっても電流はかなり大きな値になるので、
必要とする導体断面積が大きくなることから、断面が小
さな平角導線を複数本束にして一括して絶縁被覆を施す
いわゆる転位導体が使用されることが多い。
[0007] The conductor 2 is numbered sequentially from 1 according to the winding order from the line terminal 91, but in this figure, the disc coils 11 to 19 are each shown as having a winding number of 4 turns. There is. As mentioned above, several hundred MV
Even if the voltage of the winding of the large capacity transformer A is extremely high, such as 154 kV, the current will be quite large, so
Since the required cross-sectional area of the conductor is large, a so-called transposed conductor is often used, in which a plurality of rectangular conductive wires with a small cross section are bundled and insulated all at once.

【0008】円板コイル11と12との間で最も発生電
圧の大きいのは巻回番号1の端部導体111と巻回番号
8の端部導体121であり、線路端子91に近い端部導
体111の下角部に電界がより大きく集中することから
この部分の絶縁耐力を向上させるために補強絶縁物31
がこの角部を囲うように取付けられている。したがって
図示しない間隔片の形状は補強絶縁物31が下に出っ張
っている部分が切欠かれた形状になっており、補強絶縁
物31のある分以外では油間隙41の図の上下方向の寸
法は一定なので、厚み一定の間隔片となっている。油間
隙42、43及び図示しない更に下の油間隙も同様であ
る。円板コイル円板コイル18と19は補強絶縁物が取
付けられないので油間隙49を形成する間隔片の厚みは
一定である。補強絶縁物が取付けられた円板コイルの数
は円板巻線100を構成する円板コイルの数のの約4分
の1である。
The largest voltage generated between the disc coils 11 and 12 is the end conductor 111 with winding number 1 and the end conductor 121 with winding number 8, and the end conductor near the line terminal 91 Since the electric field concentrates more strongly at the lower corner of 111, reinforcing insulator 31 is used to improve the dielectric strength of this part.
is attached to surround this corner. Therefore, the shape of the spacing piece (not shown) is such that the part where the reinforcing insulating material 31 protrudes downward is cut out, and the dimension of the oil gap 41 in the vertical direction in the figure is constant except for the part where the reinforcing insulating material 31 is located. Therefore, the thickness is constant and the pieces are spaced apart. The same applies to the oil gaps 42, 43 and the oil gap further below (not shown). Since no reinforcing insulation is attached to the disc coils 18 and 19, the thickness of the spacer piece forming the oil gap 49 is constant. The number of disk coils to which reinforcing insulators are attached is approximately one fourth of the number of disk coils constituting the disk winding 100.

【0009】油間隙41,42及び43では発生電圧が
大きいために補強絶縁物31〜34が取付けられるとと
もに油間隙寸法も大きくして絶縁強度を向上させてある
。したがって、図示しない円板巻線100の中央部の油
間隙は小さな寸法になっている。また、円板巻線100
の磁気中心を幾何学的中心と一致させて電磁力の不平衡
を小さくするために、油間隙49のような中性点端子9
6に近い油間隙の寸法は上下対称になるように線路端子
91に近い油間隙41と同じ寸法が採用される。中性点
端子96に近い油間隙49などでも衝撃電圧印加による
発生電圧の不平衡は生ずるのであるが、衝撃電圧が線路
端子91から中性点端子96の方へ伝播してくる間に減
衰することから、線路端子91近くの油間隙ほど絶縁耐
力を高くなくてよいという関係がある。
Since the generated voltage is large in the oil gaps 41, 42, and 43, reinforcing insulators 31 to 34 are installed and the size of the oil gaps is also increased to improve insulation strength. Therefore, the oil gap at the center of the disk winding 100 (not shown) has a small size. In addition, the disk winding 100
In order to reduce the unbalance of the electromagnetic force by aligning the magnetic center of the
The dimension of the oil gap near 6 is the same as the oil gap 41 near the line terminal 91 so as to be vertically symmetrical. An unbalance in the voltage generated due to the application of an impact voltage also occurs in the oil gap 49 near the neutral point terminal 96, but it attenuates while the impact voltage propagates from the line terminal 91 toward the neutral point terminal 96. Therefore, there is a relationship that the dielectric strength does not need to be as high as the oil gap near the line terminal 91.

【0010】端部導体111と121との間に発生する
電圧差の最大値は次式で計算される。なお、記号√は次
の()の中を平方根することを表す。 ΔV=V・√(C/K)  ‥‥‥‥‥‥‥‥‥‥‥‥
‥‥‥‥‥‥‥‥‥(1) ここで、ΔV;円板コイル間電圧差波高値V  ;印加
電圧波高値 C  ;円板コイル11,12の対地キャパシタンスK
  ;円板コイル11,12間のの直列キャパシタンス
The maximum value of the voltage difference generated between the end conductors 111 and 121 is calculated by the following equation. Note that the symbol √ represents the square root of the following (). ΔV=V・√(C/K) ‥‥‥‥‥‥‥‥‥‥‥‥
‥‥‥‥‥‥‥‥‥‥(1) Here, ΔV; voltage difference peak value V between the disk coils; applied voltage peak value C; ground capacitance K of the disk coils 11 and 12
; Series capacitance between disc coils 11 and 12

【0011】対地キャパシタンスCは円板巻線100と
他の巻線又は鉄心などとの間の絶縁距離で概ね決まり、
直列キャパシタンスKは油間隙41の軸方向の寸法に略
逆比例する。したがって、例えば油間隙41の絶縁耐力
を上げるためにその寸法を大きくすると直列キャパシタ
ンスKが小さくなって(1)式から発生電圧ΔVが増大
するという関係があるために、油間隙41の寸法を大き
くするほどには絶縁耐力が向上しないという特徴がある
。補強絶縁物31が取付けられているのは直列キャパシ
タンスKを小さくしないで油間隙41の絶縁耐力を向上
するためである。
The ground capacitance C is approximately determined by the insulation distance between the disc winding 100 and other windings or iron cores, etc.
The series capacitance K is approximately inversely proportional to the axial dimension of the oil gap 41. Therefore, for example, if the dimensions of the oil gap 41 are increased in order to increase its dielectric strength, the series capacitance K will decrease, and from equation (1), the generated voltage ΔV will increase. The characteristic is that the dielectric strength does not improve as much as it does. The reason why the reinforcing insulator 31 is attached is to improve the dielectric strength of the oil gap 41 without reducing the series capacitance K.

