JPH04320079A - Laser unit - Google Patents

Laser unit

Info

Publication number
JPH04320079A
JPH04320079A JP8648091A JP8648091A JPH04320079A JP H04320079 A JPH04320079 A JP H04320079A JP 8648091 A JP8648091 A JP 8648091A JP 8648091 A JP8648091 A JP 8648091A JP H04320079 A JPH04320079 A JP H04320079A
Authority
JP
Japan
Prior art keywords
laser
support member
lens
collimator lens
semiconductor laser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8648091A
Other languages
Japanese (ja)
Inventor
Kazunori Murakami
和則 村上
Tomonori Ikumi
智則 伊久美
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba TEC Corp
Original Assignee
Tokyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electric Co Ltd filed Critical Tokyo Electric Co Ltd
Priority to JP8648091A priority Critical patent/JPH04320079A/en
Publication of JPH04320079A publication Critical patent/JPH04320079A/en
Pending legal-status Critical Current

Links

Landscapes

  • Mechanical Optical Scanning Systems (AREA)
  • Exposure Or Original Feeding In Electrophotography (AREA)
  • Semiconductor Lasers (AREA)
  • Mounting And Adjusting Of Optical Elements (AREA)
  • Lens Barrels (AREA)

Abstract

PURPOSE:To accurately maintain formation of a parallel beam of a semiconductor laser light by compensating separation of a collimator lens from the laser due to an expansion of a laser support member upon rising of a temperature, a deviation of a focal position of the lens due to a variation in the oscillation wavelength of the laser by the expansion of the member in a laser unit in which formation of the parallel mean of the light emitted from the laser is conducted by the lens. CONSTITUTION:A lens support member 15 for compensating an expansion of a laser support member 14 and a variation in an oscillation wavelength of a semiconductor laser by reducing an interval between the laser and a collimator lens 8 by the expansion upon rising of a temperature, is provided between the member 14 and the lens 8.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、レーザプリンタなどの
機器に利用されるレーザユニットに関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a laser unit used in equipment such as a laser printer.

【0002】0002

【従来の技術】レーザプリンタなどの機器では、光源で
ある半導体レーザが出射するレーザ光をコリメータレン
ズで平行光束化して印刷などに利用するようになってお
り、現在ではコリメータレンズと半導体レーザとを一体
化したレーザユニットが設けられている。
[Prior Art] In devices such as laser printers, the laser light emitted by a semiconductor laser, which is a light source, is collimated into a beam of light by a collimator lens and used for printing, etc. Currently, collimator lenses and semiconductor lasers are used. An integrated laser unit is provided.

【0003】そこで、このようなレーザユニットの従来
例として特開平1−145611号公報に開示された装
置を図5に基づいて説明する。まず、このレーザユニッ
ト1では、半導体レーザ2を挾持したPCB(Prin
ted  Circuit  Board)3と放熱板
4とに、これらの部材3,4を貫通したボルト5でレー
ザホルダ6が固定されており、このレーザホルダ6の円
筒部内に挿入されて連結された樹脂鏡筒7の末端部にコ
リメータレンズ8が固定されている。ここで、レンズ支
持部材を形成する前記部品4〜6はアルミ等で形成され
て線膨張係数が小さくなっており、レンズ支持部材であ
る前記樹脂鏡筒7は充填材が添加された樹脂材で形成さ
れて線膨張係数が大きくなっている。
[0003] Therefore, as a conventional example of such a laser unit, a device disclosed in Japanese Unexamined Patent Publication No. 1-145611 will be described with reference to FIG. First, in this laser unit 1, a PCB (Princess
A laser holder 6 is fixed to the ted circuit board 3 and the heat sink 4 with bolts 5 passing through these members 3 and 4, and a resin lens barrel is inserted into the cylindrical portion of the laser holder 6 and connected thereto. A collimator lens 8 is fixed to the distal end of the lens 7 . Here, the parts 4 to 6 that form the lens support member are made of aluminum or the like and have a small coefficient of linear expansion, and the resin lens barrel 7 that is the lens support member is made of a resin material added with a filler. It has a large linear expansion coefficient.