【0012】0012

【発明が解決しようとする課題】円板巻線100の線路
端子91に衝撃電圧が印加されたときの円板コイル11
と12とのそれぞれの間の導体間の電圧差の波高値は概
ね巻回数の差に比例する。端部導体113と123では
図では線で接続されたように図示してあるが実際には1
ターンに相当する電圧差があり端部導体111と121
とでは7ターン分の電圧差である。したがって、円板コ
イル11と12との間の導体間の電圧差は外径側の端部
導体同士である端部導体111と121との間が最も大
きい。そのため、これらの端部導体111と121間で
絶縁破壊する可能性が最も高いことから補強絶縁物31
が端部導体111に取付けられている。端部導体121
に補強絶縁物が取付けられていないのは端部導体111
に取方が電圧が高いためにこの導体の角部に電界が集中
するためである。
[Problem to be Solved by the Invention] Disc coil 11 when an impact voltage is applied to line terminal 91 of disc winding 100
The peak value of the voltage difference between the conductors and 12 is approximately proportional to the difference in the number of turns. The end conductors 113 and 123 are shown as being connected by a line in the figure, but in reality they are connected by a line.
There is a voltage difference corresponding to the turn of the end conductors 111 and 121.
There is a voltage difference of 7 turns. Therefore, the voltage difference between the conductors between the disc coils 11 and 12 is largest between the end conductors 111 and 121, which are the end conductors on the outer diameter side. Therefore, since there is the highest possibility of dielectric breakdown between these end conductors 111 and 121, the reinforcing insulator 31
is attached to the end conductor 111. End conductor 121
The end conductor 111 has no reinforcing insulation attached to it.
This is because the electric field is concentrated at the corners of this conductor due to the high voltage.

【0013】油間隙41の寸法はしたがって前述の端部
導体111,121間の電圧差によって決まっており、
他の導体間の電圧差に対しては必要以上の絶縁寸法にな
っている。その結果、円板巻線100の巻線体格が大き
くなって円板巻線100の断面積に占める電流が流れ得
る導体断面積の総和の比率である占積率が小さいという
問題がある。
The dimensions of the oil gap 41 are therefore determined by the voltage difference between the aforementioned end conductors 111 and 121;
The insulation dimensions are larger than necessary for voltage differences between other conductors. As a result, the winding physique of the disc winding 100 becomes large, and there is a problem that the space factor, which is the ratio of the total cross-sectional area of the conductors through which current can flow, to the cross-sectional area of the disc winding 100 becomes small.

【0014】この発明の目的は、絶縁耐力を維持してし
かも占積率の大きな円板巻線を提供することにある。
An object of the present invention is to provide a disk winding that maintains dielectric strength and has a large space factor.

【0015】[0015]

【課題を解決するための手段】上記課題を解決するため
に、この発明によれば、絶縁被覆された導体が半径方向
に重ねられて複数ターン巻回されてなる円板コイルの複
数個が油間隙を挟んで軸方向に積み重ねられてなり、隣
同士の円板コイルの外径側又は内径側の半径方向端部の
導体同士が交互に電気的に連結されてなる円板巻線にお
いて、この円板巻線の軸方向端部の一方から引き出され
る線路端子側の複数個の円板コイルの、内径側と外径側
の少なくとも一方の半径方向端部の導体を、この端部で
互いに連結されない隣接する円板コイルに対して軸方向
に離れた位置に配置してなるものとし、また、円板コイ
ルの両側の半径方向端部導体を軸方向に離れた位置に配
置してなるものとし、又は、線路端子側に隣接する円板
コイルの端部導体と連結する端部導体だけを軸方向に離
れた位置に配置してなるものとし、また、端部導体の端
部側角部にL字断面状の補強絶縁物が取付けられた円板
コイルの、この補強絶縁物と他の導体とが油間隙の共通
の面に接してなるものとし、また、補強絶縁物を取りつ
けた端部導体に隣接する導体の端部導体と同じ側の角部
にL字断面状の補強絶縁物を取付けてなるものとし、ま
た、補強絶縁物を取付けた端部導体に隣接する導体にも
補強絶縁物を取付けた請求項5記載の円板コイルの複数
個からなる補強円板コイル群を線路端子側に配置し、端
部導体だけに補強絶縁物を取付けてなる請求項4記載の
円板コイルの複数個からなる補強円板コイル群をその次
に配置してなるものとする。
[Means for Solving the Problems] In order to solve the above-mentioned problems, according to the present invention, a plurality of disc coils formed by radially overlapping and wound a plurality of turns of insulated conductors are oil-oiled. In disc windings, which are stacked in the axial direction with gaps in between, the conductors at the outer or inner radial ends of adjacent disc coils are alternately electrically connected. The conductors at at least one radial end on the inner diameter side and the outer diameter side of the plurality of disc coils on the line terminal side pulled out from one of the axial ends of the disc winding are connected to each other at this end. The radial end conductors on both sides of the disc coil shall be arranged axially apart from adjacent disc coils that are not connected to each other. Or, only the end conductor connected to the end conductor of the disc coil adjacent to the line terminal side is arranged at a position separated from the end conductor in the axial direction. The reinforcing insulator and other conductors of a disc coil to which an L-shaped cross-sectional reinforcing insulator is attached shall be in contact with a common surface of the oil gap, and the end portion to which the reinforcing insulator is attached. A reinforcing insulator with an L-shaped cross section is attached to the corner of the conductor adjacent to the end conductor on the same side as the end conductor, and reinforcing insulation is also attached to the conductor adjacent to the end conductor to which the reinforcing insulator is attached. The disc coil according to claim 4, wherein a reinforcing disc coil group consisting of a plurality of disc coils according to claim 5, each having a material attached thereto, is arranged on the line terminal side, and a reinforcing insulator is attached only to the end conductor. A reinforcing disk coil group consisting of a plurality of reinforcing disk coils is then placed.

【0016】[0016]

【作用】この発明の構成において、円板巻線の一方の軸
方向端部から引き出される線路端子側の複数個の円板コ
イルの、内径側と外径側の少なくとも一方の半径方向端
部の導体を、この端部で互いに連結されない隣接する円
板コイルに対して軸方向に離れた位置に配置することに
よって、最も電圧差の大きな隣接する円板コイルの端部
導体間の絶縁強度を確保する寸法にすれば他の導体間の
寸法を短縮することができる。そのため、これら隣接す
る2つの円板コイルの油間隙寸法が小さくなるので直列
静電容量が増大して衝撃電圧が印加されたときの電位分
布の不均一度が改善されて隣接する円板コイルの端部導
体間の電圧差が減少する。したがって、更に円板コイル
間の油間隙寸法を短縮することが可能になる。同じよう
にして他の円板コイル間の寸法も短縮することから円板
巻線の占積率が向上する。
[Operation] In the structure of the present invention, at least one radial end on the inner diameter side and the outer diameter side of the plurality of disc coils on the line terminal side drawn out from one axial end of the disc winding. By placing the conductors axially apart from adjacent disc coils that are not connected to each other at this end, insulation strength between the end conductors of adjacent disc coils with the largest voltage difference is ensured. If the dimensions are made as follows, the dimensions between other conductors can be shortened. Therefore, the oil gap size between these two adjacent disc coils becomes smaller, increasing the series capacitance and improving the non-uniformity of the potential distribution when an impact voltage is applied. The voltage difference between the end conductors is reduced. Therefore, it becomes possible to further shorten the oil gap size between the disc coils. In the same way, the dimensions between other disc coils are also shortened, so the space factor of the disc winding is improved.

【0017】また、円板コイルの両側の端部導体を軸方
向に離れた位置に配置することによって、端部導体と他
の導体との軸方向位置のずれを小さくすることができる
Further, by arranging the end conductors on both sides of the disc coil at positions separated from each other in the axial direction, it is possible to reduce the deviation in the axial position between the end conductors and other conductors.

【0018】又は、線路端子側に隣接する円板コイルの
端部導体と連結する端部導体だけを軸方向に離れた位置
に配置することによって、隣接する円板コイル間の油間
隙を確保するための間隔片の形状が単純になる。
Alternatively, an oil gap between adjacent disc coils can be secured by arranging only the end conductors connected to the end conductors of the disc coils adjacent to the line terminal side at positions separated from each other in the axial direction. The shape of the spacer piece becomes simple.

【0019】また、端部導体の端部側角部にL字断面状
の補強絶縁物が取付けられた円板コイルの、この補強絶
縁物と他の導体とが間隔片の共通の面に接するように配
置することによって、油間隙を確保するための間隔片の
形状が単純になる。
[0019] Furthermore, in a disc coil in which a reinforcing insulator having an L-shaped cross section is attached to the end side corner of the end conductor, this reinforcing insulator and another conductor are in contact with a common surface of the spacing piece. By arranging them in this way, the shape of the spacing piece for ensuring the oil gap becomes simple.

【0020】また、補強絶縁物を取りつけた端部導体に
隣接する導体の端部導体と同じ側の角部ににL字断面状
の補強絶縁物を取付けることによって、この導体の角部
に電界が集中することによる絶縁耐力の低下を補うこと
ができる。
Furthermore, by attaching a reinforcing insulator having an L-shaped cross section to the corner of the conductor adjacent to the end conductor on which the reinforcing insulator is attached, on the same side as the end conductor, an electric field can be created at the corner of this conductor. This can compensate for the decrease in dielectric strength caused by the concentration of

【0021】また、補強絶縁物を取付けた端部導体に隣
接する導体にも補強絶縁物を取付けた前述の円板コイル
の複数個からなる補強円板コイル群を線路端子側に配置
し、端部導体だけに補強絶縁物を取付けた円板コイルの
複数個からなる補強円板コイル群をその次に配置するこ
とによって、それぞれ隣接する円板コイル間の電圧差の
値に応じた合理的な絶縁構成となる。
In addition, a reinforcing disc coil group consisting of a plurality of the above-mentioned disc coils with reinforcing insulators attached to the conductor adjacent to the end conductor with reinforcing insulators is arranged on the line terminal side, By next placing a reinforcing disc coil group consisting of a plurality of disc coils with reinforcing insulators attached only to the conductors, it is possible to generate a It has an insulated configuration.