【0004】このような構成において、このレーザユニ
ット1は、半導体レーザ2が出射するレーザ光をコリメ
ータレンズ8で平行光束化して出射するようになってお
り、例えば、レーザプリンタ(図示せず)の光源などと
して利用される。
In such a configuration, the laser unit 1 is configured to collimate the laser beam emitted by the semiconductor laser 2 with the collimator lens 8 and emit it. Used as a light source, etc.

【0005】ここで、高エネルギのレーザ光を出射する
半導体レーザ2は発熱するので、動作時間が経過すると
半導体レーザ2と共に各部4〜7の温度が上昇すること
になる。この時、通常は温度上昇によるレーザホルダ6
などの膨張で半導体レーザ2とコリメータレンズ8との
間隔が拡大されてレーザ光の平行光束化が阻害されるこ
とになるが、上記公報に開示されたレーザユニット1で
は、温度上昇による樹脂鏡筒7の膨張で部品4〜6の膨
張を相殺して半導体レーザ2とコリメータレンズ8との
間隔を均一に維持するようになっている。そして、この
ような特性を実現するため、上記公報のレーザユニット
1では、樹脂鏡筒7に添加する充填材で線膨張係数を制
御するようになっている。
[0005] Here, since the semiconductor laser 2 that emits high-energy laser light generates heat, the temperature of the semiconductor laser 2 and the various parts 4 to 7 rises as the operating time elapses. At this time, the temperature of the laser holder 6 is usually increased due to temperature rise.
Due to the expansion, the distance between the semiconductor laser 2 and the collimator lens 8 is expanded and the collimation of the laser beam is inhibited. However, in the laser unit 1 disclosed in the above publication, the resin lens barrel The expansion of the parts 4 to 6 is offset by the expansion of the parts 4 to 6, thereby maintaining a uniform distance between the semiconductor laser 2 and the collimator lens 8. In order to realize such characteristics, in the laser unit 1 of the above-mentioned publication, the linear expansion coefficient is controlled by a filler added to the resin lens barrel 7.

【0006】[0006]

【発明が解決しようとする課題】上述したレーザユニッ
ト1では、半導体レーザ2とコリメータレンズ8との間
隔を均一に維持してレーザ光を高精度に平行光束化する
ため、温度上昇によるレーザホルダ6等の膨張を相殺す
るように樹脂鏡筒7の線膨張係数を設定するようになっ
ている。
[Problems to be Solved by the Invention] In the above-mentioned laser unit 1, in order to maintain a uniform distance between the semiconductor laser 2 and the collimator lens 8 and convert the laser beam into a parallel beam with high precision, the laser holder 6 may be damaged due to temperature rise. The linear expansion coefficient of the resin lens barrel 7 is set so as to cancel out the expansions such as the above.

【0007】ここで、上述のようにレーザ光を平行光束
化するコリメータレンズ8は、その屈折率が透過光の波
長により変化し、このようなコリメータレンズ8にレー
ザ光を出射する半導体レーザ2は、作動時間の経過によ
り本体温度が上昇すると出射するレーザ光の発振波長が
長くなる特性を有している。つまり、上述したレーザユ
ニット1では、温度上昇による各部の膨張を相殺して半
導体レーザ2とコリメータレンズ8との間隔が均一に維
持されるようになっているが、それでも半導体レーザ2
の発振波長が変化することでレーザ光の平行光束化が阻
害される。
As mentioned above, the collimator lens 8 that collimates the laser beam has a refractive index that changes depending on the wavelength of the transmitted light, and the semiconductor laser 2 that emits the laser beam to the collimator lens 8 has a , the oscillation wavelength of the emitted laser light increases as the main body temperature increases over time. In other words, in the laser unit 1 described above, the distance between the semiconductor laser 2 and the collimator lens 8 is maintained uniform by canceling out the expansion of each part due to temperature rise, but even so, the distance between the semiconductor laser 2 and the collimator lens 8 is maintained uniformly.
The change in the oscillation wavelength of the laser beam impedes parallelization of the laser beam.