【0022】[0022]

【実施例】以下この発明を実施例に基づいて説明する。 図1はこの発明の第1の実施例を示す円板巻線100A
の模式的な断面図であり、図5と同じ構成要素に対して
は共通を符号を付けて詳しい説明を省略する。この図に
おいて、補強絶縁物31の油間隙41A側の面はコイル
11Aの巻回番号4の端部導体113、巻回番号2,3
の中部導体112の面と一致させてある。絶縁耐力の点
から、端部導体111と端部導体121との絶縁距離は
図5の場合より大きくはないので、端部導体113,中
部導体112は補強絶縁物31の少なくとも厚み寸法分
だけ円板コイル12Aに近づくことになり、このことは
油間隙41Aの寸法が図5の油間隙41に比べて少なく
とも補強絶縁物31の厚み寸法分だけ小さくなったこと
になる。
EXAMPLES The present invention will be explained below based on examples. FIG. 1 shows a disk winding 100A showing a first embodiment of the present invention.
FIG. 6 is a schematic cross-sectional view of the same component as in FIG. In this figure, the surface of the reinforcing insulator 31 on the oil gap 41A side is the end conductor 113 of the winding number 4 of the coil 11A, and the end conductor 113 of the winding number 2 and 3 of the coil 11A.
The surface of the middle conductor 112 is aligned with the surface of the middle conductor 112. From the viewpoint of dielectric strength, the insulation distance between the end conductor 111 and the end conductor 121 is not larger than in the case of FIG. This means that the oil gap 41A is smaller than the oil gap 41 in FIG. 5 by at least the thickness of the reinforcing insulator 31.

【0023】同じようにして、補強絶縁物32が取付け
られた端部導体123、補強絶縁物33が取付けられた
端部導体131及び補強絶縁物34が取付けられた端部
導体143も同様である。端部導体113と123との
間の距離は補強絶縁物31や32の厚み寸法の2倍分小
さくなるが、この導体間の電圧差は小さいので絶縁耐力
を低下する要因にはならない。端部導体121と131
、133と143も同様である。
In the same manner, the end conductor 123 to which the reinforcing insulator 32 is attached, the end conductor 131 to which the reinforcing insulator 33 is attached, and the end conductor 143 to which the reinforcing insulator 34 is attached are also the same. . Although the distance between the end conductors 113 and 123 is reduced by twice the thickness of the reinforcing insulators 31 and 32, the voltage difference between these conductors is small, so this does not become a factor in reducing the dielectric strength. End conductors 121 and 131
, 133 and 143 are also similar.

【0024】中性点端子96に近い側の油間隙は49A
は前述のように磁気中心を合わせるために油間隙41A
と同じ寸法にされるので油間隙49Aの寸法も小さくな
る。
The oil gap on the side near the neutral point terminal 96 is 49A.
As mentioned above, in order to align the magnetic center, the oil gap 41A is
Since the dimensions of the oil gap 49A are the same, the dimensions of the oil gap 49A are also reduced.

【0025】前述のように補強絶縁物31の厚み相当分
だけ端部の導体2の軸方向位置を線路端子91側に移動
した位置に配置するのは油間隙41Aを確保するための
図示しない間隔片の形状が簡単になるという利点がある
からである。端部導体121が上に出っ張ることになる
ので、油間隙41Aの間隔片の製作工数は図5の油間隙
41の間隔片と同程度である。端部導体111と中部導
体112や端部導体113との軸方向のずれの量を補強
絶縁物31の厚み寸法に一致させないで、例えばより小
さくするかより大きくすることも可能である。
As mentioned above, the axial position of the conductor 2 at the end is moved toward the line terminal 91 by an amount equivalent to the thickness of the reinforcing insulator 31 to provide an interval (not shown) to ensure the oil gap 41A. This is because there is an advantage that the shape of the piece becomes simple. Since the end conductor 121 protrudes upward, the number of man-hours required for manufacturing the spacing piece for the oil gap 41A is approximately the same as that for the spacing piece for the oil gap 41 in FIG. The amount of axial deviation between the end conductor 111 and the middle conductor 112 or end conductor 113 may not be made to match the thickness of the reinforcing insulator 31, but may be made smaller or larger, for example.

【0026】油間隙41Aを始めとする油間隙の寸法が
短縮すると前述の直列静電容量Kが増大して(1)式か
ら端部導体111,112間の電圧差ΔVが減少する。 例えば、従来の油間隙41Aの寸法を10mm、補強絶
縁物31の厚み寸法を2mmとすると、隣接する円板コ
イル11,12間の静電容量Kは概略油間隙寸法に比例
するので約20%大きくなり、その結果(1)式から電
圧差ΔVは約10%減少する。したがって、衝撃電圧に
対する円板巻線100Aの絶縁耐力は相対的に10%向
上することになる。それゆえ、同じ絶縁耐力にするため
に更に油間隙41Aの寸法を小さくして占積率を上げる
ことが可能になる。油間隙41Aは前述のように冷却ダ
クトも兼ねているので冷却上必要な寸法がとりうる最小
寸法であり、絶縁上許されてもこの最小寸法より小さく
することはできないので、代わりに導体2の被覆絶縁厚
を薄くして冷却効果を上げるという選択も可能である。
When the dimensions of the oil gap including the oil gap 41A are reduced, the series capacitance K mentioned above increases, and the voltage difference ΔV between the end conductors 111 and 112 decreases from equation (1). For example, if the conventional oil gap 41A has a dimension of 10 mm and the reinforcing insulator 31 has a thickness of 2 mm, the capacitance K between the adjacent disc coils 11 and 12 is approximately 20% since it is roughly proportional to the oil gap dimension. As a result, the voltage difference ΔV decreases by about 10% from equation (1). Therefore, the dielectric strength of the disk winding 100A against the impact voltage is relatively improved by 10%. Therefore, it becomes possible to increase the space factor by further reducing the size of the oil gap 41A in order to maintain the same dielectric strength. As mentioned above, the oil gap 41A also serves as a cooling duct, so the dimensions necessary for cooling are the minimum dimensions that can be taken, and even if it is allowed for insulation purposes, it cannot be made smaller than this minimum dimension. It is also possible to increase the cooling effect by reducing the insulation thickness.

【0027】図2はこの発明の第2の実施例を示す円板
巻線100Bの模式的な断面図であり、図1と共通の構
成要素には同じ符号を付けて詳しい説明を省略する。こ
の図において図1と異なる点は端部導体121も軸方向
に下に移動した位置に配置して端部導体111との距離
を確保するようにしたものであり、端部導体121の移
動寸法分だけ油間隙41Bの寸法を小さくすることがで
きるので図1の場合よりも更に占積率を向上させること
ができる。端部導体121の移動寸法は補強絶縁物31
の厚み寸法にこだわる必要はない。ただし、この実施例
の場合は油間隙41Bの間隔片は3段になるので図1や
図5の場合の油間隙41や41Aの間隔片に比べて製作
工数が大きくなる。
FIG. 2 is a schematic cross-sectional view of a disk winding 100B showing a second embodiment of the present invention, and the same components as those in FIG. 1 are given the same reference numerals and detailed explanations will be omitted. This figure differs from FIG. 1 in that the end conductor 121 is also placed at a position moved downward in the axial direction to ensure a distance from the end conductor 111, and the movement dimension of the end conductor 121 is Since the size of the oil gap 41B can be reduced by that amount, the space factor can be further improved than in the case of FIG. The movement dimension of the end conductor 121 is the same as that of the reinforcing insulator 31.
There is no need to be particular about the thickness dimension. However, in this embodiment, the spacing pieces for the oil gap 41B are in three stages, so the manufacturing man-hours are larger than for the spacing pieces for the oil gaps 41 and 41A in the cases of FIGS. 1 and 5.

【0028】図3はこの発明の第3の実施例を示す円板
巻線100Cの模式的な断面図であり、中央部だけでな
く中性点に近い円板コイルの図示も省略してある。この
図の図1、図2との違いは、補強絶縁物31が取付けら
れた端部導体111の隣の巻回番号2の導体である端部
隣接導体114にも補強絶縁物35を取付けた点である
FIG. 3 is a schematic cross-sectional view of a disk winding 100C showing a third embodiment of the present invention, and illustrations of not only the central portion but also the disk coil near the neutral point are omitted. . The difference between this figure and FIGS. 1 and 2 is that a reinforcing insulator 35 is also attached to the end adjacent conductor 114, which is the conductor with winding number 2 next to the end conductor 111 to which the reinforcing insulator 31 is attached. It is a point.

【0029】端部導体111を端部隣接導体114から
上部に移動した位置に配置すると導体114の右下の角
部が出っ張って電界がより集中することになり絶縁耐力
上の弱点になる場合がある。このような弱点を解消する
ために補強絶縁物35を取付けたものである。この補強
絶縁物35は補強絶縁物31よりも薄くてよいのが普通
である。したがって、図示のように補強絶縁物31、補
強絶縁物35及び中部導体112との油間隙41C側の
面を一致させて図1と同様に間隔片の形状を単純化する
ことができる。勿論、面を一致させることにこだわるも
のではない。
If the end conductor 111 is placed in a position moved upward from the end adjacent conductor 114, the lower right corner of the conductor 114 will protrude and the electric field will become more concentrated, which may become a weak point in terms of dielectric strength. be. In order to eliminate such weak points, a reinforcing insulator 35 is attached. This reinforcing insulator 35 is normally thinner than the reinforcing insulator 31. Therefore, the shape of the spacing piece can be simplified as in FIG. 1 by making the surfaces of the reinforcing insulator 31, the reinforcing insulator 35, and the middle conductor 112 on the oil gap 41C side coincide with each other as shown in the figure. Of course, it is not a matter of making the surfaces match.

【0030】図4はこの発明の第4の実施例を示す円板
巻線100Dの模式的な断面図であり、線路端子91に
最も近い円板コイル群である補強円板コイル群110を
図3に示した円板コイル11Cや12Cからなる円板コ
イル群とし、次の円板コイル群111を図1の円板コイ
ル11Aや12Aからなる円板コイル群とし、その後は
補強絶縁物が取付けられていない円板コイル18D,1
9Dからなる円板コイル群120を連結する構成である
FIG. 4 is a schematic cross-sectional view of a disc winding 100D showing a fourth embodiment of the present invention, and shows a reinforcing disc coil group 110, which is the disc coil group closest to the line terminal 91. A disk coil group consisting of the disk coils 11C and 12C shown in FIG. 3 is used, and the next disk coil group 111 is a disk coil group consisting of the disk coils 11A and 12A shown in FIG. Disc coil 18D, 1
This is a configuration in which a group of 9D disk coils 120 are connected.

【0031】一般に図3の円板巻線100Cは図1の円
板巻線100Aや図1の円板巻線100Bに比べて隣接
する円板コイル間の電圧差が大きい場合に採用されるも
のである。例えば、円板巻線100Aや100Bが定格
電圧154kVの円板巻線に使用し、円板巻線100C
は定格電圧275kVに使用されるというようにである
。したがって、図4で円板コイル群110の次に連結す
る円板コイル群は補強絶縁を取付けていない円板コイル
群120ではなく、その中間的な円板コイル群111を
連結しその後に円板コイル群120を連結するのが絶縁
構成上合理的であるといえる。なお、これらの異なる構
成の円板巻線の選択は円板巻線の設計時点における総合
的な判断に基づいてなされるものである。
Generally, the disc winding 100C shown in FIG. 3 is used when the voltage difference between adjacent disc coils is larger than the disc winding 100A shown in FIG. 1 or the disc winding 100B shown in FIG. It is. For example, if the disc winding 100A or 100B is used for a disc winding with a rated voltage of 154 kV, the disc winding 100C
is used for a rated voltage of 275kV. Therefore, the disk coil group connected next to the disk coil group 110 in FIG. It can be said that connecting the coil groups 120 is rational in terms of insulation configuration. Note that the selection of the disc windings having these different configurations is made based on comprehensive judgment at the time of designing the disc winding.