【0008】このため、例えば、上述のようなレーザユ
ニット1でレーザプリンタを製作した場合、これは作動
時間の経過と共にレーザ光の平行光束化が阻害されて印
刷品質が低下することになる。
For this reason, for example, when a laser printer is manufactured using the laser unit 1 as described above, as the operating time passes, the collimation of the laser beam is inhibited and the printing quality deteriorates.

【0009】[0009]

【課題を解決するための手段】請求項1記載の発明は、
レーザ光を出射する半導体レーザを設け、透過光の波長
が長いと屈折率が高い特性を有して半導体レーザのレー
ザ光を平行光束化するコリメータレンズを設け、半導体
レーザが固定されて温度上昇により膨張するレーザ支持
部材を設け、このレーザ支持部材とコリメータレンズと
を連結して温度上昇による膨張で半導体レーザとコリメ
ータレンズとの間隔を縮小してレーザ支持部材の膨張と
半導体レーザの発振波長の変動とを補償するレンズ支持
部材を設けた。
[Means for solving the problem] The invention according to claim 1 includes:
A semiconductor laser that emits laser light is provided, and a collimator lens is provided that has a property of having a high refractive index when the transmitted light has a long wavelength and converts the laser light of the semiconductor laser into a parallel beam. A laser support member that expands is provided, and the laser support member and the collimator lens are connected to each other, and the distance between the semiconductor laser and the collimator lens is reduced by expansion due to temperature rise, thereby expanding the laser support member and changing the oscillation wavelength of the semiconductor laser. A lens support member is provided to compensate for this.

【0010】請求項2記載の発明は、レンズ支持部材と
レーザ支持部材との接合部から半導体レーザの光点に至
る光軸方向の距離をL、レンズ支持部材とレーザ支持部
材との接合部からレンズ支持部材とコリメータレンズと
の接合部に至る光軸方向の距離をl、レンズ支持部材と
レーザ支持部材との常温から変化した温度を△T、レー
ザ支持部材の線膨張係数をY、レンズ支持部材の線膨張
係数をX、コリメータレンズの常温での屈折率をn、コ
リメータレンズの温度△Tでの屈折率を△n、コリメー
タレンズの光入射面の曲率半径をr1、コリメータレン
ズの光出射面の曲率半径をr2とすると、−{r1・r
2/(r1−r2)}[(△n−n)/{(n−1)・
(△n−1)}]≦L・Y・△T−l・X・△T≦0の
関係を満足する。
According to the second aspect of the invention, the distance in the optical axis direction from the joint between the lens support member and the laser support member to the light spot of the semiconductor laser is L, and the distance from the joint between the lens support member and the laser support member to the light spot of the semiconductor laser is L. The distance in the optical axis direction to the joint between the lens support member and the collimator lens is l, the temperature of the lens support member and the laser support member that has changed from room temperature is △T, the linear expansion coefficient of the laser support member is Y, and the lens support The linear expansion coefficient of the member is X, the refractive index of the collimator lens at room temperature is n, the refractive index of the collimator lens at temperature ΔT is Δn, the radius of curvature of the light incident surface of the collimator lens is r1, and the light output of the collimator lens is If the radius of curvature of the surface is r2, -{r1・r
2/(r1-r2)} [(△n-n)/{(n-1)・
(△n-1)}]≦L・Y・△T−1・X・△T≦0 is satisfied.

【0011】[0011]

【作用】レーザ支持部材とコリメータレンズとを連結し
たレンズ支持部材が温度上昇による膨張で半導体レーザ
とコリメータレンズとの間隔を縮小してレーザ支持部材
の膨張と半導体レーザの発振波長の変動とを補償するの
で、半導体レーザの作動時間が経過してもレーザ光の平
行光束化を高精度に維持することができる。
[Operation] The lens support member that connects the laser support member and the collimator lens expands due to temperature rise, reducing the distance between the semiconductor laser and the collimator lens, thereby compensating for the expansion of the laser support member and the fluctuation in the oscillation wavelength of the semiconductor laser. Therefore, even after the operating time of the semiconductor laser has elapsed, the collimation of the laser beam can be maintained with high precision.