【0032】[0032]

【発明の効果】この発明は前述のように、円板巻線の線
路端子側の複数個の円板コイルの、内径側と外径側の少
なくとも一方の半径方向端部の導体を、この端部で互い
に連結されない隣接する円板コイルに対して軸方向に離
れた位置に配置することによって、これら隣接する円板
コイル間で最も電圧差の大きな端部導体間の絶縁強度を
確保する寸法にしてしかも他の導体間の寸法を短縮する
ことができることから、円板コイル間の油間隙寸法が小
さくなり直列静電容量が増大して衝撃電圧に対する電位
分布の不均一度が改善され、隣接する円板コイルの端部
導体間の電圧差が減少する。したがって、更に円板コイ
ル間の油間隙寸法を短縮することが可能になる。同じよ
うにして他の円板コイル間の寸法を短縮することができ
ることから円板巻線の占積率が向上するという効果が得
られる。また、電圧差の減少を利用するのに油間隙寸法
の短縮ではなく導体の絶縁被覆の厚み寸法を小さくする
と導体の冷却効果が向上するので、円板巻線の温度上昇
値を従来のと同じにするためには電流密度を上げて導線
材料の使用量を減少させるという効果をあげることもで
きる。
Effects of the Invention As described above, the present invention allows the conductor at the radial end of at least one of the inner diameter side and the outer diameter side of the plurality of disc coils on the line terminal side of the disc winding to be connected to this end. By arranging it at a position axially distant from adjacent disc coils that are not connected to each other at the end, the dimensions are such that the insulation strength between the end conductors with the largest voltage difference between these adjacent disc coils is ensured. Moreover, since the dimensions between other conductors can be shortened, the oil gap between the disc coils becomes smaller, the series capacitance increases, and the non-uniformity of the potential distribution with respect to the shock voltage is improved. The voltage difference between the end conductors of the disc coil is reduced. Therefore, it becomes possible to further shorten the oil gap size between the disc coils. In the same way, the dimensions between other disc coils can be shortened, resulting in the effect of improving the space factor of the disc winding. In addition, to take advantage of the reduction in voltage difference, reducing the thickness of the conductor's insulation coating instead of reducing the oil gap improves the cooling effect of the conductor, so the temperature rise of the disc winding can be kept the same as the conventional method. In order to achieve this, it is possible to increase the current density and reduce the amount of conductor material used.

【0033】円板巻線の占積率が向上すると円板巻線の
寸法が減少を従来よりも小さくなるので、円板巻線の半
径方向寸法である幅寸法を小さくすれば、この円板巻線
は勿論外形側に配置される高圧巻線の半径も小さくなっ
て導線材料が減少し、鉄心、絶縁油の使用量及びこれら
を収納するタンクの寸法縮小を図ることも可能になり、
これら種々の波及効果によってこの発明を採用した円板
巻線を使用することによって大容量変圧器のコストダウ
ンが可能になるという効果が得られる。
As the space factor of the disc winding improves, the size of the disc winding decreases less than before, so if the width dimension, which is the radial dimension of the disc winding, is reduced, this disc winding can be reduced. Not only the winding but also the radius of the high-voltage winding placed on the outside has become smaller, reducing the amount of conductor material, making it possible to reduce the amount of iron core and insulating oil used and the dimensions of the tank that houses them.
Due to these various ripple effects, it is possible to reduce the cost of large-capacity transformers by using the disk winding according to the present invention.

【0034】また、円板コイルの両側の端部導体を軸方
向に離れた位置に配置することによって、端部導体と他
の導体との軸方向位置のずれを小さくすることができる
Furthermore, by arranging the end conductors on both sides of the disc coil at positions separated from each other in the axial direction, it is possible to reduce the deviation in the axial position between the end conductors and other conductors.

【0035】又は、線路端子側に隣接する円板コイルの
端部導体と連結する端部導体だけを軸方向に離れた位置
に配置することによって、隣接する円板コイル間の油間
隙を確保するための間隔片の形状が単純になり、間隔片
の製作工数が減少することによるコストダウンとなる効
果が得られる。
Alternatively, an oil gap between adjacent disc coils can be secured by arranging only the end conductors connected to the end conductors of the disc coils adjacent to the line terminal side at positions separated in the axial direction. The shape of the spacer piece becomes simple, and the number of man-hours required for manufacturing the spacer piece is reduced, resulting in cost reduction.

【0036】また、端部導体の端部側角部にL字断面状
の補強絶縁物が取付けられた円板コイルの、この補強絶
縁物と他の導体とが間隔片の共通の面に接するように配
置することによって、油間隙を確保するための間隔片の
形状が単純になり、前述と同様の効果が得られる。
[0036] Further, in a disc coil in which a reinforcing insulator having an L-shaped cross section is attached to the end side corner of the end conductor, this reinforcing insulator and another conductor are in contact with a common surface of the spacing piece. By arranging them in this manner, the shape of the spacing piece for ensuring the oil gap becomes simple, and the same effect as described above can be obtained.

【0037】また、補強絶縁物を取りつけた端部導体に
隣接する導体の端部導体と同じ側の角部にL字断面状の
補強絶縁物を取付けることによって、この導体の角部に
電界が集中することによる絶縁耐力の低下を補うことが
できる。
Furthermore, by attaching a reinforcing insulator with an L-shaped cross section to the corner of the conductor adjacent to the end conductor on which the reinforcing insulator is attached, on the same side as the end conductor, an electric field can be generated at the corner of this conductor. It can compensate for the decrease in dielectric strength caused by concentration.

【0038】また、補強絶縁物を取付けた端部導体に隣
接する導体にも補強絶縁物を取付けた前述の円板コイル
の複数個からなる補強円板コイル群を線路端子側に配置
し、端部導体だけに補強絶縁物を取付けた円板コイルの
複数個からなる補強円板コイル群をその次に配置するこ
とによって、それぞれ隣接する円板コイル間の電圧差の
値に応じた合理的な絶縁構成になるという効果が得られ
る。
Further, a reinforcing disc coil group consisting of a plurality of the above-mentioned disc coils with reinforcing insulators attached to the conductor adjacent to the end conductor with reinforcing insulators is arranged on the line terminal side, By next placing a reinforcing disc coil group consisting of a plurality of disc coils with reinforcing insulators attached only to the conductors, it is possible to generate a This provides the effect of an insulating configuration.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】この発明の第1の実施例を示す円板巻線の模式
的な断面図
[Fig. 1] A schematic cross-sectional view of a disc winding wire showing a first embodiment of the present invention.

【図2】この発明の第2の実施例を示す円板巻線の模式
的な断面図
[Fig. 2] A schematic cross-sectional view of a disc winding showing a second embodiment of the present invention.

【図3】この発明の第3の実施例を示す円板巻線の模式
的な断面図
FIG. 3 is a schematic cross-sectional view of a disk winding showing a third embodiment of the present invention.

【図4】この発明の第4の実施例を示す円板巻線の模式
的な断面図
FIG. 4 is a schematic cross-sectional view of a disk winding showing a fourth embodiment of the present invention.

【図5】従来の円板巻線の模式的な断面図[Figure 5] A schematic cross-sectional view of a conventional disk winding

【符号の説明】[Explanation of symbols]

100    円板巻線 2    導体 11    円板コイル 111    端部導体 112    中部導体 113    端部導体 12    円板コイル 121    端部導体 122    中部導体 123    端部導体 13    円板コイル 131    端部導体 132    中部導体 133    端部導体 14    円板コイル 141    端部導体 142    中部導体 143    端部導体 18    円板コイル 19    円板コイル 31    補強絶縁物 32    補強絶縁物 33    補強絶縁物 34    補強絶縁物 41    油間隙 42    油間隙 43    油間隙 49    油間隙 5    冷却ダクト 91    線路端子 96    中性点端子 92    被覆絶縁 93    電極 94    スタティックプレート 95    接続リード 100A  円板巻線 11A  円板コイル 12A  円板コイル 13A  円板コイル 14A  円板コイル 41A  油間隙 42A  油間隙 43A  油間隙 49A  油間隙 100B  円板巻線 11B  円板コイル 12B  円板コイル 13B  円板コイル 14B  円板コイル 41B  油間隙 42B  油間隙 43B  油間隙 100C  円板巻線 11C  円板コイル 114    端部隣接導体 12C  円板コイル 124    端部隣接導体 13C  円板コイル 134    端部隣接導体 14C  円板コイル 144    端部隣接導体 41C  油間隙 42C  油間隙 43C  油間隙 100D  円板巻線 110    補強円板コイル群 111    補強円板コイル群 120    円板コイル群 18D  円板コイル 19D  円板コイル 35    補強絶縁物 36    補強絶縁物 37    補強絶縁物 38    補強絶縁物 100 Disc winding 2 Conductor 11 Disc coil 111 End conductor 112 Middle conductor 113 End conductor 12 Disc coil 121 End conductor 122 Middle conductor 123 End conductor 13 Disc coil 131 End conductor 132 Middle conductor 133 End conductor 14 Disc coil 141 End conductor 142 Middle conductor 143 End conductor 18 Disc coil 19 Disc coil 31 Reinforcement insulation 32 Reinforcement insulation 33 Reinforcement insulation 34 Reinforcement insulation 41 Oil gap 42 Oil gap 43 Oil gap 49 Oil gap 5 Cooling duct 91 Line terminal 96 Neutral point terminal 92 Covered insulation 93 Electrode 94 Static plate 95 Connection lead 100A Disc winding 11A Disc coil 12A disc coil 13A Disc coil 14A Disc coil 41A Oil gap 42A Oil gap 43A Oil gap 49A Oil gap 100B Disc winding 11B Disc coil 12B Disc coil 13B Disc coil 14B Disc coil 41B Oil gap 42B Oil gap 43B Oil gap 100C disk winding 11C Disc coil 114 End adjacent conductor 12C Disc coil 124 End adjacent conductor 13C Disc coil 134 End adjacent conductor 14C Disc coil 144 End adjacent conductor 41C Oil gap 42C Oil gap 43C Oil gap 100D Disc winding 110 Reinforcement disc coil group 111 Reinforcement disc coil group 120 Disc coil group 18D Disc coil 19D Disc coil 35 Reinforcement insulation 36 Reinforcement insulation 37 Reinforcement insulation 38 Reinforcement insulation