【0012】0012

【実施例】本発明の実施例を図1ないし図4に基づいて
説明する。なお、前述したレーザユニット1と同一の部
分は同一の名称及び符号を用いて説明も省略する。まず
、本実施例のレーザユニット9では、図2に例示するよ
うに、PCB3に実装された半導体レーザ2が板バネ1
0により放熱板11の後面に弾発保持されており、これ
らの部品3,11を貫通したボルト12で前記放熱板1
1の前面に固定されたレーザホルダ13の円筒部内に鏡
筒14が固定されることで、これらのアルミ等からなる
部品11〜14で線膨張係数が小さいレーザ支持部材が
形成されている。
Embodiment An embodiment of the present invention will be explained based on FIGS. 1 to 4. Note that the same parts as those in the laser unit 1 described above will be given the same names and symbols, and the explanation will be omitted. First, in the laser unit 9 of this embodiment, as illustrated in FIG.
The heat sink 1 is elastically held on the rear surface of the heat sink 11 by the bolts 12 that pass through these parts 3 and 11.
By fixing the lens barrel 14 within the cylindrical portion of the laser holder 13 fixed to the front surface of the laser holder 1, the parts 11 to 14 made of aluminum or the like form a laser support member having a small coefficient of linear expansion.

【0013】そして、この鏡筒14の内周面に形成され
た段部に環状のレンズ支持部材15を介してコリメータ
レンズ8が接着等で取付けられている。ここで、前記レ
ンズ支持部材15は、線膨張係数が大きいアセタール樹
脂などで形成されており、前記鏡筒14との接合部16
からコリメータレンズ8との接合部17に至る動作部の
光軸方向の伸縮で前記コリメータレンズ8を変位させる
ようになっている。また、このレーザユニット9では、
前記鏡筒14の先端部にレーザ光を成形するアパーチャ
18が取付けられている。
A collimator lens 8 is attached to a stepped portion formed on the inner circumferential surface of the lens barrel 14 via an annular lens support member 15 by adhesive or the like. Here, the lens support member 15 is made of acetal resin or the like having a large coefficient of linear expansion, and is made of a joint 16 with the lens barrel 14.
The collimator lens 8 is displaced by expansion and contraction of the operating section in the optical axis direction from the to the joint 17 with the collimator lens 8. Moreover, in this laser unit 9,
An aperture 18 for shaping laser light is attached to the tip of the lens barrel 14.

【0014】そして、このレーザユニット9では、図1
に例示するように、レンズ支持部材15と鏡筒14との
接合部16から半導体レーザ2の光点19に至る光軸方
向の距離をL、鏡筒14とレンズ支持部材15との接合
部16からレンズ支持部材15とコリメータレンズ8と
の接合部17に至る光軸方向の長さをl、レーザ支持部
材を形成する部品11〜14とレンズ支持部材15との
温度を△T、部品4〜6,10の線膨張係数をY、レン
ズ支持部材15の線膨張係数をX、コリメータレンズ8
の常温での屈折率をn、コリメータレンズ8の温度△T
での屈折率を△n、コリメータレンズ8の光入射面の曲
率半径をr1、コリメータレンズ8の光出射面の曲率半
径をr2とすると、−{r1・r2/(r1−r2)}
[(△n−n)/{(n−1)・(△n−1)}]≦L
・Y・△T−l・X・△T≦0の関係を満足するように
なっている。
In this laser unit 9, FIG.
As illustrated in FIG. The length in the optical axis direction from 1 to the joint 17 between the lens support member 15 and the collimator lens 8 is l, the temperature of the parts 11 to 14 forming the laser support member and the lens support member 15 is ΔT, and parts 4 to The linear expansion coefficient of lenses 6 and 10 is Y, the linear expansion coefficient of the lens support member 15 is X, and the collimator lens 8 is
The refractive index at room temperature is n, and the temperature of the collimator lens 8 △T
If the refractive index at is △n, the radius of curvature of the light entrance surface of the collimator lens 8 is r1, and the radius of curvature of the light exit surface of the collimator lens 8 is r2, -{r1・r2/(r1−r2)}
[(△n-n)/{(n-1)・(△n-1)}]≦L
・Y・△T−l・X・The relationship of △T≦0 is satisfied.