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】絶縁被覆された導体が半径方向に重ねられ
て複数ターン巻回されてなる円板コイルの複数個が、油
間隙を挟んで軸方向に積み重ねられてなり、隣同士の円
板コイルの外径側又は内径側の半径方向端部の導体同士
が交互に電気的に連結されてなる円板巻線において、こ
の円板巻線の軸方向端部の一方から引き出される線路端
子側の複数個の円板コイルの、内径側と外径側の少なく
とも一方の半径方向端部の導体を、この端部で互いに連
結されない隣接する円板コイルに対して軸方向に離れた
位置に配置してなるなることを特徴とする円板巻線。
Claim 1: A plurality of disc coils each having an insulating coated conductor stacked in the radial direction and wound in multiple turns are stacked in the axial direction with an oil gap in between, and adjacent disc coils are stacked in the axial direction with an oil gap in between. In a disc winding in which conductors at the radial ends on the outer diameter side or the inner diameter side of the coil are electrically connected alternately, the line terminal side drawn out from one of the axial ends of this disc winding The conductor at the radial end of at least one of the inner diameter side and the outer diameter side of the plurality of disc coils is arranged at a position separated in the axial direction from adjacent disc coils that are not connected to each other at this end. A disc winding wire characterized by the following characteristics:
【請求項2】円板コイルの両側の半径方向端部導体を軸
方向に離れた位置に配置してなることを特徴とする請求
項1記載の円板巻線。
2. The disk winding according to claim 1, wherein the radial end conductors on both sides of the disk coil are arranged at positions separated from each other in the axial direction.
【請求項3】線路端子側に隣接する円板コイルの端部導
体と連結する端部導体だけを軸方向に離れた位置に配置
してなることを特徴とする請求項1記載の円板巻線。
3. The disc winding according to claim 1, wherein only the end conductor connected to the end conductor of the disc coil adjacent to the line terminal side is arranged at a position separated from the end conductor in the axial direction. line.
【請求項4】端部導体の端部側角部にL字断面状の補強
絶縁物が取付けられた円板コイルの、この補強絶縁物と
他の導体とが油間隙の共通の面に接してなることを特徴
とする請求項1,2又は3記載の円板巻線。
[Claim 4] A disc coil in which a reinforcing insulator having an L-shaped cross section is attached to a corner of an end of an end conductor, the reinforcing insulator and another conductor are in contact with a common surface of an oil gap. 4. The disc winding according to claim 1, 2 or 3, characterized in that:
【請求項5】補強絶縁物を取りつけた端部導体に隣接す
る導体の端部導体と同じ側の角部にL字断面状の補強絶
縁物を取付けてなることを特徴とする請求項4記載の円
板巻線。
5. A reinforcing insulator having an L-shaped cross section is attached to a corner of the conductor adjacent to the end conductor to which the reinforcing insulator is attached, on the same side as the end conductor. disk winding.
【請求項6】補強絶縁物を取付けた端部導体に隣接する
導体にも補強絶縁物を取付けた請求項5記載の円板コイ
ルの複数個からなる補強円板コイル群を線路端子側に配
置し、端部導体だけに補強絶縁物を取付けてなる請求項
4記載の円板コイルの複数個からなる補強円板コイル群
をその次に配置してなることを特徴とする円板巻線。
6. A reinforcing disc coil group consisting of a plurality of disc coils according to claim 5, wherein a reinforcing insulator is also attached to the conductor adjacent to the end conductor to which the reinforcing insulator is attached, is arranged on the line terminal side. A disc winding characterized in that a reinforcing disc coil group consisting of a plurality of disc coils according to claim 4 is disposed next to the reinforcing disc coil group, wherein a reinforcing insulator is attached only to the end conductor.
JP08711091A 1991-04-19 1991-04-19 Disk winding Expired - Lifetime JP3522290B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP08711091A JP3522290B2 (en) 1991-04-19 1991-04-19 Disk winding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP08711091A JP3522290B2 (en) 1991-04-19 1991-04-19 Disk winding

Publications (2)

Publication Number Publication Date
JPH04320308A true JPH04320308A (en) 1992-11-11
JP3522290B2 JP3522290B2 (en) 2004-04-26

Family

ID=13905817

Family Applications (1)

Application Number Title Priority Date Filing Date
JP08711091A Expired - Lifetime JP3522290B2 (en) 1991-04-19 1991-04-19 Disk winding

Country Status (1)

Country Link
JP (1) JP3522290B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014011221A (en) * 2012-06-28 2014-01-20 Sht Co Ltd Coil device having cooling structure

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014011221A (en) * 2012-06-28 2014-01-20 Sht Co Ltd Coil device having cooling structure

Also Published As

Publication number Publication date
JP3522290B2 (en) 2004-04-26

Similar Documents

Publication Publication Date Title
US20140300440A1 (en) Inductor gap spacer
US20130063237A1 (en) Reactor
US4489298A (en) Insulating structure for magnetic coils
EP0040262A1 (en) Electrical reactor with foil windings
US4554523A (en) Winding for static induction apparatus
US3466584A (en) Winding for a stationary induction electrical apparatus
WO2020053931A1 (en) Static inductor
JP3522290B2 (en) Disk winding
US4460885A (en) Power transformer
US4270111A (en) Electrical inductive apparatus
US3766504A (en) Interleaved transformer winding having three parallel connected conductors
US3621427A (en) Electrical reactor
US3376530A (en) Axially spaced transformer pancake coils having static plate
JPH0311534B2 (en)
JP2728162B2 (en) Transformer for DC transmission
US3173112A (en) Three-phase reactor
JP2924274B2 (en) Manufacturing method of disk winding
CN215933340U (en) Reactor for three-phase transformer and three-phase transformer
KR101631182B1 (en) Transformer for high space factor
US3899764A (en) Four-strand interleaved-turn transformer winding
US3644859A (en) Electrical winding of sheet conductor
JPS6214656Y2 (en)
JPS60150609A (en) Transformer
JPS6344283B2 (en)
CN113707429A (en) Reactor for three-phase transformer and three-phase transformer

Legal Events

Date Code Title Description
A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040204

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080220

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090220

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100220

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110220

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110220

Year of fee payment: 7

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120220

Year of fee payment: 8

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120220

Year of fee payment: 8