【0015】このような構成において、このレーザユニ
ット9は、図1(a)に例示するように、常温下でコリ
メータレンズ8の焦点位置上に半導体レーザ2の光点が
位置するように形成されており、この状態で前述したレ
ーザユニット1と同様に半導体レーザ2が出射するレー
ザ光がコリメータレンズ8で平行光束化されてレーザプ
リンタの光源などとして利用される。
In such a configuration, the laser unit 9 is formed such that the light spot of the semiconductor laser 2 is located on the focal position of the collimator lens 8 at room temperature, as illustrated in FIG. 1(a). In this state, similarly to the laser unit 1 described above, the laser light emitted by the semiconductor laser 2 is collimated by the collimator lens 8 and used as a light source of a laser printer.

【0016】ここで、このレーザユニット9では、半導
体レーザ2の発熱で各部11〜15の温度が上昇すると
、図1(b)に例示するように、温度上昇によるレンズ
支持部材15の膨張で部品11〜14の膨張を相殺する
と共に半導体レーザ2の発振波長の変動をも補償するよ
うになっている。
In this laser unit 9, when the temperature of each part 11 to 15 rises due to the heat generated by the semiconductor laser 2, the parts 11 to 15 expand due to the temperature rise, as illustrated in FIG. 1(b). It is designed to offset the expansion of the semiconductor lasers 11 to 14 and also compensate for fluctuations in the oscillation wavelength of the semiconductor laser 2.

【0017】具体的には、半導体レーザ2は、図3に例
示するように、その温度△Tが0度では発振波長λが7
75(mm)で50度では785(mm)などと云うよ
うに、特性的に温度上昇と共に発振波長が長くなる。そ
して、コリメータレンズ8は、図4に例示するように、
透過光の波長λが780(mm)では屈折率nが1.7
2009で10(mm)では0.000625などと云
うように、特性的に透過光の波長が長くなると屈折率が
上昇するので、透過光の波長λが780(mm)で焦点
距離fが6.25(mm)のコリメータレンズ8を製作
した場合、波長λが790(mm)に変化すると焦点距
離fは5.46(mm)に変化する。
Specifically, as illustrated in FIG. 3, the semiconductor laser 2 has an oscillation wavelength λ of 7 when its temperature ΔT is 0 degrees.
Characteristically, the oscillation wavelength becomes longer as the temperature rises, such as 75 (mm) and 785 (mm) at 50 degrees. The collimator lens 8 is, as illustrated in FIG.
When the wavelength λ of transmitted light is 780 (mm), the refractive index n is 1.7.
2009 and 10 (mm) is 0.000625. Characteristically, as the wavelength of transmitted light increases, the refractive index increases, so when the wavelength λ of transmitted light is 780 (mm) and the focal length f is 6. When a 25 (mm) collimator lens 8 is manufactured, when the wavelength λ changes to 790 (mm), the focal length f changes to 5.46 (mm).

【0018】つまり、半導体レーザ2の発熱により温度
が上昇すると、前述したレーザユニット1と同様に、コ
リメータレンズ8を半導体レーザ2から離反させる方向
に各部11〜14が膨張すると共に、コリメータレンズ
8の焦点距離が短くなって焦点位置が半導体レーザ2か
ら離反するが、このレーザユニット9では、部品11〜
14の膨張を相殺すると共にコリメータレンズ8の焦点
距離の変位をも補償するようにレンズ支持部材15の線
膨張係数や動作部の長さが設定されている。従って、こ
のレーザユニット9では、その作動時間が経過してもレ
ーザ光の平行光束化が高精度に維持されるので、例えば
、印刷品質が常時良好で性能が安定したレーザプリンタ
(図示せず)などを実施することができる。
That is, when the temperature rises due to the heat generated by the semiconductor laser 2, each part 11 to 14 expands in the direction of moving the collimator lens 8 away from the semiconductor laser 2, as in the case of the laser unit 1 described above, and the collimator lens 8 also expands. Although the focal length becomes shorter and the focal position moves away from the semiconductor laser 2, in this laser unit 9, the parts 11 to
The linear expansion coefficient of the lens support member 15 and the length of the operating portion are set so as to offset the expansion of the lens 14 and also compensate for the displacement of the focal length of the collimator lens 8. Therefore, in this laser unit 9, the collimation of the laser beam is maintained with high precision even after the operating time has elapsed, so that, for example, a laser printer (not shown) with always good printing quality and stable performance can be used. etc. can be carried out.

【0019】なお、前記条件式に従ってレーザユニット
9を実際に製作する場合、発熱温度△Tが50度以下な
らばコリメータレンズ8の焦点距離の変動量{r1・r
2/(r1−r2)}[(△n−n)/{(n−1)・
(△n−1)}]は最大で10(μm)程度となる。
Note that when the laser unit 9 is actually manufactured according to the above conditional expression, if the heat generation temperature ΔT is 50 degrees or less, the amount of variation in the focal length of the collimator lens 8 {r1·r
2/(r1-r2)} [(△n-n)/{(n-1)・
(Δn-1)}] is about 10 (μm) at maximum.

【0020】[0020]

【発明の効果】請求項1記載の発明は、レーザ光を出射
する半導体レーザを設け、透過光の波長が長いと屈折率
が高い特性を有して半導体レーザのレーザ光を平行光束
化するコリメータレンズを設け、半導体レーザが固定さ
れて温度上昇により膨張するレーザ支持部材を設け、こ
のレーザ支持部材とコリメータレンズとを連結して温度
上昇による膨張で半導体レーザとコリメータレンズとの
間隔を縮小してレーザ支持部材の膨張と半導体レーザの
発振波長の変動とを補償するレンズ支持部材を設けたこ
とにより、作動時間の経過により半導体レーザが発熱し
てレーザ支持部材がコリメータレンズを半導体レーザか
ら離反させる方向に膨張し、かつ、作動時間の経過によ
り半導体レーザの発振波長が長くなってコリメータレン
ズの焦点距離が短くなっても、レンズ支持部材の膨張が
レーザ支持部材の膨張を相殺すると共にコリメータレン
ズの焦点距離の変位をも補償するので、その作動時間が
経過してもレーザ光の平行光束化を高精度に維持するこ
とができる等の効果を有するものである。
[Effects of the Invention] The invention as claimed in claim 1 provides a collimator which is provided with a semiconductor laser that emits a laser beam, and which has a characteristic that the longer the wavelength of the transmitted light, the higher the refractive index, and converts the laser beam of the semiconductor laser into a parallel beam. A lens is provided, a laser supporting member is provided to which the semiconductor laser is fixed and expands as the temperature rises, and the laser supporting member and the collimator lens are connected to each other so that the distance between the semiconductor laser and the collimator lens is reduced by the expansion due to the temperature rise. By providing a lens support member that compensates for the expansion of the laser support member and fluctuations in the oscillation wavelength of the semiconductor laser, the semiconductor laser generates heat over time and the laser support member moves the collimator lens away from the semiconductor laser. Even if the oscillation wavelength of the semiconductor laser becomes longer and the focal length of the collimator lens becomes shorter due to the passage of operating time, the expansion of the lens support member offsets the expansion of the laser support member and the focus of the collimator lens Since it also compensates for distance displacement, it has the effect of maintaining the collimation of the laser beam with high precision even after the operating time has elapsed.

【0021】請求項2記載の発明は、レンズ支持部材と
レーザ支持部材との接合部から半導体レーザの光点に至
る光軸方向の距離をL、レンズ支持部材とレーザ支持部
材との接合部からレンズ支持部材とコリメータレンズと
の接合部に至る光軸方向の距離をl、レンズ支持部材と
レーザ支持部材との常温から変化した温度を△T、レー
ザ支持部材の線膨張係数をY、レンズ支持部材の線膨張
係数をX、コリメータレンズの常温での屈折率をn、コ
リメータレンズの温度△Tでの屈折率を△n、コリメー
タレンズの光入射面の曲率半径をr1、コリメータレン
ズの光出射面の曲率半径をr2とすると、−{r1・r
2/(r1−r2)}[(△n−n)/{(n−1)・
(△n−1)}]≦L・Y・△T−l・X・△T≦0の
関係を満足することにより、作動時間が経過してもレー
ザ光の平行光束化を高精度に維持できるレーザユニット
を簡易に実現することができる等の効果を有するもので
ある。
According to the second aspect of the invention, the distance in the optical axis direction from the joint between the lens support member and the laser support member to the light spot of the semiconductor laser is L, and the distance from the joint between the lens support member and the laser support member to the light spot of the semiconductor laser is L. The distance in the optical axis direction to the joint between the lens support member and the collimator lens is l, the temperature of the lens support member and the laser support member that has changed from room temperature is △T, the linear expansion coefficient of the laser support member is Y, and the lens support The linear expansion coefficient of the member is X, the refractive index of the collimator lens at room temperature is n, the refractive index of the collimator lens at temperature ΔT is Δn, the radius of curvature of the light incident surface of the collimator lens is r1, and the light output of the collimator lens is If the radius of curvature of the surface is r2, -{r1・r
2/(r1-r2)} [(△n-n)/{(n-1)・
By satisfying the relationship of (△n-1)}]≦L・Y・△T−l・X・△T≦0, the collimation of the laser beam is maintained with high precision even after the operating time has elapsed. This has effects such as being able to easily realize a laser unit that can be used.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明の実施例を示す要部の縦断側面図である
FIG. 1 is a longitudinal sectional side view of essential parts showing an embodiment of the present invention.

【図2】全体の縦断側面図である。FIG. 2 is a longitudinal side view of the whole.

【図3】半導体レーザの特性図である。FIG. 3 is a characteristic diagram of a semiconductor laser.

【図4】コリメータレンズの縦断側面図である。FIG. 4 is a longitudinal side view of the collimator lens.

【図5】従来例を示す縦断側面図である。FIG. 5 is a vertical side view showing a conventional example.

【符号の説明】[Explanation of symbols]

2            半導体レーザ8     
       コリメータレンズ9         
   レーザユニット11〜14    レーザ支持部
材 15          レンズ支持部材16,17 
   接合部 19          光点
2 Semiconductor laser 8
Collimator lens 9
Laser units 11 to 14 Laser support member 15 Lens support members 16, 17
Joint part 19 Light spot

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】  レーザ光を出射する半導体レーザと、
透過光の波長が長いと屈折率が高い特性を有して前記半
導体レーザのレーザ光を平行光束化するコリメータレン
ズと、前記半導体レーザが固定されて温度上昇により膨
張するレーザ支持部材と、このレーザ支持部材と前記コ
リメータレンズとを連結して温度上昇による膨張で前記
半導体レーザと前記コリメータレンズとの間隔を縮小し
て前記レーザ支持部材の膨張と前記半導体レーザの発振
波長の変動とを補償するレンズ支持部材とよりなること
を特徴とするレーザユニット。
[Claim 1] A semiconductor laser that emits laser light;
A collimator lens that has a property of having a high refractive index when the wavelength of transmitted light is long and collimates the laser beam of the semiconductor laser, a laser support member to which the semiconductor laser is fixed and expands due to temperature rise, and this laser A lens that connects a support member and the collimator lens and reduces the distance between the semiconductor laser and the collimator lens through expansion due to temperature rise to compensate for expansion of the laser support member and fluctuations in the oscillation wavelength of the semiconductor laser. A laser unit comprising a support member.
【請求項2】  レンズ支持部材とレーザ支持部材との
接合部から半導体レーザの光点に至る光軸方向の距離を
L、レンズ支持部材とレーザ支持部材との接合部からレ
ンズ支持部材とコリメータレンズとの接合部に至る光軸
方向の距離をl、レンズ支持部材とレーザ支持部材との
常温から変化した温度を△T、レーザ支持部材の線膨張
係数をY、レンズ支持部材の線膨張係数をX、コリメー
タレンズの常温での屈折率をn、コリメータレンズの温
度△Tでの屈折率を△n、コリメータレンズの光入射面
の曲率半径をr1、コリメータレンズの光出射面の曲率
半径をr2とすると、 −{r1・r2/(r1−r2)}[(△n−n)/{
(n−1)・(△n−1)}]≦L・Y・△T−l・X
・△T≦0の関係を満足することを特徴とする請求項1
記載のレーザユニット。
2. The distance in the optical axis direction from the joint between the lens support member and the laser support member to the light spot of the semiconductor laser is L, and the distance from the joint between the lens support member and the laser support member to the lens support member and the collimator lens. The distance in the optical axis direction to the junction with the lens support member is l, the temperature changed from room temperature between the lens support member and the laser support member is ΔT, the linear expansion coefficient of the laser support member is Y, and the linear expansion coefficient of the lens support member is X, the refractive index of the collimator lens at room temperature is n, the refractive index of the collimator lens at temperature △T is △n, the radius of curvature of the light entrance surface of the collimator lens is r1, the radius of curvature of the light exit surface of the collimator lens is r2 Then, -{r1・r2/(r1-r2)}[(△n-n)/{
(n-1)・(△n-1)}]≦L・Y・△T−l・X
・Claim 1 characterized in that it satisfies the relationship △T≦0.
Laser unit listed.
JP8648091A 1991-04-18 1991-04-18 Laser unit Pending JPH04320079A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8648091A JPH04320079A (en) 1991-04-18 1991-04-18 Laser unit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8648091A JPH04320079A (en) 1991-04-18 1991-04-18 Laser unit

Publications (1)

Publication Number Publication Date
JPH04320079A true JPH04320079A (en) 1992-11-10

Family

ID=13888139

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8648091A Pending JPH04320079A (en) 1991-04-18 1991-04-18 Laser unit

Country Status (1)

Country Link
JP (1) JPH04320079A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5870133A (en) * 1995-04-28 1999-02-09 Minolta Co., Ltd. Laser scanning device and light source thereof having temperature correction capability
US6208448B1 (en) * 1998-01-05 2001-03-27 Minolta Co., Ltd. Scanning optical apparatus
US7075117B2 (en) 2003-12-04 2006-07-11 Nec Electronics Corporation Optical semiconductor device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5870133A (en) * 1995-04-28 1999-02-09 Minolta Co., Ltd. Laser scanning device and light source thereof having temperature correction capability
US6208448B1 (en) * 1998-01-05 2001-03-27 Minolta Co., Ltd. Scanning optical apparatus
US7075117B2 (en) 2003-12-04 2006-07-11 Nec Electronics Corporation Optical semiconductor device

Similar Documents

Publication Publication Date Title
US4720168A (en) Laser beam collimating apparatus
US5335244A (en) Technique and apparatus using a moveable weak lens
JPH06232511A (en) Active and passive synthetic heat insulating device for optical assembly
ITTO960119A1 (en) OPTICAL ANALYZER
US20140161391A1 (en) Optical module and optical transmission method
JPH09113832A (en) Optical scanning device
JP2019191312A (en) Laser module
JPS5915206A (en) Laser unit
JP4090098B2 (en) Scanning optical device
JPH04320079A (en) Laser unit
JP2861862B2 (en) Collimating device having a plastic collimating lens
JP5853473B2 (en) Optical scanning apparatus and image forming apparatus
US6975441B2 (en) Scanning optical system
JPH10133087A (en) Focus position temperature variation compensating device
JPH0593881A (en) Laser light source device
JPH0980330A (en) Multibeam scanning optical system
JP2003178480A (en) Light source device and optical pickup
JP3275467B2 (en) Light source device
JP2004273545A (en) Semiconductor laser device, semiconductor laser system, and method of manufacturing semiconductor laser device
JPS61150394A (en) Semiconductor laser-beam source device
JPS62183411A (en) Laser light source device
JPH11202232A (en) Multibeam scanning device
US11803094B2 (en) Optical element assembly, optical imaging device, and optical processing device
JPH10293261A (en) Optical scanning device
KR102058574B1 (en) Microchip laser oscillator device